AD8230YRZ-REEL [ADI]

16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier; 16 V轨到轨,零漂移精密仪表放大器
AD8230YRZ-REEL
型号: AD8230YRZ-REEL
厂家: ADI    ADI
描述:

16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier
16 V轨到轨,零漂移精密仪表放大器

仪表放大器
文件: 总16页 (文件大小:508K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16 V Rail-to-Rail, Zero-Drift,  
Precision Instrumentation Amplifier  
AD8230  
2.0  
1.5  
FEATURES  
Resistor programmable gain range: 101 to 1000  
Supply voltage range: 4 V to 8 V, +8 V to +16 V  
Rail-to-rail input and output  
1.0  
0.5  
Maintains performance over −40°C to +125°C  
0
EXCELLENT AC AND DC PERFORMANCE  
–0.5  
–1.0  
–1.5  
–2.0  
110 dB minimum CMR @ 60 Hz, G = 10 to 1000  
10 µV max offset voltage (RTI, 5 V)  
50 nV/°C max offset drift  
20 ppm max gain nonlinearity  
–50 –30 –10  
10  
30  
50  
70  
90  
110 130 150  
TEMPERATURE (°C)  
APPLICATIONS  
Figure 1. Relative Offset Voltage vs. Temperature  
Pressure measurements  
Temperature measurements  
Strain measurements  
+5V  
–5V  
0.1µF  
Automotive diagnostics  
0.1µF  
2
4
5
1
GENERAL DESCRIPTION  
V
8
TYPE K THERMOCOUPLE  
AD8230  
OUT  
7
The AD8230 is a low drift, differential sampling, precision  
instrumentation amplifier. Auto-zeroing reduces offset voltage  
drift to less than 50 nV/°C. The AD8230 is well-suited for  
thermocouple and bridge transducer applications. The  
AD8230s high CMR of 110 dB (min) rejects line noise in  
measurements where the sensor is far from the instrumentation.  
The 16 V rail-to-rail, common-mode input range is useful for  
noisy environments where ground potentials vary by several  
volts. Low frequency noise is kept to a minimal 3 µV p-p  
making the AD8230 perfect for applications requiring the  
utmost dc precision. Moreover, the AD8230 maintains its high  
performance over the extended industrial temperature range of  
−40°C to +125°C.  
6
34.8kΩ  
284Ω  
3
Figure 2. Thermocouple Measurement  
The AD8230 is versatile yet simple to use. Its auto-zeroing  
topology significantly minimizes the input and output  
transients typical of commutating or chopper instrumentation  
amplifiers. The AD8230 operates on 4 V to 8 V (+8 V to +16 V)  
supplies and is available in an 8-lead SOIC.  
Two external resistors are used to program the gain. By using  
matched external resistors, the gain stability of the AD8230 is  
much higher than instrumentation amplifiers that use a single  
resistor to set the gain. In addition to allowing users to program  
the gain between 101 and 1000, users may adjust the output  
offset voltage.  
1 The AD8230 can be programmed for a gain as low as 2, but the maximum  
input voltage is limited to approximately 750 mV.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
 
AD8230  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Input Voltage Range ................................................................... 11  
Input Protection ......................................................................... 11  
Power Supply Bypassing............................................................ 11  
Power Supply Bypassing for Multiple Channel Systems ....... 11  
Layout .......................................................................................... 12  
Applications ................................................................................ 12  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 13  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ...................................................................... 10  
Setting the Gain .......................................................................... 10  
Level-Shifting the Output.......................................................... 11  
Source Impedance and Input Settling Time ........................... 11  
REVISION HISTORY  
10/04—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
AD8230  
SPECIFICATIONS  
VS = 5 V, VREF = 0 V, RF = 100 kΩ, RG = 1 kΩ (@ TA = 25°C, G = 202, RL = 10 kΩ, unless otherwise noted).  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOLTAGE OFFSET  
RTI Offset, VOSI  
Offset Drift  
V+IN = V−IN = 0 V  
10  
50  
µV  
nV/°C  
V+IN = V−IN = 0 V,  
TA = −40°C to +125°C  
COMMON-MODE REJECTION (CMR)  
CMR to 60 Hz with 1 kΩ Source Imbalance  
VOLTAGE OFFSET RTI vs. SUPPLY (PSR)  
G = 2  
VCM = −5 V to +5 V  
G = 2(1 + RF/RG)  
110  
120  
dB  
120  
120  
120  
140  
dB  
dB  
G = 202  
GAIN  
Gain Range  
101  
1000  
V/V  
Gain Error  
G = 2  
G = 10  
G = 100  
G = 1000  
0.01  
0.01  
0.01  
0.02  
%
%
%
%
Gain Nonlinearity  
INPUT  
20  
ppm  
Input Common-Mode Operating Voltage Range  
Over Temperature  
Input Differential Operating Voltage Range  
Average Input Offset Current2  
OUTPUT  
−VS  
−VS  
+VS  
+VS  
V
V
mV  
pA  
T = −40°C to +125°C  
VCM = 0V  
750  
33  
Output Swing  
−VS + 0.1  
−VS + 0.1  
+VS − 0.2  
+VS − 0.2  
V
V
mA  
Over Temperature  
Short-Circuit Current  
REFERENCE INPUT  
Voltage Range  
T = −40°C to +125°C  
15  
−1  
+1  
V
NOISE  
Voltage Noise Density, 1 kHz, RTI  
Voltage Noise  
VIN+, VIN−, VREF = 0  
f = 0.1 Hz to 10 Hz  
VIN = 500 mV, G = 10  
240  
3
nV/√Hz  
µV p-p  
V/µs  
SLEW RATE  
2
INTERNAL SAMPLE RATE  
POWER SUPPLY  
6
kHz  
Operating Range (Dual Supplies)  
Operating Range (Single Supply)  
Quiescent Current  
TEMPERATURE RANGE  
Specified Performance  
4
+8  
8
+16  
3.5  
V
V
mA  
T = −40°C to +125°C  
2.7  
−40  
+125  
°C  
1 The AD8230 can operate as low as G = 2. However, since the differential input range is limited to approximately 750 mV, the AD8230 configured at G < 10 does not  
make use of the full output voltage range.  
2 Differential source resistance less than 10 kΩ does not result in voltage offset due to input bias current or mismatched series resistors.  
Rev. 0 | Page 3 of 16  
 
 
AD8230  
VS = 8 V, VREF = 0 V, RF = 100 kΩ, RG = 1 kΩ (@ TA = 25°C, G = 202, RL = 10 kΩ, unless otherwise noted).  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOLTAGE OFFSET  
RTI Offset, VOSI  
Offset Drift  
V+IN = V−IN = 0 V  
V+IN = V−IN = 0 V,  
20  
50  
µV  
nV/°C  
T = −40°C to +125°C  
COMMON-MODE REJECTION (CMR)  
CMR to 60 Hz with 1 kΩ Source Imbalance  
VOLTAGE OFFSET RTI vs. SUPPLY (PSR)  
G = 2  
VCM = −8 V to +8 V  
G = 2(1 + RF/RG)  
110  
120  
dB  
120  
120  
120  
140  
dB  
dB  
G = 202  
GAIN  
Gain Range  
101  
1000  
V/V  
Gain Error  
G = 2  
G = 10  
G = 100  
G = 1000  
0.01  
0.01  
0.01  
0.02  
%
%
%
%
Gain Nonlinearity  
INPUT  
20  
ppm  
Input Common-Mode Operating Voltage Range  
Over Temperature  
Input Differential Operating Voltage Range  
Average Input Offset Current2  
OUTPUT  
−VS  
−VS  
+VS  
+VS  
V
V
mV  
pA  
T = −40°C to +125°C  
VCM = 0V  
750  
33  
Output Swing  
−VS + 0.1  
−VS + 0.1  
+VS − 0.2  
+VS − 0.4  
V
V
mA  
Over Temperature  
Short-Circuit Current  
REFERENCE INPUT  
Voltage Range  
T = −40°C to +125°C  
15  
−1  
+1  
V
NOISE  
Voltage Noise Density, 1 kHz, RTI  
Voltage Noise  
VIN+, VIN−, VREF = 0  
f = 0.1 Hz to 10 Hz  
VIN = 500 mV, G = 10  
240  
3
nV/√Hz  
µV p-p  
V/µs  
SLEW RATE  
2
INTERNAL SAMPLE RATE  
POWER SUPPLY  
6
kHz  
Operating Range (Dual Supplies)  
Operating Range (Single Supply)  
Quiescent Current  
TEMPERATURE RANGE  
Specified Performance  
4
+8  
8
+16  
4
V
V
mA  
T = −40°C to +125°C  
3.2  
−40  
+125  
°C  
1 The AD8230 can operate as low as G = 2. However, since the differential input range is limited to approximately 750 mV, the AD8230 configured at G < 10 does not  
make use of the full output voltage range.  
2 Differential source resistance less than 10 kΩ does not result in voltage offset due to input bias current or mismatched series resistors.  
Rev. 0 | Page 4 of 16  
 
 
AD8230  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Parameter  
CONNECTION DIAGRAM  
Rating  
Supply Voltage  
8 V, +16 V  
304 mW  
20 mA  
VS  
VS  
1
2
3
4
8
7
6
5
–V  
+V  
V
OUT  
S
Internal Power Dissipation  
Output Short-Circuit Current  
Input Voltage (Common-Mode)  
Differential Input Voltage  
Storage Temperature  
R
G
S
1
V
V
2
REF  
REF  
+IN  
–IN  
AD8230  
TOP VIEW  
(Not to Scale)  
−65°C to +150°C  
−40°C to +125°C  
Operational Temperature Range  
Figure 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions may affect device reliability.  
Specification is for device in free air: SOIC: θJA (4-layer JEDEC  
board) = 121°C/W.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
this product features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recom-  
mended to avoid performance degradation or loss of functionality.  
Rev. 0 | Page 5 of 16  
 
AD8230  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
15  
TOTAL NUMBER OF  
SAMPLES = 2839 FROM 3 LOTS  
NORMALIZED FOR V  
= 0V  
CM  
500  
400  
300  
200  
100  
0
10  
5
0
–5  
–10  
–15  
–20  
–9  
–6  
–3  
0
3
6
9
–6  
–4  
–2  
0
2
4
6
OFFSET VOLTAGE (µV RTI)  
COMMON-MODE VOLTAGE (V)  
Figure 4. Offset Voltage (RTI) Distribution at 5 V, CM = 0 V, TA = +25°C  
Figure 7. Offset Voltage (RTI) vs. Common-Mode Voltage, VS = 5 V  
40  
20  
TOTAL NUMBER OF SAMPLES = 300 FROM 3 LOTS  
NORMALIZED FOR V  
CM  
= 0V  
35  
30  
25  
20  
15  
10  
5
15  
10  
5
0
–5  
–10  
–15  
–20  
0
–50  
–30  
–10  
10  
30  
50  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
OFFSET VOLTAGE DRIFT (nV/°C)  
COMMON-MODE VOLTAGE (V)  
Figure 5. Offset Voltage (RTI) Drift Distribution  
Figure 8. Offset Voltage (RTI) vs. Common-Mode Voltage, VS = 8 V  
0
–1  
–2  
–3  
–4  
0
–2  
–4  
V
= ±5V  
S
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
V
= ±8V  
S
–5  
±5V SUPPLY  
–6  
–7  
±8V SUPPLY  
–8  
0
1
2
3
4
5
6
–50 –30 –10  
10  
30  
50  
70  
90  
110 130 150  
SOURCE IMPEDANCE (k)  
TEMPERATURE (°C)  
Figure 9. Offset Voltage (RTI) vs. Source Impedance, 1 µF Across Input Pins  
Figure 6. Offset Voltage (RTI) vs. Temperature  
Rev. 0 | Page 6 of 16  
 
AD8230  
40  
30  
6.8k  
6.6k  
6.4k  
6.2k  
6.0k  
5.8k  
5.6k  
5.4k  
NORMALIZED FOR V  
= 0V  
REF  
20  
±8V  
±5V  
10  
0
–10  
–20  
–30  
–40  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
V
(V)  
TEMPERATURE (°C)  
REF  
Figure 13. Clock Frequency vs. Temperature  
Figure 10. Offset Voltage (RTI) vs. Reference Voltage  
130  
120  
110  
100  
90  
1.0  
0.8  
CMR WITH NO SOURCE IMBALANCE  
+85°C  
+125°C  
0.6  
–40°C  
0.4  
0.2  
0
80  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
70  
CMR WITH 1k SOURCE IMBALANCE  
0°C  
60  
50  
+25°C  
40  
10  
100  
1k  
10k  
–6  
–4  
–2  
0
2
4
6
FREQUENCY (Hz)  
COMMON-MODE VOLTAGE (V)  
Figure 11. Common-Mode Rejection vs. Frequency  
Figure 14. Average Input Bias Current vs. Common-Mode Voltage  
−40°C, +25°C, +85°C, +125°C  
3.5  
3.4  
130  
128  
126  
124  
122  
120  
118  
116  
114  
112  
110  
±8V  
3.3  
3.2  
3.1  
3.0  
±5V  
2.9  
±5V SUPPLY  
±8V SUPPLY  
2.8  
2.7  
2.6  
2.5  
–50  
0
50  
100  
150  
0
2
4
6
8
10  
12  
TEMPERATURE (°C)  
SOURCE IMPEDANCE (k)  
Figure 15. Supply Current vs. Temperature  
Figure 12. Common-Mode Rejection vs.  
Source Impedance, 1.1 µF Across Input Pins  
Rev. 0 | Page 7 of 16  
AD8230  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–10  
–10  
10  
10  
10  
0
100  
1k  
10k  
100k  
100k  
20  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 19. Gain vs. Frequency, G = 100  
Figure 16. Gain vs. Frequency, G = 2  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–10  
10  
–10  
100  
1k  
10k  
100k  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Gain vs. Frequency, G = 10  
Figure 20. Gain vs. Frequency, G = 1000  
0.010  
0.008  
0.006  
0.004  
0.002  
0
40  
30  
G = +20  
20  
10  
0
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
–10  
–20  
–30  
–40  
–5  
5
10  
15  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
SOURCE IMPEDANCE (k)  
V
(V)  
OUT  
Figure 18. Gain Nonlinearity, G = 20  
Figure 21. Gain Error vs. Differential Source Impedance  
Rev. 0 | Page 8 of 16  
AD8230  
140  
120  
100  
80  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
G = +100  
G = +1000  
G = +10  
60  
G = +2  
40  
20  
0
0.1  
1
10  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
Figure 25. Negative PSR vs. Frequency, RTI  
Figure 22. Voltage Noise Spectral Density  
10  
8
3.90  
3.70  
3.50  
3.30  
3.10  
2.90  
2.70  
2.50  
V
V
= ±8V  
–40°C  
S
S
6
–40°C  
+125°C  
+25°C  
4
= ±5V  
2
+125°C  
+25°C  
+25°C  
0
–2  
–4  
–6  
–8  
–10  
+125°C  
–40°C  
V
V
= ±5V  
= ±8V  
S
S
+25°C  
+125°C  
–40°C  
0
2
4
6
8
10  
12  
2µV/DIV  
–50 –30  
1s/DIV  
110 130  
–10  
10  
30  
50  
70  
90  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
Figure 26. Output Voltage Swing vs. Output Current,  
−40°C, +25°C, +85°C, +125°C  
Figure 23. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 100)  
160  
140  
120  
100  
80  
G = +1000  
G = +100  
G = +10  
G = +2  
60  
40  
20  
0
0.1  
1
10  
FREQUENCY (kHz)  
Figure 24. Positive PSR vs. Frequency, RTI  
Rev. 0 | Page 9 of 16  
AD8230  
THEORY OF OPERATION  
Auto-zeroing is a dynamic offset and drift cancellation tech-  
nique that reduces input referred voltage offset to the µV level  
and voltage offset drift to the nV/°C level. A further advantage  
of dynamic offset cancellation is the reduction of low frequency  
noise, in particular the 1/f component.  
In Phase B, the differential signal is transferred to the hold  
capacitors refreshing the value stored on CHOLD. The output of  
the preamplifier is held at a common-mode voltage determined  
by the reference potential, VREF. In this manner, the AD8230 is  
able to condition the difference signal and set the output voltage  
level. The gain amplifier conditions the updated signal stored on  
The AD8230 is an instrumentation amplifier that uses an  
auto-zeroing topology and combines it with high common-  
mode signal rejection. The internal signal path consists of an  
active differential sample-and-hold stage (preamp) followed by  
a differential amplifier (gain amp). Both amplifiers implement  
auto-zeroing to minimize offset and drift. A fully differential  
topology increases the immunity of the signals to parasitic noise  
and temperature effects. Amplifier gain is set by two external  
resistors for convenient TC matching.  
the hold capacitors, CHOLD  
.
SETTING THE GAIN  
Two external resistors set the gain of the AD8230. The gain is  
expressed in the following function:  
RF  
RG  
Gain = 2(1+  
)
+V  
S
–V  
S
The signal sampling rate is controlled by an on-chip, 6 kHz  
oscillator and logic to derive the required nonoverlapping  
clock phases. For simplification of the functional description,  
two sequential clock phases, A and B, are used to distinguish  
the order of internal operation, as depicted in Figure 27 and  
Figure 28, respectively.  
0.1µF  
10µF  
0.1µF  
10µF  
2
4
5
1
AD8230  
V
8
F
R
OUT  
G
V
7
REF2  
6
V
REF1  
3
R
G
GAIN AMP  
PREAMP  
R
–V  
S
C
HOLD  
V
+IN  
+
V
OUT  
V
DIFF  
C
SAMPLE  
+V  
Figure 29. Gain Setting  
CM  
+
V
–IN  
C
Table 4. Gains Using Standard 1% Resistors  
HOLD  
–V  
S
Gain  
RF  
RG  
Actual Gain  
2
10  
50  
100  
200  
500  
1000  
0 Ω (short)  
8.06 kΩ  
12.1 kΩ  
9.76 kΩ  
10 kΩ  
None  
2 kΩ  
2
10  
V
R
G
R
REF  
F
Figure 27. Phase A of the Sampling Phase  
499 Ω  
200 Ω  
100 Ω  
200 Ω  
200 Ω  
50.5  
99.6  
202  
501  
1002  
During Phase A, the sampling capacitors are connected to the  
inputs. The input signal’s difference voltage, VDIFF, is stored  
across the sampling capacitors, CSAMPLE. Since the sampling  
capacitors only retain the difference voltage, the common-mode  
voltage is rejected. During this period, the gain amplifier is not  
connected to the preamplifier so its output remains at the level  
set by the previously sampled input signal held on CHOLD, as  
shown in Figure 27.  
49.9 kΩ  
100 kΩ  
Figure 29 and Table 4 provide an example of some gain settings.  
As Table 4 shows, the AD8230 accepts a wide range of resistor  
values. Since the instrumentation amplifier has finite driving  
capability, make sure that the output load in parallel with the  
sum of the gain setting resistors is greater than 2 kΩ.  
GAIN AMP  
PREAMP  
–V  
RL||(RF + RG) > 2 kΩ  
S
C
HOLD  
V
+IN  
Offset voltage drift at high temperature can be minimized by  
keeping the value of the feedback resistor, RF, small. This is due  
to the junction leakage current on the RG pin, Pin 7. The effect  
of the gain setting resistor on offset voltage drift is shown in  
Figure 30. In addition, experience has shown that wire-wound  
resistors in the gain feedback loop may degrade the offset  
voltage performance.  
+
V
OUT  
V
DIFF  
C
SAMPLE  
+V  
CM  
+
V
–IN  
C
HOLD  
–V  
S
V
R
R
REF  
G
F
Figure 28. Phase B of the Sampling Phase  
Rev. 0 | Page 10 of 16  
 
 
 
 
 
AD8230  
0
–1  
–2  
–3  
–4  
–5  
INPUT VOLTAGE RANGE  
The input common-mode range of the AD8230 is rail to rail.  
However, the differential input voltage range is limited to,  
approximately, 750 mV. The AD8230 does not phase invert  
when its inputs are overdriven.  
INPUT PROTECTION  
The input voltage is limited to within one diode drop beyond  
the supply rails by the internal ESD protection diodes. Resistors  
and low leakage diodes may be used to limit excessive, external  
voltage and current from damaging the inputs, as shown in  
Figure 32. Figure 34 shows an overvoltage protection circuit  
between the thermocouple and the AD8230.  
R
= 100k, R = 1kΩ  
G
F
R
= 10k, R = 100Ω  
F
G
–50  
0
50  
TEMPERATURE (°C)  
100  
150  
+V  
S
Figure 30. Effect of Feedback Resistor on Offset Voltage Drift  
–V  
S
BAV199  
+V –V  
0.1µF  
LEVEL-SHIFTING THE OUTPUT  
S
S
0.1µF  
A reference voltage, as shown in Figure 31, can be used to level-  
shift the output 1 V from midsupply. Otherwise, it is nominally  
tied to midsupply. The voltage source used to level-shift the  
output should have a low output impedance to avoid contribut-  
ing to gain error. In addition, it should be able to source and  
sink current. To minimize offset voltage, the VREF pins should be  
connected either to the local ground or to a reference voltage  
source that is connected to the local ground.  
2
4
1
2.49kΩ  
2.49kΩ  
V
8
AD8230  
OUT  
7
5
6
19.1kΩ  
200Ω  
3
+V –V  
BAV199  
S
S
+V  
S
Figure 32. Overvoltage Input Protection  
–V  
S
POWER SUPPLY BYPASSING  
0.1µF  
0.1µF  
A regulated dc voltage should be used to power the instrumen-  
tation amplifier. Noise on the supply pins may adversely affect  
performance. Bypass capacitors should be used to decouple  
the amplifier.  
2
4
1
V
8
F
AD8230  
OUT  
7
5
6
R
3
The AD8230 has internal clocked circuitry that requires  
adequate supply bypassing. A 0.1 µF capacitor should be placed  
as close to each supply pin as possible. As shown in Figure 29,  
a 10 µF tantalum capacitor may be used further away from  
the part.  
R
G
V
(+V + –V  
)
S
S
± 1V  
=
LEVEL-SHIFT  
2
Figure 31. Level-Shifting the Output  
POWER SUPPLY BYPASSING FOR MULTIPLE  
CHANNEL SYSTEMS  
SOURCE IMPEDANCE AND INPUT SETTLING TIME  
The input stage of the AD8230 consists of two actively driven,  
differential switched capacitors, as described in Figure 27 and  
Figure 28. Differential input signals are sampled on CSAMPLE such  
that the associated parasitic capacitances, 70 pF, are balanced  
between the inputs to achieve high common-mode rejection.  
On each sample period (approximately 85 µs), these parasitic  
capacitances must be recharged to the common-mode voltage  
by the signal source impedance (10 kΩ max).  
The best way to prevent clock interference in multichannel  
systems is to lay out the PCB with a star node for the positive  
supply and a star node for the negative supply. Each AD8230  
has a pair of traces leading to the star nodes. Using such a tech-  
nique, crosstalk between clocks is minimized. If laying out star  
nodes is unfeasible, then use thick traces to minimize parasitic  
inductance and decouple frequently along the power supply  
traces. Examples are shown in Figure 33. Care and forethought  
go a long way in maximizing performance.  
Rev. 0 | Page 11 of 16  
 
 
 
 
AD8230  
–V  
S
+V  
S
1µF  
0.1µF  
–V  
1µF  
1µF  
0.1µF  
–V  
1µF  
10µF  
10µF  
0.1µF  
0.1µF  
0.1µF  
–V  
–V  
–V  
S
S
S
S
S
S
S
1
1
2
3
4
1
1
1
2
3
4
8
7
6
5
8
7
6
5
8
8
7
6
5
8
7
6
5
+V  
+V  
+V  
+V  
+V  
S
S
S
2
3
4
2
3
4
2
3
4
7
6
5
0.1µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
AD8230  
AD8230  
AD8230  
AD8230  
AD8230  
STAR –V  
S
10µF  
STAR +V  
S
10µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
–V  
–V  
–V  
–V  
S
S
S
S
S
1
2
3
4
1
1
1
2
3
4
8
7
6
5
8
7
8
7
6
5
8
7
6
+V  
+V  
+V  
+V  
S
S
S
2
3
4
2
3
4
6
0.1µF  
0.1µF  
0.1µF  
0.1µF  
5
5
AD8230  
AD8230  
AD8230  
AD8230  
Figure 33. Use Star Nodes for +VS and −VS or Use Thick Traces and Decouple Frequently Along the Supply Lines  
thermocouple connection is broken. Well-matched 1% 4.99 kΩ  
resistors are used in the RFI filter. It is good practice to match  
the source impedances to ensure high CMR. The circuit is  
configured for a gain of 193, which provides an overall  
temperature sensitivity of 10 mV/°C.  
LAYOUT  
The AD8230 has two reference pins: VREF1 and VREF2. VREF  
draws current to set the internal voltage references. In  
contrast, VREF2 does not draw current. It sets the common  
mode of the output signal. As such, VREF1 and VREF2 should  
be star-connected to ground (or to a reference voltage). In  
addition, to maximize CMR, the trace between VREF2 and the  
gain resistor, RG, should be kept short.  
1
+V  
S
–V  
S
0.1µF  
+V  
0.1µF  
S
2
APPLICATIONS  
4
1
4kΩ  
+V  
S
BAV199  
+V –V  
V
8
AD8230  
OUT  
350Ω  
350Ω  
350Ω  
350Ω  
–V  
S
S
S
7
1µF  
5
6
102kΩ  
1kΩ  
3
+V  
0.1µF  
S
0.1µF  
100MΩ  
2
1nF  
TYPE J  
THERMOCOUPLE  
4
1
4.99kΩ  
4.99kΩ  
–V  
S
V
8
1µF  
AD8230  
OUT  
7
5
6
Figure 35. Bridge Measurement with Filtered Output  
1nF  
100MΩ  
19.1kΩ  
200Ω  
3
–V  
S
Measuring load cells in industrial environments can be a  
challenge. Often, the load cell is located some distance away  
from the instrumentation amplifier. The common-mode  
potential can be several volts, exceeding the common-mode  
input range of many 5 V auto-zero instrumentation amplifiers.  
Fortunately, the AD8230’s wide common-mode input voltage  
range spans 16 V, relieving designers of having to worry about  
the common-mode range.  
+V –V  
BAV199  
S
S
Figure 34. Type J Thermocouple with Overvoltage Protection and RFI Filter  
The AD8230 may be used in thermocouple applications, as  
shown in Figure 2 and Figure 34. Figure 34 is an example of  
such a circuit for use in an industrial environment. It has  
voltage overload protection (see the Input Protection section  
for more information) and an RFI filter in front. The matched  
100 MΩ resistors serve to provide input bias current to the  
input transistors and also serve as an indicator as to when the  
Rev. 0 | Page 12 of 16  
 
 
AD8230  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 36. 8-Lead Standard Small Outline Package [SOIC]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
AD8230YRZ1  
AD8230YRZ-REEL1  
AD8230YRZ-REEL71  
AD8230-EVAL  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
8-Lead SOIC  
R-8  
R-8  
R-8  
8-Lead SOIC, 13" Tape and Reel  
8-Lead SOIC, 7" Tape and Reel  
Evaluation Board  
1 Z = Pb-free part.  
Rev. 0 | Page 13 of 16  
 
 
 
AD8230  
NOTES  
Rev. 0 | Page 14 of 16  
AD8230  
NOTES  
Rev. 0 | Page 15 of 16  
AD8230  
NOTES  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05063–0–10/04(0)  
Rev. 0 | Page 16 of 16  

相关型号:

AD8230YRZ-REEL1

16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier
ADI

AD8230YRZ-REEL7

16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier
ADI

AD8230YRZ-REEL71

16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier
ADI

AD8230YRZ1

16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier
ADI

AD8230_16

16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier
ADI

AD8231

Zero Drift, Digital Programmable Instrumentation Amplifier
ADI

AD8231-EVALZ

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI

AD82311

10 MHz, 20 V/レs, G = 1, 10, 100, 1000 i CMOS㈢ Programmable Gain Instrumentation Amplifier
ADI

AD8231ACPZ-R7

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI

AD8231ACPZ-R7

INSTRUMENTATION AMPLIFIER, 15 uV OFFSET-MAX, 1 MHz BAND WIDTH, QCC16, 4 X 4 MM, ROHS COMPLIANT, MO-220VGGC, LFCSP-16
ROCHESTER

AD8231ACPZ-RL

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI

AD8231ACPZ-WP

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI