AD8231ACPZ-R7 [ADI]

Zero Drift, Digitally Programmable Instrumentation Amplifier; 零漂移,数字可编程仪表放大器
AD8231ACPZ-R7
型号: AD8231ACPZ-R7
厂家: ADI    ADI
描述:

Zero Drift, Digitally Programmable Instrumentation Amplifier
零漂移,数字可编程仪表放大器

仪表放大器 放大器电路
文件: 总20页 (文件大小:621K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Zero Drift, Digitally Programmable  
Instrumentation Amplifier  
AD8231  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Digitally/pin programmable gain  
G = 1, 2, 4, 8, 16, 32, 64, 128  
Specified from −40°C to +125°C  
50 nV/°C maximum input offset drift  
10 ppm/°C maximum gain drift  
Excellent dc performance  
80 dB minimum CMR, G = 1  
15 μV maximum input offset voltage  
500 pA maximum bias current  
0.7 μV p-p noise (0.1 Hz to 10 Hz)  
Good ac performance  
1
2
3
4
12  
11  
10  
9
NC  
–INA  
+INA  
NC  
+V  
–V  
S
LOGIC  
S
IN-AMP  
OUTA  
REF  
OP  
AMP  
AD8231  
2.7 MHz bandwidth, G = 1  
1.1 V/ꢀs slew rate  
Rail-to-rail input and output  
Shutdown/multiplex  
Extra op amp  
Figure 1.  
Single supply range: 3 V to 6 V  
Dual supply range: 1.5 V to 3 V  
Table 1. Instrumentation/Difference Amplifiers by Category  
High  
Low  
Cost  
High  
Voltage  
Mil  
Grade  
Low  
Power  
Digital  
Gain  
Performance  
AD6231  
AD85531  
AD628  
AD629  
AD620  
AD621  
AD524  
AD526  
AD624  
AD6271  
AD82311  
AD8250  
AD8251  
AD85551  
AD85561  
AD85571  
APPLICATIONS  
AD8221  
AD82201  
AD8222  
AD82241  
Pressure and strain transducers  
Thermocouples and RTDs  
Programmable instrumentation  
Industrial controls  
Weigh scales  
1 Rail-to-rail output.  
GENERAL DESCRIPTION  
The AD8231 also includes an uncommitted op amp that can be  
used for additional gain, differential signal driving or filtering.  
Like the in-amp, the op amp has an auto-zero architecture, rail-  
to-rail input, and rail-to-rail output.  
The AD8231 is a low drift, rail-to-rail, instrumentation ampli-  
fier with software programmable gains of 1, 2, 4, 8, 16, 32, 64, or  
128. The gains are programmed via digital logic or pin  
strapping.  
The AD8231 includes a shutdown feature that reduces current  
to a maximum of 1 μA. In shutdown, both amplifiers also have  
a high output impedance. This allows easy multiplexing of  
multiple amplifiers without additional switches.  
The AD8231 is ideal for applications that require precision  
performance over a wide temperature range, such as industrial  
temperature sensing and data logging. Because the gain setting  
resistors are internal, maximum gain drift is only 10 ppm/°C.  
Because of the auto-zero input stage, maximum input offset is  
15 μV and maximum input offset drift is just 50 nV/°C. CMRR  
is also guaranteed over temperature at 80 dB for G = 1, increas-  
ing to 110 dB at higher gains.  
The AD8231 is specified over the extended industrial tempera-  
ture range of −40°C to +125°C. It is available in a 4 mm × 4 mm  
16-lead LFCSP (chip scale).  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
AD8231  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 14  
Amplifier Architecture .............................................................. 14  
Gain Selection............................................................................. 14  
Reference Terminal .................................................................... 14  
Layout .......................................................................................... 15  
Input Bias Current Return Path ............................................... 15  
RF Interference ........................................................................... 15  
Common-Mode Input Voltage Range..................................... 16  
Applications Information.............................................................. 17  
Differential Output .................................................................... 17  
Multiplexing................................................................................ 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Instrumentation Amplifier Performance Curves..................... 9  
Operational Amplifier Performance Curves .......................... 12  
Performance Curves Valid for Both Amplifiers ..................... 13  
REVISION HISTORY  
5/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
AD8231  
SPECIFICATIONS  
VS = 5 V, VREF = 2.5 V, G = 1, RL = 10 kΩ, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
INSTRUMENTATION AMPLIFIER  
OFFSET VOLTAGE  
Input Offset, VOSI  
Average Temperature Drift  
Output Offset, VOSO  
Average Temperature Drift  
INPUT CURRENTS  
VOS RTI = VOSI + VOSO/G  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
4
15  
μV  
0.01  
15  
0.05  
30  
μV/°C  
μV  
0.05  
0.5  
μV/°C  
Input Bias Current  
250  
20  
500  
5
100  
0.5  
pA  
nA  
pA  
nA  
TA = −40°C to +125°C  
Input Offset Current  
TA = −40°C to +125°C  
1, 2, 4, 8, 16, 32, 64, 128  
GAINS  
Gain Error  
G = 1  
G = 2 to 128  
Gain Drift  
G = 1  
0.05  
0.8  
%
%
3
3
10  
10  
ppm/°C  
ppm/°C  
G = 2 to 128  
CMRR  
G = 1  
G = 2  
G = 4  
G = 8  
G = 16  
G = 32  
G = 64  
G = 128  
NOISE  
80  
86  
92  
98  
104  
110  
110  
110  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
en = √(eni2 + (eno/G)2), VIN+, VIN− = 2.5 V  
f = 1 kHz  
f = 1 kHz, TA = −40°C  
f = 1 kHz, TA = 125°C  
f = 0.1 Hz to 10 Hz,  
f = 1 kHz  
f = 1 kHz, TA = −40°C  
f = 1 kHz, TA = 125°C  
f = 0.1 Hz to 10 Hz  
Input Voltage Noise, eni  
32  
27  
39  
0.7  
58  
50  
70  
1.1  
nV/√Hz  
nV/√Hz  
nV/√Hz  
μV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
μV p-p  
Output Voltage Noise, eno  
OTHER INPUT CHARACTERISTICS  
Common-Mode Input Impedance  
Power Supply Rejection Ratio  
Input Operating Voltage Range  
REFERENCE INPUT  
10||5  
110  
GΩ||pF  
dB  
V
100  
0.05  
4.95  
+5.2  
Input Impedance  
Voltage Range  
28  
kΩ  
V
−0.2  
Rev. 0 | Page 3 of 20  
 
AD8231  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Bandwidth  
G = 1  
G = 2  
2.7  
2.5  
MHz  
MHz  
Gain Bandwidth Product  
G = 4 to 128  
Slew Rate  
7
1.1  
MHz  
V/μs  
OUTPUT CHARACTERISTICS  
Output Voltage High  
RL = 100 kΩ to ground  
RL = 10 kΩ to ground  
RL = 100 kΩ to 5 V  
RL = 10 kΩ to 5 V  
4.9  
4.8  
4.94  
4.88  
60  
80  
70  
V
V
mV  
mV  
mA  
Output Voltage Low  
100  
200  
Short-Circuit Current  
DIGITAL INTERFACE  
Input Voltage Low  
Input Voltage High  
Setup Time to CS high  
Hold Time after CS high  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
1.0  
V
V
ns  
ns  
4.0  
50  
20  
OPERATIONAL AMPLIFIER  
INPUT CHARACTERISTICS  
Offset Voltage, VOS  
5
15  
μV  
Temperature Drift  
Input Bias Current  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
0.01  
250  
0.06  
500  
5
100  
0.5  
4.95  
uV/°C  
pA  
nA  
pA  
nA  
Input Offset Current  
20  
Input Voltage Range  
Open-Loop Gain  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Voltage Noise Density  
Voltage Noise  
0.05  
100  
100  
100  
V
120  
120  
115  
20  
V/mV  
dB  
dB  
nV/√Hz  
μV p-p  
f = 0.1 Hz to 10 Hz  
0.4  
DYNAMIC PERFORMANCE  
Gain Bandwidth Product  
Slew Rate  
1
0.5  
MHz  
V/μs  
OUTPUT CHARACTERISTICS  
Output Voltage High  
RL = 100 kΩ to ground  
RL = 10 kΩ to ground  
RL = 100 kΩ to 5 V  
RL = 10 kΩ to 5 V  
4.9  
4.8  
4.96  
4.92  
60  
80  
70  
V
V
mV  
mV  
mA  
Output Voltage Low  
100  
200  
Short-Circuit Current  
BOTH AMPLIFIERS  
POWER SUPPLY  
Quiescent Current  
Quiescent Current (Shutdown)  
4
0.01  
5
1
mA  
μA  
Rev. 0 | Page 4 of 20  
AD8231  
VS = 3.0 V, VREF = 1.5 V, TA = 25°C, G = 1, RL = 10 kΩ, unless otherwise noted.  
Table 3.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
INSTRUMENTATION AMPLIFIER  
OFFSET VOLTAGE  
VOS RTI = VOSI + VOSO/G  
Input Offset, VOSI  
4
15  
μV  
Average Temperature Drift  
Output Offset, VOSO  
Average Temperature Drift  
INPUT CURRENTS  
0.01  
15  
0.05  
0.05  
30  
0.5  
μV/°C  
μV  
μV/°C  
Input Bias Current  
250  
20  
500  
5
100  
0.5  
pA  
nA  
pA  
nA  
TA = −40°C to +125°C  
Input Offset Current  
TA = −40°C to +125°C  
1, 2, 4, 8, 16, 32, 64, 128  
GAINS  
Gain Error  
G = 1  
G = 2 to 128  
Gain Drift  
G = 1  
0.05  
0.8  
%
%
3
3
10  
10  
ppm/°C  
ppm/°C  
G = 2 to 128  
CMRR  
G = 1  
G = 2  
G = 4  
G = 8  
G = 16  
G = 32  
G = 64  
G = 128  
NOISE  
80  
86  
92  
98  
104  
110  
110  
110  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
en = √(eni2 + (eno/G)2)  
V
IN+, VIN− = 2.5 V, TA = 25°C  
Input Voltage Noise, eni  
f = 1 kHz  
40  
35  
48  
0.8  
72  
62  
83  
1.4  
nV/√Hz  
nV/√Hz  
nV/√Hz  
μV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
μV p-p  
f = 1 kHz, TA = −40°C  
f = 1 kHz, TA = 125°C  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz, TA = −40°C  
f = 1 kHz, TA = 125°C  
f = 0.1 Hz to 10 Hz  
Output Voltage Noise, eno  
OTHER INPUT CHARACTERISTICS  
Common-Mode Input Impedance  
Power Supply Rejection Ratio  
Input Operating Voltage Range  
REFERENCE INPUT  
10||5  
110  
GΩ||pF  
dB  
V
100  
0.05  
2.95  
+3.2  
Input Impedance  
Voltage Range  
28  
kΩ||pF  
V
−0.2  
Rev. 0 | Page 5 of 20  
AD8231  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Bandwidth  
G = 1  
G = 2  
2.7  
2.5  
MHz  
MHz  
Gain Bandwidth Product  
G = 4 to 128  
Slew Rate  
7
1.1  
MHz  
V/μs  
OUTPUT CHARACTERISTICS  
Output Voltage High  
RL = 100 kΩ to ground  
RL = 10 kΩ to ground  
RL = 100 kΩ to 3 V  
RL = 10 kΩ to 3 V  
2.9  
2.8  
2.94  
2.88  
60  
80  
70  
V
V
mV  
mV  
mA  
Output Voltage Low  
100  
200  
Short-Circuit Current  
DIGITAL INTERFACE  
Input Voltage Low  
Input Voltage High  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
0.7  
V
V
ns  
ns  
2.3  
60  
20  
CS  
Setup Time to high  
CS  
Hold Time after high  
OPERATIONAL AMPLIFIER  
INPUT CHARACTERISTICS  
Offset Voltage, VOS  
5
15  
μV  
Temperature Drift  
Input Bias Current  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
0.01  
250  
0.06  
500  
5
100  
0.5  
2.95  
μV/°C  
pA  
nA  
pA  
nA  
Input Offset Current  
20  
Input Voltage Range  
Open-Loop Gain  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Voltage Noise Density  
Voltage Noise  
0.05  
100  
100  
100  
V
120  
120  
115  
27  
V/mV  
dB  
dB  
nV/√Hz  
μV p-p  
f = 0.1 Hz to 10 Hz  
0.6  
DYNAMIC PERFORMANCE  
Gain Bandwidth Product  
Slew Rate  
1
0.5  
MHz  
V/μs  
OUTPUT CHARACTERISTICS  
Output Voltage High  
RL = 100 kΩ to ground  
RL = 10 kΩ to ground  
RL = 100 kΩ to 3 V  
RL = 10 kΩ to 3 V  
2.9  
2.8  
2.96  
2.82  
60  
80  
70  
V
V
mV  
mV  
mA  
Output Voltage Low  
100  
200  
Short-Circuit Current  
BOTH AMPLIFIERS  
POWER SUPPLY  
Quiescent Current  
Quiescent Current (Shutdown)  
3.5  
0.01  
4.5  
1
mA  
μA  
Rev. 0 | Page 6 of 20  
AD8231  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
THERMAL RESISTANCE  
Table 5.  
Parameter  
Rating  
Supply Voltage  
6 V  
Thermal Pad  
θJA  
54  
96  
Unit  
°C/W  
°C/W  
Output Short-Circuit Current  
Input Voltage (Common-Mode)  
Differential Input Voltage  
Storage Temperature Range  
Operational Temperature Range  
Indefinite1  
Soldered to Board  
Not Soldered to Board  
−VS − 0.3 V to +VS + 0.3 V  
−VS − 0.3 V to +VS + 0.3 V  
–65°C to +150°C  
–40°C to +125°C  
The θJA values in Table 5 assume a 4-layer JEDEC standard  
board. If the thermal pad is soldered to the board, then it is  
also assumed it is connected to a plane. θJC at the exposed pad  
is 6.3°C/W.  
Package Glass Transition Temperature 130°C  
ESD (Human Body Model)  
ESD (Charged Device Model)  
ESD (Machine Model)  
1 For junction temperatures between 105°C and 130°C, short-circuit operation  
beyond 1000 hours may impact part reliability.  
1.5 kV  
1.5 kV  
0.2 kV  
Maximum Power Dissipation  
The maximum safe power dissipation for the AD8231 is limited  
by the associated rise in junction temperature (TJ) on the die. At  
approximately 130°C, which is the glass transition temperature,  
the plastic changes its properties. Even temporarily exceeding  
this temperature limit may change the stresses that the package  
exerts on the die, permanently shifting the parametric perform-  
ance of the amplifiers. Exceeding a temperature of 130°C for an  
extended period can result in a loss of functionality.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. 0 | Page 7 of 20  
 
 
 
AD8231  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
12 +V  
11 –V  
NC  
(IN-AMP –IN) –INA  
(IN-AMP +IN) +INA  
NC  
1
2
3
4
S
S
AD8231  
TOP VIEW  
(Not to Scale)  
10 OUTA (IN-AMP OUT)  
REF  
9
NC = NO CONNECT  
Figure 2. 16-Lead LFCSP (Chip Scale)  
Table 6. Pin Function Descriptions  
Pin Number  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
9
NC  
No Connect.  
−INA  
+INA  
NC  
In-Amp Negative Input.  
In-Amp Positive Input.  
No Connect.  
SDN  
Shutdown.  
+INB  
−INB  
OUTB  
REF  
Op Amp Positive Input.  
Op Amp Negative Input.  
Op Amp Output.  
In-Amp Reference Pin. It should be driven with a low impedance. Output is referred to  
this pin.  
10  
11  
12  
13  
14  
15  
16  
OUTA  
−VS  
+VS  
CS  
In-Amp Output.  
Negative Power Supply. Connect to ground in single supply applications.  
Positive Power Supply.  
Chip Select. Enables digital logic interface.  
Gain Setting Bit (LSB).  
Gain Setting Bit.  
Gain Setting Bit (MSB).  
A0  
A1  
A2  
Rev. 0 | Page 8 of 20  
 
AD8231  
TYPICAL PERFORMANCE CHARACTERISTICS  
INSTRUMENTATION AMPLIFIER PERFORMANCE CURVES  
6
50  
40  
G = +128  
0V, 4.96V  
G = +64  
G = +32  
G = +16  
G = +8  
G = +4  
G = +2  
G = +1  
5
4
30  
20  
10  
5V SINGLE SUPPLY  
4.92V, 2.5V  
3
0
0V, 2.96V  
2
–10  
–20  
–30  
–40  
3V SINGLE SUPPLY  
1
2.92V, 1.5V  
4
0V, 0.04V  
1
0
0
2
3
5
6
100  
1k  
10k  
100k  
1M  
10M  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 3. Input Common-Mode Range vs. Output Voltage, VREF = 0 V  
Figure 6. Gain vs. Frequency  
6
140  
120  
100  
80  
G = +128  
1.5V, 4.96V  
5
0.02V, 4.22V  
G = +8  
G = +1  
4
5V SINGLE SUPPLY  
1.5V, 2.96V  
4.98V, 3.22V  
4.98V, 1.78V  
3
2
1
0
0.02V, 2.22V  
0.02V, 0.78V  
2.98V, 2.22V  
3V SINGLE SUPPLY  
60  
2.98V, 0.78V  
1.5V, 0.04V  
40  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
10  
100  
1k  
10k  
100k  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 4. Input Common-Mode Range vs. Output Voltage, VREF = 1.5 V  
Figure 7. CMRR vs. Frequency  
6
2.5V, 4.96V  
5
G = +128, 0.4µV/DIV  
G = +1, 1µV/DIV  
5V SINGLE SUPPLY  
4
4.98V, 3.72V  
0.02V, 3.72V  
3
2
1
0
2.98V, 2.72V  
2.5V, 2.96V  
0.02V, 1.72V  
0.02V, 1.28V  
3V SINGLE  
SUPPLY  
4.98V,1.28V  
2.5V, 0.04V  
1s/DIV  
2.98V, 0.28V  
3.0 3.5 4.0  
OUTPUT VOLTAGE (V)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
4.5  
5.0  
Figure 8. 0.1 Hz to 10 Hz Noise  
Figure 5. Input Common-Mode Range vs. Output Voltage, VREF = 2.5 V  
Rev. 0 | Page 9 of 20  
 
 
 
AD8231  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
1.0  
0.8  
G = +1  
G = +8  
G = +128  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
+V = +1.5V  
S
–V = –1.5V  
S
V
= 0V  
REF  
0
1
10  
100  
FREQUENCY (Hz)  
1k  
–1.5 –1.2 –0.9 –0.6 –0.3  
0
0.3  
0.6  
0.9  
1.2  
1.5  
V
(V)  
CM  
Figure 9. Voltage Noise Spectral Density vs. Frequency, 5 V, 1 Hz to 1000 Hz  
Figure 12. Bias Current vs. Common-Mode Voltage, 3 V  
1000  
G = +1  
G = +8  
G = +128  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
20mV/DIV  
5µs/DIV  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 13. Small Signal Pulse Response, G = 1, RL = 2 kΩ, CL = 500 pF  
Figure 10. Voltage Noise Spectral Density vs. Frequency, 5V, 1 Hz to 1 MHz  
2.0  
1.5  
1.0  
0.5  
0
500pF  
800pF  
300pF  
NO  
LOAD  
–0.5  
–1.0  
+V = +2.5V  
S
–1.5  
–2.0  
–V = –2.5V  
S
20mV/DIV  
4µs/DIV  
V
= 0V  
REF  
–2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
V
(V)  
CM  
Figure 14. Small Signal Pulse Response for Various Capacitive Loads, G = 1  
Figure 11. Bias Current vs. Common-Mode Voltage, 5 V  
Rev. 0 | Page 10 of 20  
AD8231  
G = +8  
G = +32  
G = +128  
2V/DIV  
17.6µs TO 0.01%  
21.4µs TO 0.001%  
0.001%/DIV  
100µs/DIV  
20mV/DIV  
10µs/DIV  
Figure 15. Small Signal Pulse Response, G = 8, 32, 128, RL = 2 kΩ, CL = 500 pF  
Figure 18. Large Signal Pulse Response, G = 128, VS = 5 V  
25  
20  
15  
10  
5
0.001%  
2V/DIV  
0.01%  
3.95µs TO 0.01%  
4µs TO 0.001%  
0.001%/DIV  
10µs/DIV  
0
1
10  
100  
1k  
GAIN (V/V)  
Figure 16. Large Signal Pulse Response, G = 1, VS = 5 V  
Figure 19. Settling Time vs. Gain for a 4 V p-p Step, VS = 5 V  
25  
0.001%  
20  
15  
10  
5
2V/DIV  
0.01%  
3.75µs TO 0.01%  
3.8µs TO 0.001%  
0.001%/DIV  
10µs/DIV  
0
1
10  
100  
1k  
GAIN (V/V)  
Figure 17. Large Signal Pulse Response, G = 8, VS = 5 V  
Figure 20. Settling Time vs. Gain for a 2 V p-p Step, VS = 3 V  
Rev. 0 | Page 11 of 20  
 
 
AD8231  
OPERATIONAL AMPLIFIER PERFORMANCE CURVES  
100  
80  
60  
40  
20  
0
–90  
NO  
LOAD  
–100  
–110  
–120  
–130  
–140  
–150  
300pF  
76° PHASE  
MARGIN  
800pF  
1nF  
1.5nF  
R
C
= 10k  
= 200pF  
L
L
20mV/DIV  
5µs/DIV  
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 21. Open Loop Gain and Phase vs. Frequency, VS = 5 V  
Figure 24. Small Signal Response for Various Capacitive Loads, VS = 3 V  
100  
80  
60  
40  
20  
0
–90  
NO  
LOAD  
–100  
–110  
–120  
1nF2kΩ  
1.5nF2kΩ  
72° PHASE  
MARGIN  
–130  
–140  
R
C
= 10kΩ  
= 200pF  
L
L
–20  
–150  
10M  
10  
100  
1k  
10k  
100k  
1M  
TIME (5µs/DIV)  
FREQUENCY (Hz)  
Figure 22. Open Loop Gain and Phase vs. Frequency, VS = 3 V  
Figure 25. Large Signal Transient Response, VS = 5 V  
NO  
LOAD  
1nF  
2nF  
800pF  
NO  
LOAD  
1nF2kΩ  
1.5nF2kΩ  
1.5nF  
20mV/DIV  
5µs/DIV  
TIME (5µs/DIV)  
Figure 26. Large Signal Transient Response, VS = 3 V  
Figure 23. Small Signal Response for Various Capacitive Loads, VS = 5 V  
Rev. 0 | Page 12 of 20  
 
AD8231  
PERFORMANCE CURVES VALID FOR BOTH AMPLIFIERS  
7
5
4
3
2
1
0
+125°C  
+85°C  
6
–40°C SOURCE  
+25°C SOURCE  
+85°C SOURCE  
+125°C SOURCE  
5
+25°C  
–40°C  
4
–40°C SINK  
+25°C SINK  
+85°C SINK  
+125°C SINK  
3
2
1
0
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
(V)  
5.1  
5.5  
5.9  
0
5
10  
15  
20  
25  
V
OUTPUT CURRENT (mA)  
SUPPLY  
Figure 29. Output Voltage Swing vs. Output Current, VS = 5 V  
Figure 27. Supply Current vs. Supply Voltage  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–40°C SOURCE  
+25°C SOURCE  
+85°C SOURCE  
+125°C SOURCE  
–40°C SINK  
+25°C SINK  
+85°C SINK  
+125°C SINK  
0
5
10  
15  
20  
25  
OUTPUT CURRENT (mA)  
Figure 28. Output voltage Swing vs. Output Current, VS = 3 V  
Rev. 0 | Page 13 of 20  
 
AD8231  
THEORY OF OPERATION  
CS A0 A1 A2  
SDN  
A4  
OUTB  
–INA  
14k  
14kΩ  
14kΩ  
–INB  
+INB  
OUTA  
A1  
A2  
A3  
14kΩ  
+INA  
AD8231  
+V  
–V  
REF  
S
S
Figure 30. Simplified Schematic  
Table 7. Truth Table for AD8231 Gain Settings  
AMPLIFIER ARCHITECTURE  
CS  
A2  
A1  
A0  
Gain  
The AD8231 is based on the classic 3-op amp topology. This  
topology has two stages: a preamplifier to provide amplification,  
followed by a difference amplifier to remove the common-mode  
voltage. Figure 30 shows a simplified schematic of the AD8231.  
The preamp stage is composed of Amplifier A1, Amplifier A2,  
and a digitally controlled resistor network. The second stage is a  
gain of 1 difference amplifier composed of A3 and four 14 kꢀ  
resistors. Amplifier A1, Amplifier A2, and Amplifier A3 are all  
zero drift, rail-to-rail input, rail-to rail-output amplifiers.  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
High  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
X
Low  
Low  
High  
High  
Low  
Low  
High  
High  
X
Low  
High  
Low  
High  
Low  
High  
Low  
High  
X
1
2
4
8
16  
32  
64  
128  
No change  
The AD8231 design makes it extremely robust over tempera-  
ture. The AD8231 uses an internal thin film resistor to set the  
gain. Since all of the resistors are on the same die, gain  
temperature drift performance and CMRR drift performance  
are better than can be achieved with topologies using external  
resistors. The AD8231 also uses an auto-zero topology to null  
the offsets of all its internal amplifiers. Since this topology  
continually corrects for any offset errors, offset temperature  
drift is nearly nonexistent.  
REFERENCE TERMINAL  
The output voltage of the AD8231 is developed with respect to  
the potential on the reference terminal. This is useful when the  
output signal needs to be offset to a midsupply level. For  
example, a voltage source can be tied to the REF pin to level-  
shift the output so that the AD8231 can drive a single-supply  
ADC. The REF pin is protected with ESD diodes and should  
not exceed either +VS or −VS by more than 0.3 V.  
The AD8231 also includes a free operational amplifier. Like  
the other amplifiers in the AD8231, it is a zero drift, rail-to-rail  
input, rail-to-rail output architecture.  
For best performance, source impedance to the REF terminal  
should be kept below 1 Ω. As shown in Figure 30, the reference  
terminal, REF, is at one end of a 14 kꢀ resistor. Additional  
impedance at the REF terminal adds to this 14 kꢀ resistor  
and results in amplification of the signal connected to the  
positive input, causing a CMRR error.  
GAIN SELECTION  
The AD8231s gain is set by voltages applied to the A0, A1,  
CS  
and A2 pins. To change the gain, the  
pin must be driven  
CS  
low. When the  
pin is driven high, the gain is latched, and  
voltages at the A0 to A2 pins have no effect. Table 7 shows the  
different gain settings.  
The time required for a gain change is dominated by the settling  
time of the amplifier. The AD8231 takes about 200 ns to switch  
gains, after which the amplifier begins to settle. Refer to Figure 16  
through Figure 20 to determine the settling time for different  
gains.  
Rev. 0 | Page 14 of 20  
 
 
 
 
AD8231  
INCORRECT  
CORRECT  
INPUT BIAS CURRENT RETURN PATH  
The input bias current of the AD8231 must have a return path  
to common. When the source, such as a thermocouple, cannot  
provide a return current path, one should be created, as shown  
in Figure 32.  
AD8231  
AD8231  
IN-AMP  
IN-AMP  
V
REF  
V
REF  
INCORRECT  
CORRECT  
+
+V  
+V  
S
S
AD8231  
OP AMP  
Figure 31. Driving the Reference Pin  
AD8231  
AD8231  
REF  
REF  
REF  
REF  
LAYOUT  
The AD8231 is a high precision device. To ensure optimum  
performance at the PC board level, care must be taken in the  
design of the board layout. The AD8231 pinout is arranged in  
a logical manner to aid in this task.  
–V  
S
–V  
S
TRANSFORMER  
TRANSFORMER  
+V  
+V  
S
S
Power Supplies  
The AD8231 should be decoupled with a 0.1 μF bypass capacitor  
between the two supplies. This capacitor should be placed as close  
as possible to Pin 11 and Pin 12, either directly next to the pins or  
beneath the pins on the backside of the board. The AD8231s auto-  
zero architecture requires a low ac impedance between the supplies.  
Long trace lengths to the bypass capacitor increase this impedance,  
which results in a larger input offset voltage.  
AD8231  
AD8231  
REF  
10M  
–V  
–V  
S
S
THERMOCOUPLE  
THERMOCOUPLE  
A stable dc voltage should be used to power the instrumentation  
amplifier. Noise on the supply pins can adversely affect  
performance.  
+V  
+V  
S
S
C
C
C
R
R
Package Considerations  
1
fHIGH-PASS  
=
AD8231  
2πRC  
AD8231  
C
The AD8231 comes in a 4 mm × 4 mm LFCSP. Beware of  
blindly copying the footprint from another 4 mm × 4 mm  
LFCSP part; it may not have the same thermal pad size and  
leads. Refer to the Outline Dimensions section to verify that the  
PCB symbol has the correct dimensions. Space between the  
leads and thermal pad should be kept as wide as possible for the  
best bias current performance.  
REF  
–V  
–V  
S
S
CAPACITIVELY COUPLED  
CAPACITIVELY COUPLED  
Figure 32. Creating an IBIAS Path  
RF INTERFERENCE  
Thermal Pad  
RF rectification is often a problem when amplifiers are used in  
applications where there are strong RF signals. The disturbance  
can appear as a small dc offset voltage. High frequency signals  
can be filtered with a low-pass, RC network placed at the input  
of the instrumentation amplifier, as shown in Figure 33. The  
filter limits the input signal bandwidth according to the  
following relationship:  
The AD8231 4 mm × 4 mm LFCSP comes with a thermal pad.  
This pad is connected internally to −VS. The pad can either be  
left unconnected or connected to the negative supply rail. For  
high vibration applications, a landing is recommended.  
Because the AD8231 dissipates little power, heat dissipation is  
rarely an issue. If improved heat dissipation is desired (for  
example, when ambient temperatures are near 125°C or when  
driving heavy loads), connect the thermal pad to the negative  
supply rail. For the best heat dissipation performance, the  
negative supply rail should be a plane in the board. See the  
Thermal Resistance section for thermal coefficients with and  
without the pad soldered.  
1
FilterFreqDiff =  
2π R(2CD + CC )  
1
FilterFreqCM =  
2π RCC  
where CD ≥ 10CC.  
Rev. 0 | Page 15 of 20  
 
 
AD8231  
+V  
S
COMMON-MODE INPUT VOLTAGE RANGE  
The 3-op amp architecture of the AD8231 applies gain and then  
removes the common-mode voltage. Therefore, internal nodes  
in the AD8231 experience a combination of both the gained  
signal and the common-mode signal. This combined signal can  
be limited by the voltage supplies even when the individual input  
and output signals are not. To determine whether the signal could  
be limited, refer to Figure 3 through Figure 5 or use the following  
formula:  
0.1µF  
+INA  
10µF  
C
1nF  
C
R
4.02k  
V
C
D
10nF  
OUT  
AD8231  
R
REF  
–INA  
4.02kΩ  
C
C
1nF  
VDIFF ×Gain  
0.1µF  
10µF  
VS + 0.04 V < VCM  
±
<+VS 0.04 V  
2
–V  
S
If more common mode range is required, the simplest solution is to  
apply less gain in the instrumentation amplifier. The extra op amp  
can be used to provide another gain stage after the in-amp. Because  
the AD8231 has good offset and noise performance at low gains,  
applying less gain in the instrumentation amplifier generally has a  
limited impact on the overall system performance.  
Figure 33. RFI Suppression  
Figure 33 shows an example where the differential filter  
frequency is approximately 2 kHz, and the common-mode filter  
frequency is approximately 40 kHz.  
Values of R and CC should be chosen to minimize RFI. Mismatch  
between the R × CC at the positive input and the R × CC at  
negative input degrades the CMRR of the AD8231. By using a  
value of CD ten times larger than the value of CC, the effect of  
the mismatch is reduced and performance is improved.  
Rev. 0 | Page 16 of 20  
 
 
AD8231  
APPLICATIONS INFORMATION  
DIFFERENTIAL OUTPUT  
MULTIPLEXING  
SDN0  
SDN1  
SDN2  
SDN3  
Figure 34 shows how to create a differential output in-amp  
using the AD8231 uncommitted op amp. Errors from the op  
amp are common to both outputs and are thus common-mode.  
Errors from mismatched resistors also create a common-mode  
dc offset. Because these errors are common-mode, they will  
likely be rejected by the next device in the signal chain.  
3
+IN  
10  
IN-AMP  
+OUT  
REF  
9
2
–IN  
4.99k  
4.99kΩ  
V
REF  
7
6
+
OP AMP  
8
Figure 35.  
–OUT  
Figure 34. Differential Output Using Op Amp  
The outputs of both the AD8231 in-amp and op amp are high  
impedance in the shutdown state. This feature allows several  
AD8231s to be multiplexed together without any external  
switches. Figure 35 shows an example of such a configuration.  
All the outputs are connected together and only one amplifier is  
turned on at a time. This feature is analogous to the high Z  
mode of digital tristate logic. Because the output impedance in  
shutdown is multiple megaohms, several thousand AD8231s  
can theoretically be multiplexed in such a way.  
The AD8231 can enter and leave shutdown mode very quickly.  
However, when the amplifier wakes up and reconnects its input  
circuitry, the voltage at its internal input nodes changes dramati-  
cally. It will take time for the output of the amplifier to settle.  
Refer to Figure 16 through Figure 20 to determine the settling  
time for different gains. This settling time limits how quickly  
SDN  
the user can multiplex the AD8231 with the  
pin.  
Rev. 0 | Page 17 of 20  
 
 
 
AD8231  
OUTLINE DIMENSIONS  
4.00  
0.60 MAX  
(BOTTOM VIEW)  
BSC SQ  
0.60 MAX  
0.65 BSC  
PIN 1  
INDICATOR  
13  
16  
1
12  
PIN 1  
INDICATOR  
2.25  
2.10 SQ  
1.95  
TOP  
VIEW  
3.75  
BSC SQ  
0.75  
0.60  
0.50  
9
4
8
5
0.25 MIN  
1.95 BSC  
0.80 MAX  
0.65 TYP  
12° MAX  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.35  
0.30  
0.25  
0.20 REF  
COPLANARITY  
0.08  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGC  
Figure 36. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-16-4)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD8231ACPZ-R71  
AD8231ACPZ-RL1  
AD8231ACPZ-WP1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
CP-16-4  
CP-16-4  
16-Lead LFCSP_VQ, 7”Tape and Reel  
16-Lead LFCSP_VQ, 13”Tape and Reel  
16-Lead LFCSP_VQ, Waffle Pack  
CP-16-4  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 18 of 20  
 
 
AD8231  
NOTES  
Rev. 0 | Page 19 of 20  
AD8231  
NOTES  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06586-0-5/07(0)  
Rev. 0 | Page 20 of 20  

相关型号:

AD8231ACPZ-RL

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI

AD8231ACPZ-WP

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI

AD8231ACPZ-WP

INSTRUMENTATION AMPLIFIER, 15 uV OFFSET-MAX, 1 MHz BAND WIDTH, QCC16, 4 X 4 MM, ROHS COMPLIANT, MO-220VGGC, LFCSP-16
ROCHESTER

AD8231TCPZ-EP-R7

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI

AD8231WACPZ-RL

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI

AD8231_07

Zero Drift, Digital Programmable Instrumentation Amplifier
ADI

AD8231_1

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI

AD8232

Single-Lead, Heart Rate Monitor Front End
ADI

AD8232-EVALZ

Single-Lead, Heart Rate Monitor Front End
ADI

AD8232ACPZ

Single-Lead, Heart Rate Monitor Front End
ADI

AD8232ACPZ-R7

Single-Lead, Heart Rate Monitor Front End
ADI

AD8232ACPZ-RL

Single-Lead, Heart Rate Monitor Front End
ADI