AD823ARZ-RL [ADI]

Dual, 16 MHz, Rail-to-Rail FET Input Amplifier; 双通道, 16 MHz的轨到轨FET输入放大器
AD823ARZ-RL
型号: AD823ARZ-RL
厂家: ADI    ADI
描述:

Dual, 16 MHz, Rail-to-Rail FET Input Amplifier
双通道, 16 MHz的轨到轨FET输入放大器

放大器
文件: 总20页 (文件大小:472K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual, 16 MHz, Rail-to-Rail  
FET Input Amplifier  
AD823  
FEATURES  
CONNECTION DIAGRAM  
Single-supply operation  
Output swings rail-to-rail  
Input voltage range extends below ground  
Single-supply capability from 3 V to 36 V  
High load drive  
1
2
3
4
8
7
6
5
+V  
S
OUT1  
–IN1  
OUT2  
–IN2  
+IN2  
+IN1  
–V  
S
AD823  
Figure 1. 8-Lead PDIP and SOIC  
Capacitive load drive of 500 pF, G = +1  
Output current of 15 mA, 0.5 V from supplies  
Excellent ac performance on 2.6 mA/amplifier  
−3 dB bandwidth of 16 MHz, G = +1  
350 ns settling time to 0.01% (2 V step)  
Slew rate of 22 V/μs  
R
C
= 100k  
= 50pF  
L
L
+V = +3V  
G = +1  
S
3V  
Good dc performance  
800 μV maximum input offset voltage  
2 μV/°C offset voltage drift  
25 pA maximum input bias current  
Low distortion: −108 dBc worst harmonic @ 20 kHz  
Low noise: 16 nV/√Hz @ 10 kHz  
GND  
No phase inversion with inputs to the supply rails  
500mV  
200µs  
APPLICATIONS  
Figure 2. Output Swing, +VS = +3 V, G = +1  
Battery-powered precision instrumentation  
Photodiode preamps  
Active filters  
12-bit to 16-bit data acquisition systems  
Medical instrumentation  
2
1
0
+V = +5V  
S
G = +1  
–1  
–2  
–3  
–4  
–5  
–6  
GENERAL DESCRIPTION  
The AD823 is a dual precision, 16 MHz, JFET input op amp  
that can operate from a single supply of 3.0 V to 36 V or from  
dual supplies of 1.ꢀ V to 18 V. It has true single-supply  
capability with an input voltage range extending below ground  
in single-supply mode. Output voltage swing extends to within  
ꢀ0 mV of each rail for IOUT ≤ 100 μA, providing outstanding  
output dynamic range.  
–7  
–8  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
An offset voltage of 800 μV maximum, an offset voltage drift of  
2 μV/°C, input bias currents below 2ꢀ pA, and low input voltage  
noise provide dc precision with source impedances up to a  
Gigaohm. It provides 16 MHz, −3 dB bandwidth, −108 dB THD  
@ 20 kHz, and a 22 V/μs slew rate with a low supply current of  
2.6 mA per amplifier. The AD823 drives up to ꢀ00 pF of direct  
capacitive load as a follower and provides an output current of  
1ꢀ mA, 0.ꢀ V from the supply rails. This allows the amplifier to  
handle a wide range of load conditions.  
Figure 3. Small Signal Bandwidth, G = +1  
This combination of ac and dc performance, plus the outstanding  
load drive capability, results in an exceptionally versatile ampli-  
fier for applications such as A/D drivers, high speed active  
filters, and other low voltage, high dynamic range systems.  
The AD823 is available over the industrial temperature range of  
−40°C to +8ꢀ°C and is offered in both 8-lead PDIP and 8-lead  
SOIC packages.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©1995–2007 Analog Devices, Inc. All rights reserved.  
 
AD823  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 13  
Output Impedance ..................................................................... 14  
Application Notes........................................................................... 15  
Input Characteristics.................................................................. 15  
Output Characteristics............................................................... 15  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 19  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Connection Diagram ....................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
REVISION HISTORY  
2/07—Rev. A to Rev. B  
Updated Format..................................................................Universal  
Changes to DC Performance .......................................................... 5  
Updated Outline Dimensions....................................................... 18  
Changes to Ordering Guide ......................................................... 19  
5/04—Rev. 0 to Rev. A  
Changes to Specifications................................................................ 2  
Changes to Ordering Guide ......................................................... 17  
Updated Outline Dimensions....................................................... 17  
5/95—Revision 0: Initial Version  
Rev. B | Page 2 of 20  
 
AD823  
SPECIFICATIONS  
At TA = 2ꢀ°C, +VS = +ꢀ V, RL = 2 kΩ to 2.ꢀ V, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
12  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth, VO ≤ 0.2 V p-p  
Full Power Response  
Slew Rate  
G = +1  
VO = 2 V p-p  
G = −1, VO = 4 V Step  
16  
3.5  
22  
MHz  
MHz  
V/μs  
14  
Settling Time  
to 0.1%  
to 0.01%  
G = −1, VO = 2 V Step  
G = −1, VO = 2 V Step  
320  
350  
ns  
ns  
NOISE/DISTORTION PERFORMANCE  
Input Voltage Noise  
Input Current Noise  
Harmonic Distortion  
Crosstalk  
f = 10 kHz  
f = 1 kHz  
16  
1
−108  
nV/√Hz  
fA/√Hz  
dBc  
RL = 600 Ω to 2.5 V, VO = 2 V p-p, f = 20 kHz  
f = 1 kHz  
f = 1 MHz  
RL = 5 kΩ  
RL = 5 kΩ  
−105  
−63  
dB  
dB  
DC PERFORMANCE  
Initial Offset  
Maximum Offset Over temperature  
Offset Drift  
Input Bias Current  
at TMAX  
Input Offset Current  
at TMAX  
0.2  
0.3  
2
3
0.5  
2
0.8  
2.0  
mV  
mV  
μV/°C  
pA  
nA  
pA  
nA  
V/mV  
V/mV  
VCM = 0 V to 4 V  
VCM = 0 V to 4 V  
25  
5
20  
0.5  
45  
Open-Loop Gain  
TMIN to TMAX  
VO = 0.2 V to 4 V, RL = 2 kΩ  
20  
20  
INPUT CHARACTERISTICS  
Input Common-Mode Voltage Range  
Input Resistance  
Input Capacitance  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
IL = 100 μA  
−0.2 to +3  
60  
−0.2 to +3.8  
V
Ω
pF  
dB  
1013  
1.8  
76  
VCM = 0 V to 3 V  
0.025 to 4.975  
V
IL = 2 mA  
0.08 to 4.92  
V
IL = 10 mA  
0.25 to 4.75  
V
Output Current  
Short-Circuit Current  
VOUT = 0.5 V to 4.5 V  
Sourcing to 2.5 V  
Sinking to 2.5 V  
G = +1  
16  
40  
30  
500  
mA  
mA  
mA  
pF  
Capacitive Load Drive  
POWER SUPPLY  
Operating Range  
3
36  
V
Quiescent Current  
Power Supply Rejection Ratio  
TMIN to TMAX, total  
VS = 5 V to 15 V, TMIN to TMAX  
5.2  
80  
5.6  
mA  
dB  
70  
Rev. B | Page 3 of 20  
 
AD823  
At TA = 2ꢀ°C, +VS = +3.3 V, RL = 2 kΩ to 1.6ꢀ V, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
12  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth, VO ≤ 0.2 V p-p  
Full Power Response  
Slew Rate  
G = +1  
VO = 2 V p-p  
G = −1, VO = 2 V Step  
15  
3.2  
20  
MHz  
MHz  
V/μs  
13  
Settling Time  
to 0.1%  
to 0.01%  
G = −1, VO = 2 V Step  
G = −1, VO = 2 V Step  
250  
300  
ns  
ns  
NOISE/DISTORTION PERFORMANCE  
Input Voltage Noise  
Input Current Noise  
Harmonic Distortion  
Crosstalk  
f = 10 kHz  
f = 1 kHz  
RL = 100 Ω, VO = 2 V p-p, f = 20 kHz  
16  
1
−93  
nV/√Hz  
fA/√Hz  
dBc  
f = 1 kHz  
f = 1 MHz  
RL = 5 kΩ  
RL = 5 kΩ  
−105  
−63  
dB  
dB  
DC PERFORMANCE  
Initial Offset  
Maximum Offset Over temperature  
Offset Drift  
Input Bias Current  
at TMAX  
Input Offset Current  
at TMAX  
0.2  
0.5  
2
3
0.5  
2
1.5  
2.5  
mV  
mV  
μV/°C  
pA  
nA  
pA  
nA  
V/mV  
V/mV  
VCM = 0 V to 2 V  
VCM = 0 V to 2 V  
25  
5
20  
0.5  
30  
Open-Loop Gain  
TMIN to TMAX  
VO = 0.2 V to 2 V, RL = 2 kΩ  
15  
12  
INPUT CHARACTERISTICS  
Input Common-Mode Voltage Range  
Input Resistance  
Input Capacitance  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
IL = 100 μA  
−0.2 to +1  
54  
−0.2 to +1.8  
V
Ω
pF  
dB  
1013  
1.8  
70  
VCM = 0 V to 1 V  
0.025 to 3.275  
V
IL = 2 mA  
0.08 to 3.22  
V
IL = 10 mA  
0.25 to 3.05  
V
Output Current  
Short-Circuit Current  
VOUT = 0.5 V to 2.5 V  
Sourcing to 1.5 V  
Sinking to 1.5 V  
G = +1  
15  
40  
30  
500  
mA  
mA  
mA  
pF  
Capacitive Load Drive  
POWER SUPPLY  
Operating Range  
3
36  
V
Quiescent Current  
Power Supply Rejection Ratio  
TMIN to TMAX, total  
VS = 3.3 V to 15 V, TMIN to TMAX  
5.0  
80  
5.7  
mA  
dB  
70  
Rev. B | Page 4 of 20  
AD823  
At TA = 2ꢀ°C, VS = 1ꢀ V, RL = 2 kΩ to 0 V, unless otherwise noted.  
Table 3.  
Parameter  
Conditions  
Min  
12  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth, VO ≤ 0.2 V p-p  
Full Power Response  
Slew Rate  
G = +1  
VO = 2 V p-p  
G = −1, VO = 10 V Step  
16  
4
25  
MHz  
MHz  
V/μs  
17  
Settling Time  
to 0.1%  
to 0.01%  
G = −1, VO = 10 V Step  
G = −1, VO = 10 V Step  
550  
650  
ns  
ns  
NOISE/DISTORTION PERFORMANCE  
Input Voltage Noise  
Input Current Noise  
Harmonic Distortion  
Crosstalk  
f = 10 kHz  
f = 1 kHz  
RL = 600 Ω, VO = 10 V p-p, f = 20 kHz  
16  
1
−90  
nV/√Hz  
fA/√Hz  
dBc  
f = 1 kHz  
f = 1 MHz  
RL= 5 kΩ  
RL= 5 kΩ  
−105  
−63  
dB  
dB  
DC PERFORMANCE  
Initial Offset  
Maximum Offset Over temperature  
Offset Drift  
0.7  
1.0  
2
3.5  
7
mV  
mV  
μV/°C  
pA  
Input Bias Current  
VCM = 0 V  
5
30  
VCM = −10 V  
VCM = 0 V  
60  
0.5  
2
0.5  
60  
pA  
nA  
pA  
nA  
V/mV  
V/mV  
at TMAX  
Input Offset Current  
at TMAX  
Open-Loop Gain  
TMIN to TMAX  
5
20  
VO = +10 V to −10 V, RL = 2 kΩ  
30  
30  
INPUT CHARACTERISTICS  
Input Common-Mode Voltage Range  
Input Resistance  
Input Capacitance  
Common-Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
IL = 100 μA  
−15.2 to +13  
66  
−15.2 to +13.8  
V
Ω
pF  
dB  
1013  
1.8  
82  
VCM = −15 V to +13 V  
−14.95 to +14.95  
V
IL = 2 mA  
−14.92 to +14.92  
V
IL = 10 mA  
−14.75 to +14.75  
V
Output Current  
Short-Circuit Current  
VOUT = −14.5 V to +14.5 V  
Sourcing to 0 V  
Sinking to 0 V  
G = +1  
17  
80  
60  
500  
mA  
mA  
mA  
pF  
Capacitive Load Drive  
POWER SUPPLY  
Operating Range  
3
36  
V
Quiescent Current  
Power Supply Rejection Ratio  
TMIN to TMAX, total  
VS = 5 V to 15 V, TMIN to TMAX  
7.0  
80  
8.4  
mA  
dB  
70  
Rev. B | Page 5 of 20  
AD823  
ABSOLUTE MAXIMUM RATINGS  
Table 4  
Parameter  
Supply Voltage  
Internal Power Dissipation  
PDIP (N)  
2.0  
1.5  
1.0  
0.5  
0
Rating  
T
= 150°C  
J
8-LEAD PDIP  
36 V  
1.3 W  
0.9 W  
VS  
1.2 V  
See Figure 4  
−65°C to +125°C  
−40°C to +85°C  
300°C  
SOIC (R)  
Input Voltage (Common Mode)  
Differential Input Voltage  
Output Short-Circuit Duration  
Storage Temperature Range N, R  
Operating Temperature Range  
8-LEAD SOIC  
Lead Temperature Range  
(Soldering, 10 sec)  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
AMBIENT TEMPERATURE (°C)  
Figure 4. Maximum Power Dissipation vs. Temperature  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Specification is for device in free air.  
Table 5. Thermal Resistance  
Package Type  
8-Lead PDIP  
8-Lead SOIC  
θJA  
90  
160  
Unit  
°C/W  
°C/W  
ESD CAUTION  
Rev. B | Page 6 of 20  
 
 
AD823  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
90  
80  
+V = +5V  
317 UNITS  
σ = 0.4pA  
+V = +5V  
S
S
314 UNITS  
70  
σ = 40µV  
80  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
–200 –150 –100  
–50  
0
50  
100  
150  
200  
0
1
2
3
4
5
6
7
8
9
10  
INPUT OFFSET VOLTAGE (µV)  
INPUT BIAS CURRENT (pA)  
Figure 5. Typical Distribution of Input Offset Voltage  
Figure 8. Typical Distribution of Input Bias Current  
10000  
22  
20  
18  
16  
14  
12  
+V = +5V  
+V = +5V  
–55°C TO +125°C  
103 UNITS  
S
S
V
= 0V  
CM  
1000  
100  
10  
8
10  
1
6
4
2
0
0.1  
0
25  
50  
75  
100  
125  
–6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
7
TEMPERATURE (°C)  
INPUT OFFSET VOLTAGE DRIFT (µV/°C)  
Figure 6. Typical Distribution of Input Offset Voltage Drift  
Figure 9. Input Bias Current vs. Temperature  
3
1000  
100  
10  
+V = +5V  
S
V
= ±15V  
S
2
1
0
–1  
–2  
–3  
–4  
1
0.1  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
–16  
–12  
–8  
–4  
0
4
8
12  
16  
COMMON-MODE VOLTAGE (V)  
COMMON-MODE VOLTAGE (V)  
Figure 7. Input Bias Current vs. Common-Mode Voltage  
Figure 10. Input Bias Current vs. Common-Mode Voltage  
Rev. B | Page 7 of 20  
 
 
AD823  
110  
100  
90  
95  
94  
R
= 2k  
V
= ±2.5V  
L
S
+V = +5V  
S
93  
92  
91  
90  
89  
88  
80  
70  
87  
86  
60  
100  
–55  
–25  
5
35  
65  
95  
125  
1k  
100k  
500k  
10k  
LOAD RESISTANCE ()  
TEMPERATURE (°C)  
Figure 11. Open-Loop Gain vs. Load Resistance  
Figure 14. Open-Loop Gain vs. Temperature  
1000  
100  
10  
100  
80  
60  
40  
20  
0
100  
R
C
= 2kΩ  
= 20pF  
L
L
R
= 10kΩ  
L
80  
60  
40  
20  
0
PHASE  
R
= 1kΩ  
L
GAIN  
R
= 100Ω  
L
1
0.1  
–20  
100M  
–20  
100  
–2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5  
1.0 1.5 2.0  
2.5  
1k  
10k  
100k  
1M  
10M  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 15. Open-Loop Gain and Phase Margin vs. Frequency  
Figure 12. Open-Loop Gain vs. Output Voltage, VS = 2.5 V  
–40  
100  
+V = +5V  
S
–50  
–60  
+V = +3V  
S
30  
10  
3
V
R
= 2V p-p  
OUT  
= 100  
ALL  
–70  
L
OTHERS  
V
V
R
= ±2.5V  
–80  
S
= 2V p-p  
OUT  
= 1kΩ  
+V = +3V  
= 2V p-p  
= 5kΩ  
S
V
= ±15V  
= 10V p-p  
S
L
V
R
OUT  
V
R
–90  
OUT  
= 600Ω  
L
L
+V = +5V  
S
–100  
–110  
V
R
= 2V p-p  
OUT  
= 5kΩ  
L
10  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 13. Total Harmonic Distortion vs. Frequency  
Figure 16. Input Voltage Noise vs. Frequency  
Rev. B | Page 8 of 20  
 
AD823  
5
4
3
2
90  
80  
70  
60  
50  
40  
30  
20  
V
= ±15V  
C
= 20pF  
S
L
L
R
= 2kΩ  
G = +1  
+V = +5V  
S
1
0
–55°C  
+27°C  
–1  
–2  
–3  
+125°C  
–4  
–5  
0.30 3.27 6.24 9.21 12.18 15.15 18.12 21.09 24.06 27.03 30.00  
FREQUENCY (MHz)  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 20. Common-Mode Rejection Ratio vs. Frequency  
Figure 17. Closed-Loop Gain vs. Frequency  
10  
100  
+V = +5V  
S
+V = +5V  
S
GAIN = +1  
10  
1
1
V
25°C  
– V  
OH  
S
0.1  
V
OL  
25°C  
0.1  
0.01  
0.01  
0.1  
1
10  
100  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
LOAD CURRENT (mA)  
Figure 21. Output Saturation Voltage vs. Load Current  
Figure 18. Output Resistance vs. Frequency, +VS = +5 V, Gain = +1  
10  
10  
8
V
C
= ±15V  
= 20pF  
S
8
6
L
1%  
0.1%  
0.01%  
+125°C  
+25°C  
4
6
2
–55°C  
0
–2  
–4  
–6  
–8  
–10  
4
0.1%  
400  
1%  
0.01%  
2
0
0
5
10  
15  
20  
100  
200  
300  
500  
600  
700  
SUPPLY VOLTAGE (±V)  
SETTLING TIME (ns)  
Figure 22. Quiescent Current vs. Supply Voltage  
Figure 19. Output Step Size vs. Settling Time (Inverter)  
Rev. B | Page 9 of 20  
 
AD823  
21  
18  
15  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+V = +5V  
S
+V = +5V  
S
R
V
S
IN  
C
L
+PSRR  
12  
9
–PSRR  
Ф
= 45°  
M
6
Ф
= 20°  
M
3
0
0
1
2
3
4
5
6
7
8
9
10  
100  
1k  
10k  
FREQUENCY (Hz)  
1M  
10M  
100k  
CAPACITOR (pF × 1000)  
Figure 26. Series Resistance vs. Capacitive Load  
Figure 23. Power Supply Rejection vs. Frequency  
–30  
–40  
30  
20  
10  
0
+V = +5V  
R
= 2k  
S
L
G = +1  
–50  
–60  
–70  
V
= ±15V  
S
–80  
–90  
–100  
–110  
+V = +5V  
S
–120  
–130  
+V = +3V  
S
10k  
100k  
1M  
10M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
FREQUENCY (Hz)  
Figure 24. Large Signal Frequency Response  
Figure 27. Crosstalk vs. Frequency  
V
= 20V p-p  
= ±15V  
V
= 2.9V p-p  
IN  
IN  
V
+V = +3V  
G = –1  
S
S
G = +1  
5V  
20µs  
500mV  
10µs  
100k  
+15V  
–15V  
3V  
100kΩ  
50Ω  
V
= 2.9V p-p  
IN  
20kHz, 20V p-p  
V
OUT  
50pF  
604  
50pF  
100kΩ  
Figure 25. Output Swing, +VS = +3 V, G = −1  
Figure 28. Output Swing, VS = 15 V, G = +1  
Rev. B | Page 10 of 20  
 
AD823  
5V  
R
C
= 100k  
= 50pF  
R
C
R
= 300Ω  
= 50pF  
L
L
L
L
F
= R = 2kΩ  
+V = +3V  
G = +1  
G
S
+V = +5V  
G = –1  
S
3V  
GND  
500mV  
200µs  
500mV  
200µs  
GND  
Figure 29. Output Swing, +VS = +5 V, G = −1  
Figure 32. Output Swing, +VS = +3 V, G = +1  
5V  
V
= 100mV STEP  
R
C
= 2kΩ  
= 50pF  
IN  
L
L
+V = +3V  
S
G = +1  
+V = +5V  
S
G = +1  
1.55V  
1.45V  
25mV  
50ns  
500mV  
100ns  
GND  
Figure 30. Pulse Response, +VS = +3 V, G = +1  
Figure 33. Pulse Response, +VS = +5 V, G = +1  
5V  
R
C
= 2k  
= 50pF  
L
R
= 2k  
L
L
C
= 470pF  
L
+V = +5V  
G = +2  
S
+V = +5V  
G = +1  
S
500mV  
100ns  
500mV  
200ns  
GND  
Figure 31. Pulse Response, +VS = +5 V, G = +2  
Figure 34. Pulse Response, +VS = +5 V, G = +1, CL = 470 pF  
Rev. B | Page 11 of 20  
 
AD823  
R
C
V
= 100k  
= 50pF  
= ±15V  
L
L
S
G = +1  
+10V  
–10V  
5V  
500ns  
Figure 35. Pulse Response, VS = 15 V, G = +1  
Rev. B | Page 12 of 20  
AD823  
THEORY OF OPERATION  
The AD823 is fabricated on the Analog Devices, Inc. proprietary  
complementary bipolar (CB) process that enables the construction  
of PNP and NPN transistors with similar fTs in the 600 MHz to  
800 MHz region. In addition, the process also features N-Channel  
JFETs that are used in the input stage of the AD823. These  
process features allow the construction of high frequency, low  
distortion op amps with picoamp input currents. This design  
uses a differential output input stage to maximize bandwidth  
and headroom (see Figure 36). The smaller signal swings  
required on the S1P/S1N outputs reduce the effect of the  
nonlinear currents due to junction capacitances and improve  
the distortion performance. With this design, harmonic  
distortion of better than −91 dB @ 20 kHz into 600 ꢁ with  
A nested integrator topology is used in the AD823 (see Figure 37).  
The output stage can be modeled as an ideal op amp with a  
single-pole response and a unity-gain frequency set by  
transconductance gm2 and Capacitor C2. R1 is the output  
impedance of the input stage; gm is the input transconductance.  
C1 and Cꢀ provide Miller compensation for the overall op amp.  
The unity-gain frequency occurs at gm/Cꢀ. Solving the node  
equations for this circuit yields  
VOUT  
Vi  
A0  
+1  
=
g
C2  
m2  
(
sR1  
[
C1  
(
A2 +1  
)]  
)
× s  
+1  
where:  
VOUT = 4 V p-p on a single ꢀ V supply is achieved. The  
A0 = gmgm2 R2R1 (open-loop gain of op amp)  
A2 = gm2 R2 (open-loop gain of output stage).  
complementary common emitter design of the output stage  
provides excellent load drive without the need for emitter  
followers, thereby improving the output range of the device  
considerably with respect to conventional op amps. The  
AD823 can drive 20 mA with the outputs within 0.6 V of the  
supply rails. The AD823 also offers outstanding precision for a  
high speed op amp. Input offset voltages of 1 mV maximum  
and offset drift of 2 μV/°C are achieved through the use of the  
Analog Devices advanced thin film trimming techniques.  
The first pole in the denominator is the dominant pole of the  
amplifier and occurs at ~18 Hz. This equals the input stage  
output impedance R1 multiplied by the Miller-multiplied value  
of C1. The second pole occurs at the unity-gain bandwidth of  
the output stage, which is 23 MHz. This type of architecture  
allows more open-loop gain and output drive to be obtained  
than a standard 2-stage architecture would allow.  
V
CC  
Q44  
A = 1  
Q43  
Q58  
Q55  
Q49  
I6  
R42  
R37  
V
+ 0.3V V1  
Q61  
I5  
BE  
Q57  
A = 19  
Q72  
Q18  
C2  
Q46  
J1  
J6  
V
INP  
R44  
R28  
V
Q54  
OUT  
Q21  
V
INN  
S1P  
S1N  
Q62  
Q60  
V
C1  
CC  
Q48  
V
B
Q53  
Q35  
Q17  
A = 19  
C6  
I2  
R33  
R43  
I1  
Q59  
A = 1  
I4  
I3  
Q56  
Q52  
V
EE  
Figure 36. Simplified Schematic  
Rev. B | Page 13 of 20  
 
 
AD823  
OUTPUT IMPEDANCE  
C1  
S1N  
S1P  
The low frequency open-loop output impedance of the common-  
emitter output stage used in this design is approximately 30 kΩ.  
Although this is significantly higher than a typical emitter  
follower output stage, when it is connected with feedback, the  
output impedance is reduced by the open-loop gain of the op  
amp. With 109 dB of open-loop gain, the output impedance is  
reduced to <0.2 Ω. At higher frequencies, the output impedance  
rises as the open-loop gain of the op amp drops; however, the  
output also becomes capacitive due to the integrator capacitors  
C1 and C2. This prevents the output impedance from ever  
g
g
VI  
VI  
R1  
R1  
m
V
OUT  
C2  
R2  
C5  
m
g
m2  
Figure 37. Small Signal Schematic  
becoming excessively high (see Figure 18), which can cause  
stability problems when driving capacitive loads. In fact, the AD823  
has excellent cap-load drive capability for a high frequency op  
amp. Figure 34 shows the AD823 connected as a follower while  
driving 470 pF direct capacitive load. Under these conditions,  
the phase margin is approximately 20°. If greater phase margin  
is desired, a small resistor can be used in series with the output  
to decouple the effect of the load capacitance from the op amp  
(see Figure 26). In addition, running the part at higher gains  
also improves the capacitive load drive capability of the op amp.  
Rev. B | Page 14 of 20  
 
 
AD823  
APPLICATION NOTES  
Because the input stage uses N-Channel JFETs, input current  
INPUT CHARACTERISTICS  
during normal operation is negative; the current flows out from  
the input terminals. If the input voltage is driven more positive  
than +VS − 0.4 V, the input current reverses direction as internal  
device junctions become forward biased. This is illustrated in  
Figure 7.  
In the AD823, N-Channel JFETs are used to provide a low offset,  
low noise, high impedance input stage. Minimum input common-  
mode voltage extends from 0.2 V below −VS to 1 V < +VS. Driving  
the input voltage closer to the positive rail causes a loss of amplifier  
bandwidth and increased common-mode voltage error.  
A current limiting resistor should be used in series with the  
input of the AD823 if there is a possibility of the input voltage  
exceeding the positive supply by more than 300 mV, or if an  
input voltage is applied to the AD823 when VS = 0. The  
amplifier becomes damaged if left in that condition for more  
than 10 seconds. A 1 kΩ resistor allows the amplifier to  
withstand up to 10 V of continuous overvoltage and increases  
the input voltage noise by a negligible amount.  
The AD823 does not exhibit phase reversal for input voltages up  
to and including +VS. Figure 38 shows the response of an  
AD823 voltage follower to a 0 V to ꢀ V (+VS) square wave input.  
The input and output are superimposed. The output polarity  
tracks the input polarity up to +VS, with no phase reversal. The  
reduced bandwidth above a 4 V input causes the rounding of  
the output wave form. For input voltages greater than +VS, a  
resistor in series with the AD823s noninverting input prevents  
phase reversal, at the expense of greater input voltage noise.  
This is illustrated in Figure 39.  
Input voltages less than −VS are a completely different story.  
The amplifier can safely withstand input voltages 20 V below  
−VS as long as the total voltage from the positive supply to the  
input terminal is less than 36 V. In addition, the input stage  
typically maintains picoamp level input currents across that  
input voltage range.  
1V  
2µs  
100  
90  
The AD823 is designed for 16 nV/√Hz wideband input voltage  
noise and maintains low noise performance to low frequencies  
(see Figure 16). This noise performance, along with the AD823s  
low input current and current noise, means that the AD823  
contributes negligible noise for applications with source  
resistances greater than 10 kΩ and signal bandwidths greater  
than 1 kHz.  
10  
GND 0%  
1V  
OUTPUT CHARACTERISTICS  
Figure 38. AD823 Input Response: RP = 0, VIN = 0 to +VS  
The AD823s unique bipolar rail-to-rail output stage swings  
within 2ꢀ mV of the supplies with no external resistive load.  
The AD823s approximate output saturation resistance is 2ꢀ Ω  
sourcing and sinking. This can be used to estimate the output  
saturation voltage when driving heavier current loads. For  
instance, when driving ꢀ mA, the saturation voltage to the rails  
is approximately 12ꢀ mV.  
1V  
10µs  
100  
90  
+V  
S
If the AD823s output is driven hard against the output  
saturation voltage, it recovers within 2ꢀ0 ns of the input  
returning to the amplifiers linear operating region.  
GND  
10  
A/D Driver  
0%  
The rail-to-rail output of the AD823 makes it useful as an A/D  
driver in a single-supply system. Because it is a dual op amp, it  
can be used to drive both the analog input of the A/D as well as  
its reference input. The high impedance FET input of the  
AD823 is well suited for minimal loading of high output  
impedance devices.  
1V  
5V  
R
P
V
IN  
AD823  
V
OUT  
Figure 39. AD823 Input Response:  
IN = 0 to +VS + 200 mV, VOUT = 0 to +VS, RP = 49.9 kΩ  
V
Rev. B | Page 15 of 20  
 
 
 
AD823  
Figure 40 shows a schematic of an AD823 being used to drive  
both the input and reference input of an AD1672, a 12-bit,  
3-MSPS, single-supply ADC. One amplifier is configured as a  
unity-gain follower to drive the analog input of the AD1672,  
which is configured to accept an input voltage that ranges from  
0 V to 2.ꢀ V.  
The distortion analysis is important for systems requiring good  
frequency domain performance. Other systems may require  
good time domain performance. The noise and settling time  
performance of the AD823 provides the necessary information  
for its applicability for these systems.  
1
V
= 2.15V p-p  
IN  
The other amplifier is configured as a gain of 2 to drive the  
reference input from a 1.2ꢀ V reference. Although the AD1672  
has its own internal reference, there are systems that require  
greater accuracy than the internal reference provides. On the other  
hand, if the AD1672 internal reference is used, the second AD823  
amplifier can be used to buffer the reference voltage for driving  
other circuitry while minimally loading the reference source.  
+5VA +5VD  
G = +1  
FI = 490kHz  
2
4
9
7
6
5
8
3
0.1µF  
10µF  
0.1µF  
10µF  
+5VA  
8
28 19  
0.1µF  
+5VD  
10µF  
Figure 41. FFT of AD1672 Output Driven by AD823  
2
3
20  
21  
22  
0.1µF  
OTR  
REFOUT  
AIN1  
AIN2  
1
15  
3 V, Single-Supply Stereo Headphone Driver  
49.9  
V
IN  
13  
14  
12  
11  
10  
9
BIT1 (MSB)  
The AD823 exhibits good current drive and total harmonic  
distortion plus noise (THD+N) performance, even at 3 V  
single supplies. At 20 kHz, THD+N equals −62 dB (0.079%) for  
a 300 mV p-p output signal. This is comparable to other single-  
supply op amps that consume more power and cannot run on  
3 V power supplies.  
AD823  
AD1672  
BIT2  
BIT3  
BIT4  
BIT5  
BIT6  
5
V
7
REF  
(1.25V)  
23  
24  
25  
26  
REFIN  
8
6
REFCOM  
NCOMP2  
NCOMP1  
4
7
6
5
4
3
2
1
BIT7  
BIT8  
BIT9  
BIT10  
BIT11  
1kΩ  
1kΩ  
In Figure 42, each channels input signal is coupled via a 1 μF  
Mylar capacitor. Resistor dividers set the dc voltage at the  
noninverting inputs so that the output voltage is midway  
between the power supplies (+1.ꢀ V). The gain is 1.ꢀ. Each half  
of the AD823 can then be used to drive a headphone channel. A  
ꢀ Hz high-pass filter is realized by the ꢀ00 μF capacitors and the  
headphones that can be modeled as 32 Ω load resistors to  
ground. This ensures that all signals in the audio frequency  
range (20 Hz to 20 kHz) are delivered to the headphones.  
3V  
27  
16  
ACOM  
REF  
BIT12 (LSB)  
CLOCK  
19  
18  
Figure 40. AD823 Driving Input and Reference of the  
AD1672, a 12-Bit, 3-MSPS ADC  
The circuit was tested with a ꢀ00 kHz sine wave input that was  
heavily low-pass filtered (60 dB) to minimize the harmonic content  
at the input to the AD823. The digital output of the AD1672 was  
analyzed by performing a fast Fourier transform (FFT).  
+
0.1µF  
0.1µF  
95.3k  
95.3kΩ  
47.5kΩ  
8
3
CHANNEL 1  
During the testing, it was observed that at ꢀ00 kHz, the output  
of the AD823 cannot go below ~3ꢀ0 mV (operating with  
negative supply at ground) without seriously degrading the  
second harmonic distortion. Another test was performed with a  
200 Ω pull-down resistor to ground that allowed the output to  
go as low as 200 mV without seriously affecting the second  
harmonic distortion. There was, however, a slight increase in  
the third harmonic term with the resistor added, but it was still  
less than the second harmonic.  
+
1/2  
1µF  
MYLAR  
1
2 AD823  
500µF  
L
4.99kΩ  
95.3kΩ  
10kΩ  
10kΩ  
HEADPHONES  
32IMPEDANCE  
R
4.99kΩ  
6
500µF  
+
1/2  
47.5kΩ  
7
1µF  
AD823  
5
Figure 41 is an FFT plot of the results of driving the AD1672  
with the AD823 with no pull-down resistor. The input  
amplitude was 2.1ꢀ V p-p and the lower voltage excursion was  
3ꢀ0 mV. The input frequency was 490 kHz, which was chosen  
to spread the location of the harmonics.  
4
CHANNEL 2  
MYLAR  
Figure 42. 3 V Single-Supply Stereo Headphone Driver  
Rev. B | Page 16 of 20  
 
 
 
AD823  
Second-Order Low-Pass Filter  
Single-Supply Half-Wave and Full-Wave Rectifiers  
Figure 43 depicts the AD823 configured as a second-order  
Butterworth low-pass filter. With the values as shown, the  
corner frequency equals 200 kHz. Component selection is  
shown in the following equations:  
An AD823 configured as a unity-gain follower and operated  
with a single supply can be used as a simple half-wave rectifier.  
The AD823 inputs maintain picoamp level input currents even  
when driven well below the minus supply. The rectifier puts  
that behavior to good use, maintaining an input impedance of  
over 1011 Ω for input voltages from within 1 V of the positive  
supply to 20 V below the negative supply.  
R1 = R2 = User Selected (Typical Values: 10 kΩ to 100 kΩ)  
1.414  
fcutoff × R1  
C1  
(
farads =  
)
The full-wave and half-wave rectifier shown in Figure 4ꢀ  
operates as follows: when VIN is above ground, R1 is boot-  
strapped through the unity-gain follower A1 and the loop of  
Amplifier A2. This forces the inputs of A2 to be equal, thus no  
current flows through R1 or R2, and the circuit output tracks  
the input. When VIN is below ground, the output of A1 is forced  
to ground. The noninverting input of Amplifier A2 sees the  
ground level output of A1; therefore, A2 operates as a unity-  
gain inverter. The output at Node C is then a full-wave rectified  
version of the input. Node B is a buffered half-wave rectified  
version of the input. Input voltage supply to 18 V can be  
rectified, depending on the voltage supply used.  
0.707  
fcutoff × R1  
C2 =  
+5V  
1/2  
C2  
56pF  
C3  
0.1µF  
R1  
R2  
20kΩ  
20kΩ  
V
IN  
C1  
28pF  
V
AD823  
OUT  
50pF  
R1  
100k  
R2  
100kΩ  
C4  
0.1µF  
–5V  
+V  
8
S
0.01µF  
Figure 43. Second-Order Low-Pass Filter  
6
5
A
7
3
2
C
A plot of the filter is shown in Figure 44; better than ꢀ0 dB of  
high frequency rejection is provided.  
A2  
1
V
FULL-WAVE  
RECTIFIED OUTPUT  
A1  
1/2  
AD823  
IN  
1/2  
0
4 AD823  
B
–10  
HALF-WAVE  
RECTIFIED OUTPUT  
V
– V  
OUT  
DB  
–20  
–30  
–40  
Figure 45. Full-Wave and Half-Wave Rectifier  
2V  
200µs  
–50  
–60  
100  
90  
A
1k  
10k  
100k  
FREQUENCY (Hz)  
10M  
100M  
1M  
Figure 44. Frequency Response of Filter  
B
C
10  
0%  
2V  
Figure 46. Single-Supply Half-Wave and Full-Wave Rectifier  
Rev. B | Page 17 of 20  
 
 
 
AD823  
OUTLINE DIMENSIONS  
0.375 (9.53)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.98)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
0.015  
(0.38)  
0.180  
(4.57)  
MAX  
MIN  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
SEATING  
PLANE  
0.060 (1.52)  
0.050 (1.27)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MO-095AA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 47. 8-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-8)  
Dimensions shown in inches and (millimeters)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 48. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. B | Page 18 of 20  
 
AD823  
ORDERING GUIDE  
Models  
AD823AN  
AD823ANZ1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
8-Lead PDIP  
8-Lead PDIP  
Package Option  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
AD823AR  
8-Lead SOIC_N  
AD823AR-REEL  
AD823AR-REEL7  
AD823ARZ1  
AD823ARZ-RL1  
AD823ARZ-R71  
8-Lead SOIC_N, 13Reel  
8-Lead SOIC_N, 7Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13Reel  
8-Lead SOIC_N, 7Reel  
1 Z = RoHS Compliant Part.  
Rev. B | Page 19 of 20  
 
AD823  
NOTES  
©1995–2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00901-0-2/07(B)  
Rev. B | Page 20 of 20  

相关型号:

AD823A_12

Wide Supply Dual, 17 MHz, Rail-to-Rail
ADI

AD823_07

Dual, 16 MHz, Rail-to-Rail FET Input Amplifier
ADI

AD824

Single Supply, Rail-to-Rail Low Power, FET-Input Op Amp
ADI

AD8240

LED Driver/Monitor
ADI

AD8240YRM

LED Driver/Monitor
ADI

AD8240YRM-REEL

LED Driver/Monitor
ADI

AD8240YRM-REEL7

LED Driver/Monitor
ADI

AD8240YRMZ

LED Driver/Monitor
ADI

AD8240YRMZ-R7

LED Driver/Monitor
ADI

AD8240YRMZ-REEL

LED DISPLAY DRIVER, PDSO8, MO-187AA, MSOP-8
ADI

AD8240YRMZ-REEL7

LED DISPLAY DRIVER, PDSO8, MO-187AA, MSOP-8
ADI

AD8244

Single-Supply, Low Power, Precision FET Input Quad Buffer
ADI