AD824 [ADI]

Single Supply, Rail-to-Rail Low Power, FET-Input Op Amp; 单电源,轨到轨,低功耗, FET输入运算放大器
AD824
型号: AD824
厂家: ADI    ADI
描述:

Single Supply, Rail-to-Rail Low Power, FET-Input Op Amp
单电源,轨到轨,低功耗, FET输入运算放大器

运算放大器
文件: 总16页 (文件大小:553K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single Supply, Rail-to-Rail  
a
Low Power, FET-Input Op Amp  
AD824  
FEATURES  
PIN CONFIGURATIONS  
Single Supply Operation: 3 V to 30 V  
Very Low Input Bias Current: 2 pA  
Wide Input Voltage Range  
Rail-to-Rail Output Swing  
Low Supply Current: 500 A/Amp  
Wide Bandwidth: 2 MHz  
Slew Rate: 2 V/s  
14-Lead Epoxy DIP  
(N Suffix)  
14-Lead Epoxy SO  
(R Suffix)  
OUT A  
1
2
3
4
5
6
7
14 OUT D  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT A  
–IN A  
+IN A  
V+  
OUT D  
–IN D  
+IN D  
V–  
–IN A  
+IN A  
V+  
13 –IN D  
12 +IN D  
11 V–  
No Phase Reversal  
AD824  
TOP VIEW  
AD824  
APPLICATIONS  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
10 +IN C  
+INB  
–INB  
OUTB  
+IN C  
–IN C  
OUT C  
Photo Diode Preamplifier  
Battery Powered Instrumentation  
Power Supply Control and Protection  
Medical Instrumentation  
Remote Sensors  
9
8
–IN C  
OUT C  
8
TOP VIEW  
Low Voltage Strain Gage Amplifiers  
DAC Output Amplifier  
16-Lead Epoxy SO  
(R Suffix)  
GENERAL DESCRIPTION  
OUT D  
OUT A  
–IN A  
16  
15 –IN D  
14  
1
2
3
4
5
6
7
8
The AD824 is a quad, FET input, single supply amplifier, fea-  
turing rail-to-rail outputs. The combination of FET inputs and  
rail-to-rail outputs makes the AD824 useful in a wide variety of  
low voltage applications where low input current is a primary  
consideration.  
+IN A  
V+  
+IN D  
13 V–  
AD824  
+IN B  
–IN B  
OUT B  
12 +IN C  
11 –IN C  
The AD824 is guaranteed to operate from a 3 V single supply  
up to ±15 volt dual supplies.  
OUT C  
NC  
10  
9
NC  
Fabricated on ADI’s complementary bipolar process, the AD824  
has a unique input stage that allows the input voltage to safely  
extend beyond the negative supply and to the positive supply  
without any phase inversion or latchup. The output voltage  
swings to within 15 millivolts of the supplies. Capacitive loads  
to 350 pF can be handled without oscillation.  
NC = NO CONNECT  
Applications for the AD824 include portable medical equipment,  
photo diode preamplifiers and high impedance transducer  
amplifiers.  
The FET input combined with laser trimming provides an input  
that has extremely low bias currents with guaranteed offsets be-  
low 300 µV. This enables high accuracy designs even with high  
source impedances. Precision is combined with low noise,  
making the AD824 ideal for use in battery powered medical  
equipment.  
The ability of the output to swing rail-to-rail enables designers  
to build multistage filters in single supply systems and maintain  
high signal-to-noise ratios.  
The AD824 is specified over the extended industrial (–40°C to  
+85°C) temperature range and is available in 14-pin DIP and  
narrow 14-pin and 16-pin SO packages.  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 617/329-4700  
Fax: 617/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1997  
AD824–SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS  
(@ VS = +5.0 V, VCM = 0 V, VOUT = 0.2 V, TA = +25؇C unless otherwise noted)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACTERISTICS  
Offset Voltage AD824A  
VOS  
VOS  
IB  
0.1  
1.0  
1.5  
300  
900  
12  
mV  
mV  
µV  
T
T
T
T
MIN to TMAX  
MIN to TMAX  
MIN to TMAX  
MIN to TMAX  
Offset Voltage AD824B  
Input Bias Current  
µV  
2
300  
2
pA  
pA  
pA  
pA  
V
dB  
dB  
dB  
ʈpF  
4000  
10  
Input Offset Current  
IOS  
300  
Input Voltage Range  
Common-Mode Rejection Ratio  
–0.2  
66  
60  
3.0  
CMRR  
AVO  
V
V
CM = 0 V to 2 V  
CM = 0 V to 3 V  
80  
74  
TMIN to TMAX  
60  
Input Impedance  
Large Signal Voltage Gain  
1013ʈ3.3  
VO = 0.2 V to 4.0 V  
RL = 2 kΩ  
RL = 10 kΩ  
20  
50  
250  
180  
40  
V/mV  
V/mV  
V/mV  
V/mV  
µV/°C  
100  
1000  
400  
2
RL = 100 kΩ  
TMIN to TMAX, RL = 100 kΩ  
Offset Voltage Drift  
VOS/T  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
ISOURCE = 20 µA  
TMIN to TMAX  
ISOURCE = 2.5 mA  
4.975  
4.97  
4.80  
4.75  
4.988  
4.985  
4.85  
4.82  
15  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
mA  
T
MIN to TMAX  
Output Voltage Low  
VOL  
ISINK = 20 µA  
TMIN to TMAX  
25  
30  
150  
200  
20  
I
SINK = 2.5 mA  
120  
140  
±12  
±10  
100  
TMIN to TMAX  
Sink/Source  
Short Circuit Limit  
ISC  
T
MIN to TMAX  
Open-Loop Impedance  
ZOUT  
f = 1 MHz, AV = 1  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 12 V  
TMIN to TMAX  
TMIN to TMAX  
70  
66  
80  
dB  
dB  
µA  
Supply Current/Amplifier  
500  
600  
DYNAMIC PERFORMANCE  
Slew Rate  
Full-Power Bandwidth  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
Channel Separation  
SR  
BWP  
tS  
GBP  
φo  
CS  
RL = 10 k, AV = 1  
1% Distortion, VO = 4 V p-p  
VOUT = 0.2 V to 4.5 V, to 0.01%  
2
V/µs  
kHz  
µs  
MHz  
Degrees  
dB  
150  
2.5  
2
50  
–123  
No Load  
f = 1 kHz, RL = 2 kΩ  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
Total Harmonic Distortion  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
2
16  
0.8  
0.005  
µV p-p  
nV/Hz  
fA/Hz  
%
THD  
f = 10 kHz, RL = 0, AV = +1  
REV. A  
–2–  
AD824  
ELECTRICAL SPECIFICATIONS (@ VS = ؎15.0 V, VOUT = 0 V, TA = +25؇C unless otherwise noted)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACTERISTICS  
Offset Voltage AD824A  
VOS  
VOS  
IB  
0.5  
0.6  
0.5  
0.6  
4
500  
25  
3
2.5  
4.0  
1.5  
2.5  
35  
mV  
mV  
mV  
mV  
pA  
pA  
pA  
pA  
pA  
V
T
MIN to TMAX  
MIN to TMAX  
Offset Voltage AD824B  
Input Bias Current  
T
VCM = 0 V  
MIN to TMAX  
VCM = –10 V  
T
4000  
Input Bias Current  
Input Offset Current  
IB  
IOS  
20  
13  
TMIN to TMAX  
500  
Input Voltage Range  
Common-Mode Rejection Ratio  
–15  
70  
66  
CMRR  
AVO  
V
T
CM = –15 V to 13 V  
MIN to TMAX  
80  
dB  
dB  
ʈpF  
Input Impedance  
Large Signal Voltage Gain  
1013ʈ3.3  
Vo = –10 V to +10 V;  
RL = 2 kΩ  
RL = 10 kΩ  
12  
50  
300  
200  
50  
V/mV  
V/mV  
V/mV  
V/mV  
µV/°C  
200  
2000  
1000  
2
RL = 100 kΩ  
TMIN to TMAX, RL = 100 kΩ  
Offset Voltage Drift  
VOS/T  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
ISOURCE = 20 µA  
MIN to TMAX  
SOURCE = 2.5 mA  
MIN to TMAX  
ISINK = 20 µA  
MIN to TMAX  
SINK = 2.5 mA  
MIN to TMAX  
14.975  
14.970  
14.80  
14.988  
14.985  
14.85  
14.82  
–14.985 –14.975  
–14.98  
–14.88  
–14.86  
±20  
V
V
V
V
V
V
V
V
T
I
T
14.75  
Output Voltage Low  
VOL  
T
I
T
–14.97  
–14.85  
–14.8  
Short Circuit Limit  
Open-Loop Impedance  
ISC  
ZOUT  
Sink/Source, TMIN to TMAX  
f = 1 MHz, AV = 1  
±8  
mA  
100  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 15 V  
70  
68  
80  
dB  
dB  
µA  
µA  
TMIN to TMAX  
Supply Current/Amplifier  
VO = 0 V  
TMIN to TMAX  
560  
625  
675  
DYNAMIC PERFORMANCE  
Slew Rate  
Full-Power Bandwidth  
Settling Time  
SR  
BWP  
tS  
RL = 10 k, AV = 1  
1% Distortion, VO = 20 V p-p  
VOUT = 0 V to 10 V, to 0.01%  
2
33  
6
V/µs  
kHz  
µs  
Gain Bandwidth Product  
Phase Margin  
Channel Separation  
GBP  
φo  
CS  
2
50  
–123  
MHz  
Degrees  
dB  
f = 1 kHz, RL =2 kΩ  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
Total Harmonic Distortion  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
f =10 kHz, VO = 3 V rms,  
RL = 10 kΩ  
2
16  
1.1  
µV p-p  
nV/Hz  
fA/Hz  
THD  
0.005  
%
–3–  
REV. A  
AD824–SPECIFICATIONS  
(@ VS = +3.0 V, VCM = 0 V, VOUT = 0.2 V, TA = +25؇C unless otherwise noted)  
ELECTRICAL SPECIFICATIONS  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACTERISTICS  
Offset Voltage AD824A -3 V  
VOS  
IB  
0.2  
1.0  
1.5  
12  
4000  
10  
mV  
mV  
pA  
pA  
pA  
pA  
V
TMIN to TMAX  
TMIN to TMAX  
TMIN to TMAX  
Input Bias Current  
Input Offset Current  
2
250  
2
IOS  
250  
Input Voltage Range  
0
1
Common-Mode Rejection Ratio  
CMRR  
AVO  
V
T
CM = 0 V to 1 V  
MIN to TMAX  
58  
56  
74  
dB  
dB  
ʈpF  
Input Impedance  
Large Signal Voltage Gain  
1013ʈ3.3  
VO = 0.2 V to 2.0 V  
RL = 2 kΩ  
RL = 10 kΩ  
RL = 100 kΩ  
T
10  
30  
180  
90  
20  
65  
500  
250  
2
V/mV  
V/mV  
V/mV  
V/mV  
µV/°C  
MIN to TMAX, RL = 100 kΩ  
Offset Voltage Drift  
VOS/T  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
ISOURCE = 20 µA  
MIN to TMAX  
SOURCE = 2.5 mA  
MIN to TMAX  
ISINK = 20 µA  
MIN to TMAX  
SINK = 2.5 mA  
MIN to TMAX  
2.975  
2.97  
2.8  
2.988  
2.985  
2.85  
2.82  
15  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
mA  
T
I
T
2.75  
Output Voltage Low  
VOL  
25  
30  
150  
200  
T
I
T
20  
120  
140  
±8  
±6  
100  
Short Circuit Limit  
Short Circuit Limit  
Open-Loop Impedance  
ISC  
ISC  
ZOUT  
Sink/Source  
Sink/Source, TMIN to TMAX  
f = 1 MHz, AV = 1  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 12 V,  
70  
66  
dB  
dB  
µA  
TMIN to TMAX  
Supply Current/Amplifier  
VO = 0.2 V, TMIN to TMAX  
500  
600  
DYNAMIC PERFORMANCE  
Slew Rate  
Full-Power Bandwidth  
Settling Time  
SR  
BWP  
tS  
RL =10 k, AV = 1  
1% Distortion, VO = 2 V p-p  
VOUT = 0.2 V to 2.5 V, to 0.01%  
2
300  
2
V/µs  
kHz  
µs  
Gain Bandwidth Product  
Phase Margin  
Channel Separation  
GBP  
φo  
CS  
2
50  
–123  
MHz  
Degrees  
dB  
f = 1 kHz, RL = 2 kΩ  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
Total Harmonic Distortion  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
2
16  
0.8  
0.01  
µV p-p  
nV/Hz  
fA/Hz  
%
THD  
f = 10 kHz, RL = 0, AV = +1  
–4–  
REV. A  
AD824  
(@ V = +5.0 V, VCM = 0 V, TA = +25؇C unless otherwise noted)  
WAFER TEST LIMITS  
S
Parameter  
Symbol  
Conditions  
Limit  
Units  
Offset Voltage  
Input Bias Current  
Input Offset Current  
VOS  
IB  
IOS  
1.0  
12  
20  
mV max  
pA max  
pA  
Input Voltage Range  
VCM  
CMRR  
PSRR  
AVO  
VOH  
VOL  
ISY  
–0.2 to 3.0  
66  
70  
15  
4.975  
25  
600  
V min  
dB min  
µV/V  
V/mV min  
V min  
mV max  
µA max  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
Output Voltage High  
Output Voltage Low  
V
CM = 0 V to 2 V  
V = + 2.7 V to +12 V  
RL = 2 kΩ  
ISOURCE = 20 µA  
ISINK = 20 µA  
Supply Current/Amplifier  
VO = 0 V, RL = ∞  
NOTE  
Electrical tests and wafer probe to the limits shown. Due to variations in assembly  
methods and normal yield loss, yield after packaging is not guaranteed for  
standard product dice. Consult factory to negotiate specifications based on dice  
lot qualifications through sample lot assembly and testing.  
DICE CHARACTERISTICS  
ABSOLUTE MAXIMUM RATINGS1  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . –VS – 0.2 V to +VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . ±30 V  
Output Short Circuit Duration to GND . . . . . . . . . Indefinite  
Storage Temperature Range  
N, R Package . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range  
AD824A, B . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Junction Temperature Range  
N, R Package . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . +300°C  
AD824 Die Size 0.70 X 0.130 inch, 9,100 sq. mils.  
Substrate (Die Backside) Is Connected to V+. Transistor  
Count, 143.  
2
Package Type  
θJA  
θJC  
Units  
14-Pin Plastic DIP (N)  
14-Pin SOIC (R)  
16-Pin SOIC (R)  
76  
120  
92  
33  
36  
27  
°C/W  
°C/W  
°C/W  
V
CC  
I5  
I6  
Q18  
Q29  
R1  
R2  
R9  
NOTES  
1Absolute maximum ratings apply to both DICE and packaged parts unless  
otherwise noted.  
Q21 Q27  
2θJA is specified for the worst case conditions, i.e., θJA is specified for device in socket  
for P-DIP packages; θJA is specified for device soldered in circuit board for SOIC  
package.  
Q4  
Q6  
C3  
Q5  
J1  
J2  
Q20  
Q19  
Q22  
+IN  
Q7  
R7  
ORDERING GUIDE  
Temperature  
C4  
R13  
–IN  
Q23  
V
OUT  
C2  
R15  
Model  
Range  
Package Option  
Q24 Q25  
AD824AN  
AD824BN  
AD824AR  
AD824AR-3V  
AD824AN-3V  
AD824AR-14  
AD824AR-14-3V  
AD824AR-16  
AD824AChips  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
+25°C  
14-Pin Plastic DIP  
14-Pin Plastic DIP  
14-Pin SOIC  
14-Pin SOIC  
14-Pin Plastic DIP  
14-Pin SOIC  
14-Pin SOIC  
16-Pin SOIC  
DICE  
Q8  
C1  
Q2  
Q3  
Q31  
Q28  
R14  
I2  
R12  
I1  
Q26  
R17  
I4  
I3  
V
EE  
Figure 1. Simplified Schematic of 1/4 AD824  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD824 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. A  
–5–  
AD824–Typical Characteristics  
V
= +5V  
S
V
= ±15V  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
S
NO LOAD  
NO LOAD  
45  
45  
90  
90  
135  
180  
135  
180  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
100  
90  
100  
90  
10  
10  
0%  
0%  
50mV  
1µs  
50mV  
1µs  
Figure 4. Open-Loop Gain/Phase and Small Signal  
Response, VS = +5 V, No Load  
Figure 2. Open-Loop Gain/Phase and Small Signal  
Response, VS = ±15 V, No Load  
V
= +5V  
60  
40  
20  
S
V
= ±15V  
80  
60  
40  
20  
0
S
C
= 220pF  
L
C
= 100pF  
L
45  
90  
135  
180  
45  
0
90  
135  
180  
–20  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
100  
90  
100  
90  
10  
10  
0%  
0%  
50mV  
1µs  
50mV  
1µs  
Figure 5. Open-Loop Gain/Phase and Small Signal  
Response, VS = +5 V, CL = 220 pF  
Figure 3. Open-Loop Gain/Phase and Small Signal  
Response, VS = ±15 V, CL = 100 pF  
–6–  
REV. A  
AD824  
t
60  
40  
20  
9.950µs  
V
= +3V  
S
NO LOAD  
100  
90  
45  
90  
10  
135  
180  
0%  
0
5V  
2µs  
–20  
t
10.810 µs  
1k  
10k  
100k  
1M  
10M  
100  
90  
100  
90  
10  
0%  
5V  
2µs  
10  
Figure 8. Slew Rate, RL = 10k  
0%  
50mV  
1µs  
Figure 6. Open-Loop Gain/Phase and Small Signal  
Response, VS = +3 V, No Load  
100  
90  
V
OUT  
V
= +3V  
S
10  
60  
40  
20  
0%  
C
= 220pF  
L
100µs  
5V  
45  
90  
Figure 9. Phase Reversal with Inputs Exceeding Supply by  
1 Volt  
135  
180  
0
0.8  
0.7  
0.6  
–20  
1k  
10k  
100k  
1M  
10M  
0.5  
SOURCE  
0.4  
0.3  
0.2  
100  
90  
SINK  
0.1  
0
10  
1µ  
5µ  
10µ  
50µ 100µ  
500µ  
1m  
5m  
10m  
0%  
LOAD CURRENT – A  
50mV  
1µs  
Figure 10. Output Voltage to Supply Rail vs. Sink and  
Source Load Currents  
Figure 7. Open-Loop Gain/Phase and Small Signal  
Response, VS = +3 V, CL = 220 pF  
–7–  
REV. A  
AD824–Typical Characteristics  
14  
12  
10  
8
COUNT = 60  
+3V V ≤ ±15V  
S
60  
40  
20  
6
4
2
5
10  
15  
20  
FREQUENCY – kHz  
0
–2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5  
1.0 1.5  
2.0  
2.5  
OFFSET VOLTAGE DRIFT  
Figure 14. TC VOS Distribution, –55°C to +125°C, VS = 5, 0  
Figure 11. Voltage Noise Density  
150  
V
= 5, 0  
0.1  
S
125  
100  
75  
R
A
= 0  
= +1  
L
V
V
V
= +3  
= +5  
S
S
0.010  
0.001  
50  
25  
V
= ±15  
S
0
0.0001  
20  
100  
1k  
FREQUENCY – Hz  
10k 20k  
–25  
–60 –40 –20  
0
20  
40  
60  
80 100 120  
140  
TEMPERATURE – °C  
Figure 12. Total Harmonic Distortion  
Figure 15. Input Offset Current vs. Temperature  
100k  
280  
240  
200  
160  
120  
80  
V
= 5, 0  
COUNT = 860  
S
10k  
1k  
100  
10  
1
40  
0
20  
40  
60  
80  
100  
120  
140  
–0.5 –0.4 –0.3 –0.2 –0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
TEMPERATURE –  
°C  
OFFSET VOLTAGE – mV  
Figure 16. Input Bias Current vs. Temperature  
Figure 13. Input Offset Distribution, VS = 5, 0  
REV. A  
–8–  
AD824  
.
.
120  
100  
80  
60  
40  
20  
0
1k  
100  
10  
10  
100  
1k  
10k  
100k  
1M  
10M  
1
1
10  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 20. Input Voltage Noise Spectral Density vs.  
Frequency  
Figure 17. Common-Mode Rejection vs. Frequency  
120  
100  
80  
60  
40  
20  
0
–40  
–60  
–80  
–100  
–120  
10  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
FREQUENCY – Hz  
100k  
FREQUENCY – Hz  
Figure 21. Power Supply Rejection vs. Frequency  
Figure 18. THD vs. Frequency, 3 V rms  
30  
25  
20  
15  
10  
5
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
±15V  
+3, 0V  
0
1k  
–20  
10  
–20  
10M  
3k  
10k  
30k  
100k  
300k  
1M  
100  
1k  
10k  
100k  
1M  
INPUT FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 22. Large Signal Frequency Response  
Figure 19. Open-Loop Gain and Phase vs. Frequency  
REV. A  
–9–  
AD824  
–80  
5V  
5µs  
–90  
–100  
–110  
–120  
–130  
–140  
100  
90  
1 TO 4  
1 TO 2  
10  
1 TO 3  
0%  
10  
100  
1k  
FREQUENCY – Hz  
10k  
100k  
Figure 23. Crosstalk vs. Frequency  
Figure 26. Large Signal Response  
10k  
1k  
100  
10  
1
2750  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
V
= ±15V  
S
V
= 3, 0  
S
.1  
.01  
10  
100  
1k  
10k  
100k  
1M  
10M  
–60 –40 –20  
0
20  
40  
60  
80 100 120  
140  
FREQUENCY – Hz  
TEMPERATURE – °C  
Figure 24. Output Impedance vs. Frequency, Gain = +1  
Figure 27. Supply Current vs. Temperature  
1000  
V
V
= ±15V  
S
20mV  
500ns  
= 3, 0  
S
100  
90  
100  
10  
0
V
– V  
S
OL  
V
– V  
OH  
S
10  
0%  
0.01  
0.10  
1.0  
10.0  
LOAD CURRENT – mA  
Figure 25. Small Signal Response, Unity Gain Follower,  
10kʈ100 pF Load  
Figure 28. Output Saturation Voltage  
–10–  
REV. A  
AD824  
APPLICATION NOTES  
A current-limiting resistor should be used in series with the in-  
put of the AD824 if there is a possibility of the input voltage ex-  
ceeding the positive supply by more than 300 mV or if an input  
voltage will be applied to the AD824 when ±VS = 0. The ampli-  
fier will be damaged if left in that condition for more than 10  
seconds. A 1 kresistor allows the amplifier to withstand up to  
10 volts of continuous overvoltage and increases the input volt-  
age noise by a negligible amount.  
INPUT CHARACTERISTICS  
In the AD824, n-channel JFETs are used to provide a low  
offset, low noise, high impedance input stage. Minimum input  
common-mode voltage extends from 0.2 V below –VS to 1 V less  
than +VS. Driving the input voltage closer to the positive rail will  
cause a loss of amplifier bandwidth.  
The AD824 does not exhibit phase reversal for input voltages up  
to and including +VS. Figure 29a shows the response of an  
AD824 voltage follower to a 0 V to +5 V (+VS) square wave in-  
put. The input and output are superimposed. The output tracks  
the input up to +VS without phase reversal. The reduced band-  
width above a 4 V input causes the rounding of the output wave  
form. For input voltages greater than +VS, a resistor in series  
with the AD824’s noninverting input will prevent phase reversal  
at the expense of greater input voltage noise. This is illustrated  
in Figure 29b.  
Input voltages less than –VS are a completely different story.  
The amplifier can safely withstand input voltages 20 volts below  
the minus supply voltage as long as the total voltage from the  
positive supply to the input terminal is less than 36 volts. In ad-  
dition, the input stage typically maintains picoamp level input  
currents across that input voltage range.  
OUTPUT CHARACTERISTICS  
The AD824’s unique bipolar rail-to-rail output stage swings  
within 15 mV of the positive and negative supply voltages. The  
AD824’s approximate output saturation resistance is 100 for  
both sourcing and sinking. This can be used to estimate output  
saturation voltage when driving heavier current loads. For  
instance, the saturation voltage will be 0.5 volts from either  
supply with a 5 mA current load.  
1V  
2µs  
100  
90  
For load resistances over 20 k, the AD824’s input error  
voltage is virtually unchanged until the output voltage is driven  
to 180 mV of either supply.  
10  
GND  
0%  
If the AD824’s output is overdriven so as to saturate either of  
the output devices, the amplifier will recover within 2 µs of its  
input returning to the amplifier’s linear operating region.  
1V  
1V  
(a)  
Direct capacitive loads will interact with the amplifier’s effective  
output impedance to form an additional pole in the amplifier’s  
feedback loop, which can cause excessive peaking on the pulse  
response or loss of stability. Worst case is when the amplifier is  
used as a unity gain follower. Figures 5 and 7 show the AD824’s  
pulse response as a unity gain follower driving 220 pF. Configu-  
rations with less loop gain, and as a result less loop bandwidth,  
will be much less sensitive to capacitance load effects. Noise  
gain is the inverse of the feedback attenuation factor provided  
by the feedback network in use.  
10µs  
1V  
100  
90  
+V  
S
10  
GND  
0%  
1V  
Figure 30 shows a method for extending capacitance load drive  
capability for a unity gain follower. With these component val-  
ues, the circuit will drive 5,000 pF with a 10% overshoot.  
(b)  
+5V  
R
P
+V  
S
V
IN  
0.01µF  
V
OUT  
8
100Ω  
1/4  
AD824  
V
N
I
V
0.01µF  
OUT  
4
C
Figure 29. (a) Response with RP = 0; VIN from 0 to +VS  
(b) VIN = 0 to + VS + 200 m V  
VOUT = 0 to + VS  
L
–V  
S
20pF  
RP = 49.9 kΩ  
20kΩ  
Since the input stage uses n-channel JFETs, input current dur-  
ing normal operation is positive; the current flows out from the  
input terminals. If the input voltage is driven more positive than  
+VS – 0.4 V, the input current will reverse direction as internal  
device junctions become forward biased. This is illustrated in  
Figure 9.  
Figure 30. Extending Unity Gain Follower Capacitive Load  
Capability Beyond 350 pF  
REV. A  
–11–  
AD824  
APPLICATIONS  
Table I. AD824 In Amp Performance  
Single Supply Voltage-to-Frequency Converter  
The circuit shown in Figure 31 uses the AD824 to drive a low  
power timer, which produces a stable pulse of width t1. The  
positive going output pulse is integrated by R1-C1 and used as  
one input to the AD824, which is connected as a differential  
integrator. The other input (nonloading) is the unknown volt-  
age, VIN. The AD824 output drives the timer trigger input, clos-  
ing the overall feedback loop.  
Parameters  
VS = 3 V, 0 V VS = ؎5 V  
74 dB 80 dB  
CMRR  
Common-Mode  
Voltage Range  
3 dB BW, G = 10  
G = 100  
–0.2 V to +2 V –5.2 V to +4 V  
180 kHz  
18 kHz  
180 kHz  
18 kHz  
tSETTLING  
2 V Step (VS = 0 V, 3 V)  
5 V (VS = ±5 V)  
Noise @ f = 1 kHz, G = 10  
2 µs  
+10V  
5 µs  
270 nV/Hz  
2.2 µV/Hz  
U4  
C5  
REF02  
270 nV/Hz  
0.1µF  
2
V
= 5V  
REF  
6
5
G = 100 2.2 µV/Hz  
CMOS  
3
R
10k  
SCALE**  
OUT2  
OUT1  
74HCO4  
C3  
0.1µF  
U3A  
2
4
U3B  
5µs  
4
3
1
100  
90  
U2  
0.01µF, 2%  
CMOS 555  
4
8
R2  
R3*  
U1  
C1  
499k, 1%  
116k  
R
V+  
6
3
THR  
OUT  
1/4  
AD824B  
2
7
TR  
5
R1  
10  
CV  
V
0%  
DIS  
IN  
GND  
C6  
499k, 1%  
1V  
390pF  
0V TO 2.5V  
1
5%  
C4  
0.01µF  
FULL SCALE  
C2  
(NPO)  
0.01µF, 2%  
Figure 32a. Pulse Response of In Amp to a 500 mV p-p  
Input Signal; VS = +5 V, 0 V; Gain = 10  
NOTES:  
=V /(VREF*t ), t = 1.1*R3*C6  
f
OUT  
IN  
1
1
= 25kHz f AS SHOWN.  
S
* = 1% METAL FILM, <50ppm/°C TC  
** = 10%, 20T FILM, <100ppm/°C TC  
R1  
R2  
9k  
R3  
1k  
R4  
1k  
R5  
9k  
R6  
OHMTEK  
PART # 1043  
V
t
= 33µs FOR f  
= 20kHz @  
= 2.0V  
IN  
V
REF  
1
OUT  
90k  
90k  
Figure 31. Single Supply Voltage-to-Frequency Converter  
G =10  
G =100  
G =100  
G =10  
Typical AD824 bias currents of 2 pA allow megaohm-range  
source impedances with negligible dc errors. Linearity errors on  
the order of 0.01% full scale can be achieved with this circuit.  
This performance is obtained with a 5 volt single supply, which  
delivers less than 3 mA to the entire circuit.  
+V  
S
0.1µF  
6
5
2
3
1/4  
AD824  
1
7
1/4  
AD824  
R
P
V
V
V
OUT  
IN1  
IN2  
11  
Single Supply Programmable Gain Instrumentation Amplifier  
The AD824 can be configured as a single supply instrumenta-  
tion amplifier that is able to operate from single supplies down  
to 3 V or dual supplies up to ±15 V. AD824 FET inputs’ 2 pA  
bias currents minimize offset errors caused by high unbalanced  
source impedances.  
1kΩ  
R
P
1kΩ  
R6  
R4 + R5  
(G =10)  
V
= (V  
– V ) (1+  
) +V  
REF  
OUT  
IN1  
IN2  
R5 + R6  
R4  
(G =100)  
V
= (V  
– V ) (1+  
) +V  
REF  
OUT  
IN1  
IN2  
FOR R1 = R6, R2 = R5 AND R3 = R4  
An array of precision thin-film resistors sets the in amp gain to  
be either 10 or 100. These resistors are laser-trimmed to ratio  
match to 0.01% and have a maximum differential TC of  
5 ppm/°C.  
Figure 32b. A Single Supply Programmable  
Instrumentation Amplifier  
–12–  
REV. A  
AD824  
3 Volt, Single Supply Stereo Headphone Driver  
The AD824 exhibits good current drive and THD+N perfor-  
mance, even at 3 V single supplies. At 1 kHz, total harmonic  
distortion plus noise (THD+N) equals –62 dB (0.079%) for a  
300 mV p-p output signal. This is comparable to other single  
supply op amps that consume more power and cannot run on 3  
V power supplies.  
of +4.5 V can be used to drive an A/D converter front end. The  
other half of the AD824 is configured as a unity-gain inverter  
and generates the other bridge input of –4.5 V. Resistors R1 and  
R2 provide a constant current for bridge excitation. The AD620  
low power instrumentation amplifier is used to condition the  
differential output voltage of the bridge. The gain of the AD620  
is programmed using an external resistor RG and determined by:  
In Figure 33, each channel’s input signal is coupled via a 1 µF  
Mylar capacitor. Resistor dividers set the dc voltage at the  
noninverting inputs so that the output voltage is midway be-  
tween the power supplies (+1.5 V). The gain is 1.5. Each half of  
the AD824 can then be used to drive a headphone channel. A  
5 Hz high-pass filter is realized by the 500 µF capacitors and the  
headphones, which can be modeled as 32 ohm load resistors to  
ground. This ensures that all signals in the audio frequency  
range (20 Hz–20 kHz) are delivered to the headphones.  
49.4 kΩ  
RG  
G =  
+ 1  
A 3.3 Volt/5 Volt Precision Sample-and-Hold Amplifier  
In battery-powered applications, low supply voltage operational  
amplifiers are required for low power consumption. Also, low  
supply voltage applications limit the signal range in precision  
analog circuitry. Circuits like the sample-and-hold circuit  
shown in Figure 35, illustrate techniques for designing precision  
analog circuitry in low supply voltage applications. To maintain  
high signal-to-noise ratios (SNRs) in a low supply voltage appli-  
cation requires the use of rail-to-rail, input/output operational  
amplifiers. This design highlights the ability of the AD824 to oper-  
ate rail-to-rail from a single +3 V/+5 V supply, with the advantages  
of high input impedance. The AD824, a quad JFET-input op  
amp, is well suited to S/H circuits due to its low input bias cur-  
rents (3 pA, typical) and high input impedances (3 × 1013 ,  
typical). The AD824 also exhibits very low supply currents so  
the total supply current in this circuit is less than 2.5 mA.  
+3V  
0.1µF  
0.1µF  
95.3k  
47.5k  
1µF  
CHANNEL 1  
1/4  
AD824  
MYLAR  
500µF  
95.3k  
L
4.99k  
10k  
HEADPHONES  
32IMPEDANCE  
10k  
3.3/5V  
3.3/5V  
0.1µF  
R
R1 AD824A  
4.99k  
50k  
3
2
4
1/4  
AD824  
1
47.5k  
1µF  
A1  
FALSE GROUND (FG)  
500µF  
R2  
50k  
CHANNEL 2  
11  
R4  
2kΩ  
MYLAR  
3.3/5V  
13  
Figure 33. 3 Volt Single Supply Stereo Headphone Driver  
ADG513  
15  
14  
Low Dropout Bipolar Bridge Driver  
R5  
2kΩ  
16  
9
10  
11  
The AD824 can be used for driving a 350 ohm Wheatstone  
bridge. Figure 34 shows one half of the AD824 being used to  
buffer the AD589—a 1.235 V low power reference. The output  
AD824B  
A2  
C
H
FG  
5
500pF  
2
3
7
6
1
8
+V  
S
10  
9
8
A3  
+
49.9k  
V
R1  
20Ω  
OUT  
6
5
7
4
+1.235V  
AD824C  
1/4  
AD824  
TO A/D CONVERTER  
REFERENCE INPUT  
C
AD589  
AD824D  
12  
500pF  
FG  
14  
26.4k, 1%  
350Ω  
10k  
1%  
+V  
S
SAMPLE/  
A4  
13  
FG  
350Ω  
350Ω  
HOLD  
3
7
6
AD620  
R
G
350Ω  
5
2
Figure 35. 3.3 V/5.5 V Precision Sample and Hold  
4
10k  
1%  
V
REF  
In many single supply applications, the use of a false ground  
generator is required. In this circuit, R1 and R2 divide the sup-  
ply voltage symmetrically, creating the false ground voltage at  
one-half the supply. Amplifier A1 then buffers this voltage cre-  
ating a low impedance output drive. The S/H circuit is config-  
ured in an inverting topology centered around this false ground  
level.  
–V  
S
10k  
1%  
+V  
1/4  
AD824  
S
+5V  
–5V  
–4.5V  
1µF  
1µF  
0.1µF  
R2  
20Ω  
GND  
0.1µF  
–V  
–V  
S
S
Figure 34. Low Dropout Bipolar Bridge Driver  
REV. A  
–13–  
AD824  
A design consideration in sample-and-hold circuits is voltage  
droop at the output caused by op amp bias and switch leakage  
currents. By choosing a JFET op amp and a low leakage CMOS  
switch, this design minimizes droop rate error to better than  
0.1 µV/µs in this circuit. Higher values of CH will yield a lower  
droop rate. For best performance, CH and C2 should be poly-  
styrene, polypropylene or Teflon capacitors. These types of  
capacitors exhibit low leakage and low dielectric absorption. Addi-  
tionally, 1% metal film resistors were used throughout the design.  
appear at VOUT. The pedestal error for this circuit is less than 2  
mV over the entire 0 V to 3.3 V/5 V signal range. Another  
method of reducing pedestal error is to reduce the pulse ampli-  
tude applied to the control pins. In order to control the  
ADG513, only 2.4 V are required for the “ON” state and 0.8 V  
for the “OFF” state. If possible, use an input control signal  
whose amplitude ranges from 0.8 V to 2.4 V instead of a full  
range 0 V to 3.3 V/5 V for minimum pedestal error.  
Other circuit features include an acquisition time of less than  
3 µs to 1%; reducing CH and C2 will speed up the acquisition  
time further, but an increased pedestal error will result. Settling  
time is less than 300 ns to 1%, and the sample-mode signal BW  
is 80 kHz.  
In the sample mode, SW1 and SW4 are closed, and the output  
is VOUT = –VIN. The purpose of SW4, which operates in paral-  
lel with SW1, is to reduce the pedestal, or hold step, error by  
injecting the same amount of charge into the noninverting input  
of A3 that SW1 injects into the inverting input of A3. This cre-  
ates a common-mode voltage across the inputs of A3 and is then  
rejected by the CMR of A3; otherwise, the charge injection from  
SW1 would create a differential voltage step error that would  
The ADG513 was chosen for its ability to work with 3 V/5 V  
supplies and for having normally-open and normally-closed pre-  
cision CMOS switches on a dielectrically isolated process. SW2  
is not required in this circuit; however, it was used in parallel  
with SW3 to provide a lower RON analog switch.  
–14–  
REV. A  
AD824  
* AD824 SPICE Macro-model  
9/94, Rev. A *  
ARG/ADI  
FSY1  
FSY2  
DC1  
DC2  
*
99  
0
25  
50  
0
VP 1  
VN 1  
DX  
50  
99  
25  
*
* Copyright 1994 by Analog Devices, Inc.  
*
DX  
* Refer to “README.DOC” file for License Statement.  
Use of this model indicates your acceptance with  
the terms and provisions in the License Statement. *  
* Node assignments  
* MODELS USED  
*
.MODEL JX NJF(BETA=3.2526E-3 VTO=-2.000 IS=2E-12) .MODEL  
NPN NPN(BF=120 VAF=150 VAR=15 RB=2E3  
+ RE=4 RC=550 IS=1E-16)  
.MODEL PNP PNP(BF=120 VAF=150 VAR=15 RB=2E3 + RE=4  
RC=750 IS=1E-16)  
.MODEL DX D(IS=1E-15)  
*
*
*
noninverting input  
| inverting input  
| | positive supply  
*
*
*
| |  
| |  
| |  
|
|
|
negative supply  
|
|
output  
|
.MODEL DY D()  
.MODEL DQ D(IS=1E-16)  
.ENDS AD824  
.SUBCKT AD824  
*
1 2 99 50 25  
* INPUT STAGE & POLE AT 3.1 MHz  
*
R3  
R4  
CIN  
C2  
I1  
IOS  
EOS  
J1  
5
6
1
5
4
1
7
4
4
99  
99  
2
6
50  
2
1
2
7
1.193E3  
1.193E3  
4E-12  
19.229E-12  
108E-6  
1E-12  
POLY(1) (12,98) 100E-6 1  
5
6
JX  
JX  
J2  
*
* GAIN STAGE & DOMINANT POLE  
*
EREF  
R5  
C3  
G1  
V1  
98  
9
9
98  
8
98  
9
0
(30,0) 1  
2.205E6  
54E-12  
(6,5) 0.838E-3  
-1  
-1  
DX  
98  
25  
9
98  
10  
10  
9
V2  
D1  
D2  
*
8
DX  
* COMMON-MODE GAIN NETWORK WITH ZERO AT 1 kHz *  
R21  
R22  
C14  
E13  
*
11  
12  
11  
11  
12  
98  
12  
98  
1E6  
100  
159E-12  
POLY(2) (2,98) (1,98) 0 0.5 0.5  
* POLE AT 10 MHz  
*
R23  
C15  
G15  
*
18  
18  
98  
98  
98  
18  
1E6  
15.9E-15  
(9,98) 1E-6  
* OUTPUT STAGE  
*
ES  
26  
26  
98  
23  
21  
98  
20  
24  
97  
20  
24  
24  
25  
25  
96  
51  
96  
52  
30  
30  
98  
22  
21  
98  
98  
23  
25  
25  
20  
21  
23  
51  
20  
24  
97  
52  
0
(18,98) 1  
500  
2.404E-3  
2.404E-3  
DY  
RS  
IB1  
IB2  
D10  
D11  
C16  
C17  
DQ1  
Q2  
DY  
2E-12  
2E-12  
DQ  
22 NPN  
22 PNP  
DQ  
97 PNP 20  
51 NPN 20  
0
Q3  
DQ2  
Q5  
Q6  
VP  
VN  
EP  
0
(99,0) 1  
(50,0) 1  
5E6  
EN  
R25  
R26  
0
99  
50  
5E6  
REV. A  
–15–  
AD824  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
14-Pin Plastic (N) Package  
(N-14)  
14  
1
8
0.280 (7.11)  
0.240 (6.10)  
PIN 1  
7
0.325 (8.25)  
0.300 (7.62)  
0.795 (20.19)  
0.725 (18.42)  
0.060 (1.52)  
0.015 (0.38)  
0.195 (4.95)  
0.115 (2.93)  
0.210  
(5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.015 (0.381)  
0.008 (0.204)  
0.160 (4.06)  
0.115 (2.93)  
SEATING  
PLANE  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
0.100  
(2.54)  
BSC  
14-Pin SOIC (R) Package  
(R-14)  
14  
1
8
0.1574 (4.00)  
0.1497 (3.80)  
PIN 1  
0.2440 (6.20)  
0.2284 (5.80)  
7
0.3444 (8.75)  
0.3367 (8.55)  
0.0196 (0.50)  
0.0099 (0.25)  
x 45  
°
0.0688 (1.75)  
0.0532 (1.35)  
8
0
°
°
0.0098 (0.25)  
0.0040 (0.10)  
0.0500 (1.27)  
0.0160 (0.41)  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0098 (0.25)  
0.0075 (0.19)  
16-Pin SOIC Package  
(R-16)  
0.4133 (10.50)  
0.3977 (10.00)  
16  
9
1
8
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
PIN 1  
x 45°  
0.0118 (0.30)  
0.0040 (0.10)  
0.0098 (0.25)  
0.0500 (1.27)  
0.0157 (0.40)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0125 (0.32)  
0.0091 (0.23)  
SEATING  
PLANE  
0.0138 (0.35)  
–16–  
REV. A  

相关型号:

AD8240

LED Driver/Monitor
ADI

AD8240YRM

LED Driver/Monitor
ADI

AD8240YRM-REEL

LED Driver/Monitor
ADI

AD8240YRM-REEL7

LED Driver/Monitor
ADI

AD8240YRMZ

LED Driver/Monitor
ADI

AD8240YRMZ-R7

LED Driver/Monitor
ADI

AD8240YRMZ-REEL

LED DISPLAY DRIVER, PDSO8, MO-187AA, MSOP-8
ADI

AD8240YRMZ-REEL7

LED DISPLAY DRIVER, PDSO8, MO-187AA, MSOP-8
ADI

AD8244

Single-Supply, Low Power, Precision FET Input Quad Buffer
ADI

AD8244ARMZ

Single-Supply, Low Power, Precision FET Input Quad Buffer
ADI

AD8244ARMZ-R7

Single-Supply, Low Power, Precision FET Input Quad Buffer
ADI

AD8244BRMZ

Single-Supply, Low Power, Precision FET Input Quad Buffer
ADI