AD824AR-14-3V-REEL [ADI]

Single Supply, Rail-to-Rail Low Power, FET-Input Quad Op Amp;
AD824AR-14-3V-REEL
型号: AD824AR-14-3V-REEL
厂家: ADI    ADI
描述:

Single Supply, Rail-to-Rail Low Power, FET-Input Quad Op Amp

放大器 光电二极管
文件: 总17页 (文件大小:368K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single Supply, Rail-to-Rail  
Low Power, FET-Input Op Amp  
Data Sheet  
AD824  
FEATURES  
PIN CONFIGURATION  
Single supply operation: 3 V to 30 V  
Very low input bias current: 2 pA  
Wide input voltage range  
Rail-to-rail output swing  
Low supply current per amplifier: 500 µA  
Wide bandwidth: 2 MHz  
1
2
3
4
5
6
7
OUT D  
–IN D  
+IN D  
V–  
OUT A  
–IN A  
+IN A  
V+  
14  
13  
12  
11  
10  
9
AD824  
TOP VIEW  
(Not to Scale)  
+IN C  
–IN C  
OUT C  
+IN B  
–IN B  
OUT B  
Slew rate: 2 V/µs  
8
No phase reversal  
Figure 1. 14-Lead SOIC (R Suffix)  
APPLICATIONS  
Photo diode preamplifier  
Battery powered instrumentation  
Power supply control and protection  
Medical instrumentation  
Remote sensors  
Low voltage strain gage amplifiers  
DAC output amplifier  
GENERAL DESCRIPTION  
The AD824 is a quad, FET input, single supply amplifier,  
featuring rail-to-rail outputs. The combination of FET inputs  
and rail-to-rail outputs makes the AD824 useful in a wide  
variety of low voltage applications where low input current is  
a primary consideration.  
The FET input combined with laser trimming provides an input  
that has extremely low bias currents with guaranteed offsets  
below 1 mV. This enables high accuracy designs even with high  
source impedances. Precision is combined with low noise,  
making the AD824 ideal for use in battery powered medical  
equipment.  
The AD824 is guaranteed to operate from a 3 V single supply  
up to 15 V dual supplies. AD824AR-3V parametric  
performance at 3 V is fully guaranteed.  
Applications for the AD824 include portable medical  
equipment, photo diode preamplifiers, and high impedance  
transducer amplifiers.  
Fabricated on Analog Devices, Inc., complementary bipolar  
process, the AD824 has a unique input stage that allows the  
input voltage to safely extend beyond the negative supply and  
to the positive supply without any phase inversion or latch-up.  
The output voltage swings to within 15 mV of the supplies.  
Capacitive loads to 350 pF can be handled without oscillation.  
The ability of the output to swing rail-to-rail enables designers  
to build multistage filters in single supply systems and maintain  
high signal-to-noise ratios.  
The AD824 is specified over the extended industrial (−40°C to  
+85°C) temperature range and is available in narrow 14-lead  
SOIC package.  
Rev. E  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2015 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
AD824* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
AD824 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
DOCUMENTATION  
Application Notes  
AN-106: A Collection of Amp Applications  
AN-253: Find Op Amp Noise with Spreadsheet  
AN-357: Operational Integrators  
DISCUSSIONS  
View all AD824 EngineerZone Discussions.  
AN-649: Using the Analog Devices Active Filter Design  
Tool  
SAMPLE AND BUY  
Data Sheet  
Visit the product page to see pricing options.  
AD824: Single Supply, Rail-to-Rail Low Power, FET-Input  
Op Amp Data Sheet  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
TOOLS AND SIMULATIONS  
Analog Filter Wizard  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
Analog Photodiode Wizard  
AD824 SPICE Macro-Model  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD824  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Input Characteristics.................................................................. 12  
Output Characteristics............................................................... 12  
Applications Information .............................................................. 13  
Single Supply Voltage-to-Frequency Converter..................... 13  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Specifications............................................................... 3  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 12  
Single Supply Programmable Gain Instrumentation  
Amplifier ..................................................................................... 13  
3 V, Single Supply Stereo Headphone Driver ......................... 14  
Low Dropout Bipolar Bridge Driver........................................ 14  
A 3.3 V/5 V Precision Sample-and-Hold Amplifier.............. 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
REVISION HISTORY  
4/15—Rev. D to Rev. E  
Change to Figure 1 Caption ............................................................ 1  
5/14—Rev. C to Rev. D  
Updated Format..................................................................Universal  
Removed 16-Lead SOIC Package (Throughout).......................... 1  
Deleted Wafer Test Limits Section ................................................. 5  
Deleted AD824 SPICE Macro-model Section............................ 15  
Changes to Ordering Guide .......................................................... 16  
2/03—Rev. B to Rev. C  
Deleted N Package..............................................................Universal  
Edits to General Description........................................................... 1  
Edits to Absolute Maximum Ratings ............................................. 5  
Edits to Ordering Guide .................................................................. 5  
Edits to Figure 4.............................................................................. 12  
Edits to Figure 8.............................................................................. 13  
Updated Outline Dimensions....................................................... 16  
1/02—Rev. A to Rev. B  
Edits to Electrical Specifications................................................. 2, 3  
Edits to Absolute Maximum Ratings ............................................. 5  
Edits to Ordering Guide .................................................................. 5  
Deleted Dice Characteristics........................................................... 5  
Rev. E | Page 2 of 16  
 
Data Sheet  
AD824  
SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS  
At VS = 5.0 V, VCM = 0 V, V OUT = 0.2 V, TA = 25°C; unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage (AD824A)  
VOS  
IB  
0.1  
1.0  
1.5  
12  
4000 pA  
10  
mV  
mV  
pA  
TMIN to TMAX  
TMIN to TMAX  
TMIN to TMAX  
Input Bias Current  
2
300  
2
Input Offset Current  
IOS  
pA  
pA  
V
dB  
dB  
dB  
Ω||pF  
300  
Input Voltage Range  
Common-Mode Rejection Ratio  
−0.2  
66  
60  
+3.0  
CMRR  
AVO  
VCM = 0 V to 2 V  
VCM = 0 V to 3 V  
TMIN to TMAX  
80  
74  
60  
Input Impedance  
Large Signal Voltage Gain  
1013||3.3  
VO = 0.2 V to 4.0 V  
RL = 2 kΩ  
RL = 10 kΩ  
RL = 100 kΩ  
TMIN to TMAX, RL = 100 kΩ  
20  
50  
250  
180  
40  
V/mV  
V/mV  
V/mV  
V/mV  
µV/°C  
100  
1000  
400  
2
Offset Voltage Drift  
OUTPUT CHARACTERISTICS  
Output Voltage High  
ΔVOS/ΔT  
VOH  
ISOURCE = 20 µA  
TMIN to TMAX  
ISOURCE = 2.5 mA  
TMIN to TMAX  
ISINK = 20 µA  
TMIN to TMAX  
ISINK = 2.5 mA  
TMIN to TMAX  
4.975 4.988  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
mA  
Ω
4.97  
4.80  
4.75  
4.985  
4.85  
4.82  
15  
Output Voltage Low  
VOL  
25  
30  
150  
200  
20  
120  
140  
12  
10  
100  
Short Circuit Limit  
ISC  
Sink/source  
TMIN to TMAX  
f = 1 MHz, AV = 1  
Open-Loop Impedance  
POWER SUPPLY  
Power Supply Rejection Ratio  
ZOUT  
PSRR  
ISY  
VS = 2.7 V to 12 V  
TMIN to TMAX  
TMIN to TMAX  
70  
66  
80  
dB  
dB  
µA  
Supply Current/Amplifier  
DYNAMIC PERFORMANCE  
Slew Rate  
Full-Power Bandwidth  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
Channel Separation  
NOISE PERFORMANCE  
Voltage Noise  
500  
600  
SR  
BWP  
tS  
GBP  
φo  
CS  
RL = 10 kΩ, AV = 1  
1% distortion, VO = 4 V p-p  
VOUT = 0.2 V to 4.5 V, to 0.01%  
2
V/µs  
kHz  
µs  
MHz  
Degrees  
dB  
150  
2.5  
2
50  
–123  
No load  
f = 1 kHz, RL = 2 kΩ  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
2
16  
0.8  
0.005  
µV p-p  
nV/√Hz  
fA/√Hz  
%
Voltage Noise Density  
Current Noise Density  
Total Harmonic Distortion  
THD  
f = 10 kHz, RL = ∞, AV = +1  
Rev. E | Page 3 of 16  
 
 
AD824  
Data Sheet  
At VS = 15.0 V, VOUT = 0 V, TA = 25°C; unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage (AD824A)  
VOS  
IB  
0.5  
0.6  
4
500  
25  
3
2.5  
4.0  
35  
4000  
mV  
mV  
pA  
pA  
pA  
pA  
pA  
V
TMIN to TMAX  
VCM = 0 V  
TMIN to TMAX  
VCM = −10 V  
Input Bias Current  
IB  
IOS  
Input Offset Current  
20  
TMIN to TMAX  
500  
Input Voltage Range  
Common-Mode Rejection Ratio  
−15  
70  
66  
+13  
CMRR  
AVO  
VCM = −15 V to 13 V  
TMIN to TMAX  
80  
dB  
dB  
Ω||pF  
Input Impedance  
Large Signal Voltage Gain  
1013||3.3  
VO = −10 V to +10 V;  
RL = 2 kΩ  
RL = 10 kΩ  
12  
50  
300  
50  
200  
2000  
V/mV  
V/mV  
V/mV  
RL = 100 kΩ  
TMIN to TMAX, RL = 100 kΩ  
200  
1000  
2
V/mV  
µV/°C  
Offset Voltage Drift  
OUTPUT CHARACTERISTICS  
Output Voltage High  
ΔVOS/ΔT  
VOH  
ISOURCE = 20 µA  
TMIN to TMAX  
ISOURCE = 2.5 mA  
TMIN to TMAX  
ISINK = 20 µA  
TMIN to TMAX  
ISINK = 2.5 mA  
TMIN to TMAX  
Sink/source, TMIN to TMAX  
f = 1 MHz, AV = 1  
14.975  
14.970  
14.80  
14.988  
14.985  
14.85  
14.82  
–14.985  
–14.98  
–14.88  
–14.86  
20  
V
V
V
V
V
V
V
V
14.75  
Output Voltage Low  
VOL  
–14.975  
–14.97  
–14.85  
–14.8  
Short Circuit Limit  
Open-Loop Impedance  
POWER SUPPLY  
ISC  
ZOUT  
8
mA  
Ω
100  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 15 V  
TMIN to TMAX  
VO = 0 V  
70  
68  
80  
dB  
dB  
µA  
µA  
Supply Current/Amplifier  
560  
625  
675  
TMIN to TMAX  
DYNAMIC PERFORMANCE  
Slew Rate  
Full-Power Bandwidth  
Settling Time  
SR  
BWP  
tS  
RL = 10 kΩ, AV = 1  
1% distortion, VO = 20 V p-p  
VOUT = 0 V to 10 V, to 0.01%  
2
33  
6
V/µs  
kHz  
µs  
Gain Bandwidth Product  
Phase Margin  
Channel Separation  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
Total Harmonic Distortion  
GBP  
φo  
CS  
2
50  
–123  
MHz  
Degrees  
dB  
f = 1 kHz, RL = 2 kΩ  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
f =10 kHz, VO = 3 V rms, RL = 10 kΩ  
2
16  
1.1  
0.005  
µV p-p  
nV/√Hz  
fA/√Hz  
%
THD  
Rev. E | Page 4 of 16  
Data Sheet  
AD824  
At VS = 3.0 V, VCM = 0 V, V OUT = 0.2 V, TA = 25°C; unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage (AD824A−3 V)  
VOS  
IB  
0.2  
1.0  
1.5  
12  
4000  
10  
mV  
mV  
pA  
pA  
pA  
pA  
V
TMIN to TMAX  
TMIN to TMAX  
TMIN to TMAX  
Input Bias Current  
2
250  
2
Input Offset Current  
IOS  
250  
Input Voltage Range  
0
1
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 1 V  
TMIN to TMAX  
58  
56  
74  
dB  
dB  
Ω||pF  
Input Impedance  
Large Signal Voltage Gain  
1013||3.3  
VO = 0.2 V to 2.0 V;  
RL = 2 kΩ  
RL = 10 kΩ  
RL = 100 kΩ  
TMIN to TMAX, RL = 100 kΩ  
10  
30  
180  
90  
20  
65  
500  
250  
V/mV  
V/mV  
V/mV  
V/mV  
Offset Voltage Drift  
OUTPUT CHARACTERISTICS  
Output Voltage High  
ΔVOS/ΔT  
VOH  
2
µV/°C  
ISOURCE = 20 µA  
TMIN to TMAX  
ISOURCE = 2.5 mA  
TMIN to TMAX  
ISINK = 20 µA  
TMIN to TMAX  
ISINK = 2.5 mA  
TMIN to TMAX  
Sink/source  
Sink/source, TMIN to TMAX  
f = 1 MHz, AV = 1  
2.975  
2.97  
2.8  
2.988  
2.985  
2.85  
2.82  
15  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
mA  
Ω
2.75  
Output Voltage Low  
Short Circuit Limit  
VOL  
25  
30  
150  
200  
20  
120  
140  
8
ISC  
ISC  
ZOUT  
6
Open-Loop Impedance  
POWER SUPPLY  
100  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 12 V,  
TMIN to TMAX  
VO = 0.2 V, TMIN to TMAX  
70  
66  
dB  
dB  
µA  
Supply Current/Amplifier  
DYNAMIC PERFORMANCE  
Slew Rate  
Full-Power Bandwidth  
Settling Time  
500  
600  
SR  
BWP  
tS  
RL =10 kΩ, AV = 1  
1% distortion, VO = 2 V p-p  
VOUT = 0.2 V to 2.5 V, to 0.01%  
2
300  
2
V/µs  
kHz  
µs  
Gain Bandwidth Product  
Phase Margin  
Channel Separation  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
Total Harmonic Distortion  
GBP  
φo  
CS  
2
50  
–123  
MHz  
Degrees  
dB  
f = 1 kHz, RL = 2 kΩ  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
2
16  
0.8  
0.01  
µV p-p  
nV/√Hz  
fA/√Hz  
%
THD  
f = 10 kHz, RL = ∞, AV = +1  
Rev. E | Page 5 of 16  
AD824  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 4.  
Parameter1  
Rating  
Table 5. Thermal Resistance  
Package Type  
1
Supply Voltage  
18 V  
θJA  
120  
θJC  
Unit  
Input Voltage  
−VS − 0.2 V to +VS  
30 V  
Indefinite  
−65°C to +150°C  
−40°C to +85°C  
−65°C to +150°C  
300°C  
14-Lead SOIC (R)  
36  
°C/W  
Differential Input Voltage  
Output Short Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature Range (Soldering 60 sec)  
1 θJA is specified for the worst case conditions, that is, θJA is specified for device  
soldered in circuit board for SOIC package.  
ESD CAUTION  
1 Absolute maximum ratings apply to packaged parts unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
V
CC  
I5  
I6  
Q18  
Q29  
R1  
J1  
R2  
R9  
Q21 Q27  
Q4  
Q6  
C3  
Q5  
J2  
Q20  
Q23  
Q19  
Q22  
+IN  
R7  
Q7  
C4  
R13  
–IN  
R15  
V
OUT  
C2  
Q24 Q25  
Q8  
C1  
Q2  
Q3  
Q31  
Q28  
Q26  
R12  
I1  
R14  
I2  
R17  
I3  
V
I4  
EE  
Figure 2. Simplified Schematic of 1/4 AD824  
Rev. E | Page 6 of 16  
 
 
 
Data Sheet  
AD824  
TYPICAL PERFORMANCE CHARACTERISTICS  
V
= ±15V  
V = 5V  
S
S
NO LOAD  
NO LOAD  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
45  
45  
90  
90  
135  
180  
135  
180  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
100  
90  
100  
90  
10  
10  
0%  
0%  
50mV  
1µs  
50mV  
1µs  
Figure 3. Open-Loop Gain/Phase and Small Signal Response, VS = 15 V,  
No Load  
Figure 5. Open-Loop Gain/Phase and Small Signal Response, VS = 5 V,  
No Load  
V
C
= ±15V  
= 100pF  
S
V
C
= 5V  
= 220pF  
S
L
80  
60  
40  
20  
0
L
60  
40  
45  
90  
20  
45  
135  
180  
90  
0
135  
180  
–20  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
100  
90  
100  
90  
10  
10  
0%  
0%  
50mV  
1µs  
50mV  
1µs  
Figure 4. Open-Loop Gain/Phase and Small Signal Response, VS = 15 V,  
CL = 100 pF  
Figure 6. Open-Loop Gain/Phase and Small Signal Response, VS = 5 V,  
CL = 220 pF  
Rev. E | Page 7 of 16  
 
 
AD824  
Data Sheet  
V
= 3V  
S
NO LOAD  
60  
40  
20  
0
t
9.950µs  
45  
100  
90  
90  
135  
180  
10  
0%  
–20  
1k  
5V  
2µs  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
t
10.810µs  
100  
90  
100  
90  
10  
10  
0%  
0%  
50mV  
1µs  
5V  
2µs  
Figure 7. Open-Loop Gain/Phase and Small Signal Response, VS = 3 V,  
No Load  
Figure 9. Slew Rate, RL = 10 kΩ  
100  
90  
V
C
= 3V  
= 220pF  
S
L
60  
40  
V
OUT  
45  
10  
0%  
90  
20  
100µs  
5V  
135  
180  
Figure 10. Phase Reversal with Inputs Exceeding Supply by 1 V  
0
0.8  
–20  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
100  
90  
SOURCE  
SINK  
10  
0%  
1µ  
5µ  
10µ  
50µ  
100µ  
500µ  
1m  
5m  
10m  
50mV  
1µs  
LOAD CURRENT (A)  
Figure 8. Open-Loop Gain/Phase and Small Signal Response, VS = 3 V,  
CL = 220 pF  
Figure 11. Output Voltage to Supply Rail vs. Sink and Source Load Currents  
Rev. E | Page 8 of 16  
 
 
Data Sheet  
AD824  
14  
12  
10  
8
COUNT = 60  
3V ≤ V ≤ ±15V  
S
60  
40  
20  
6
4
2
0
–2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
5
10  
15  
20  
OFFSET VOLTAGE DRIFT (µV/°C)  
FREQUENCY (kHz)  
Figure 12. Voltage Noise Density  
Figure 15. TC VOS Distribution, −55°C to +125°C, VS = 5 V, 0 V  
0.1  
150  
125  
100  
75  
R
A
= ∞  
V
= 5V, 0V  
L
V
S
= +1  
V
V
= +3V  
S
0.01  
0.001  
= +5V  
S
50  
V
= ±15V  
S
25  
0
0.0001  
–25  
20  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
Figure 13. Total Harmonic Distortion  
Figure 16. Input Offset Current vs. Temperature  
280  
240  
200  
160  
120  
80  
100k  
10k  
1k  
V
= 5V, 0V  
COUNT = 860  
S
100  
10  
1
40  
0
0.1  
–0.5 –0.4 –0.3 –0.2 –0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
20  
40  
60  
80  
100  
120  
140  
OFFSET VOLTAGE (mV)  
TEMPERATURE (°C)  
Figure 14. Input Offset Distribution, VS = 5 V, 0 V  
Figure 17. Input Bias Current vs. Temperature  
Rev. E | Page 9 of 16  
AD824  
Data Sheet  
120  
100  
80  
1k  
100  
10  
60  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. Common-Mode Rejection vs. Frequency  
Figure 21. Input Voltage Noise Spectral Density vs. Frequency  
–40  
–60  
120  
100  
80  
60  
40  
20  
0
–80  
–100  
–120  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 19. THD vs. Frequency, 3 V rms  
Figure 22. Power Supply Rejection vs. Frequency  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
30  
25  
20  
15  
10  
5
±15V  
3V, 0V  
–20  
10  
–20  
10M  
0
1k  
100  
1k  
10k  
100k  
1M  
3k  
10k  
30k  
100k  
300k  
1M  
FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
Figure 20. Open-Loop Gain and Phase vs. Frequency  
Figure 23. Large Signal Frequency Response  
Rev. E | Page 10 of 16  
Data Sheet  
AD824  
–80  
–90  
–100  
–110  
–120  
–130  
5V  
5µs  
100  
90  
1 TO 4  
1 TO 2  
1 TO 3  
10  
0%  
–140  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 24. Crosstalk vs. Frequency  
Figure 27. Large Signal Response  
10k  
1k  
2750  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
V
= ±15V  
S
100  
10  
V
= +3V, 0V  
S
1
0.1  
0.01  
10  
100  
1k  
10k  
100k  
1M  
10M  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 25. Output Impedance vs. Frequency, Gain = +1  
Figure 28. Supply Current vs. Temperature  
1k  
100  
10  
V
V
= ±15V  
= 3V, 0V  
S
S
20mV  
500ns  
V
– V  
S
OL  
100  
90  
V
– V  
OH  
S
10  
0%  
1
0.01  
0.1  
1
10  
LOAD CURRENT (mA)  
Figure 26. Small Signal Response, Unity Gain Follower, 10 kΩ||100 pF Load  
Figure 29. Output Saturation Voltage  
Rev. E | Page 11 of 16  
AD824  
Data Sheet  
THEORY OF OPERATION  
positive supply by more than 300 mV or if an input voltage will  
be applied to the AD824 when VS = 0 V. The amplifier will be  
damaged if left in that condition for more than 10 seconds. A  
1 kΩ resistor allows the amplifier to withstand up to 10 V of  
continuous overvoltage and increases the input voltage noise by  
a negligible amount.  
INPUT CHARACTERISTICS  
In the AD824, n-channel JFETs are used to provide a low offset,  
low noise, high impedance input stage. Minimum input  
common-mode voltage extends from 0.2 V below −VS to 1 V  
less than +VS. Driving the input voltage closer to the positive  
rail causes a loss of amplifier bandwidth.  
Input voltages less than −VS are a completely different story. The  
amplifier can safely withstand input voltages 20 V below the  
−VS as long as the total voltage from the +VS to the input termi-  
nal is less than 36 V. In addition, the input stage typically maintains  
picoamp level input currents across that input voltage range.  
The AD824 does not exhibit phase reversal for input voltages up  
to and including +VS. Figure 30a shows the response of an  
AD824 voltage follower to a 0 V to 5 V (+VS) square wave input.  
The input and output are superimposed. The output tracks the  
input up to +VS without phase reversal. The reduced bandwidth  
above a 4 V input causes the rounding of the output waveform.  
For input voltages greater than +VS, a resistor in series with the  
noninverting input prevents phase reversal at the expense of  
greater input voltage noise. This is illustrated in Figure 30b.  
OUTPUT CHARACTERISTICS  
The unique bipolar rail-to-rail output stage of the AD824  
swings within 15 mV of the positive and negative supply  
voltages. The approximate output saturation resistance of the  
AD824 is 100 Ω for both sourcing and sinking. This can be used  
to estimate output saturation voltage when driving heavier  
current loads. For instance, the saturation voltage is 0.5 V from  
either supply with a 5 mA current load.  
1V  
2µs  
100  
90  
For load resistances over 20 kΩ, the input error voltage of the  
AD824 is virtually unchanged until the output voltage is driven  
to 180 mV of either supply.  
10  
GND  
0%  
If the output of the AD824 is overdriven to saturate either of the  
output devices, the amplifier will recover within 2 μs of its input  
returning to the amplifiers linear operating region.  
1V  
1V  
(a)  
Direct capacitive loads will interact with the amplifiers effective  
output impedance to form an additional pole in the amplifiers  
feedback loop, which can cause excessive peaking on the pulse  
response or loss of stability. Worst case is when the amplifier is  
used as a unity gain follower. Figure 6 and Figure 8 show the  
pulse response of the AD824 as a unity gain follower driving  
220 pF. Configurations with less loop gain, and as a result less  
loop bandwidth, will be much less sensitive to capacitance load  
effects. Noise gain is the inverse of the feedback attenuation  
factor provided by the feedback network in use.  
10µs  
1V  
100  
90  
+V  
S
10  
GND 0%  
1V  
(b)  
5V  
Figure 31 shows a method for extending capacitance load drive  
capability for a unity gain follower. With these component  
values, the circuit drives 5,000 pF with a 10% overshoot.  
R
P
V
IN  
V
OUT  
+V  
S
0.01µF  
8
100Ω  
Figure 30. (a) Response with RP = 0; VIN from 0 V to +VS;  
(b) VIN = −200 V to + VS + 200 mV; VOUT = 0 V to + VS; RP = 49.9 kΩ  
1/4  
AD824  
V
IN  
V
OUT  
0.01µF  
4
Because the input stage uses n-channel JFETs, input current  
during normal operation is positive; the current flows out from  
the input terminals. If the input voltage is driven more positive  
than +VS − 0.4 V, the input current reverses direction as internal  
device junctions become forward biased. This is illustrated in  
Figure 10.  
C
L
–V  
S
20pF  
20kΩ  
Figure 31. Extending Unity Gain Follower Capacitive Load Capability  
Beyond 350 pF  
Use a current-limiting resistor in series with the input of the  
AD824 if there is a possibility of the input voltage exceeding the  
Rev. E | Page 12 of 16  
 
 
 
 
 
Data Sheet  
AD824  
APPLICATIONS INFORMATION  
SINGLE SUPPLY VOLTAGE-TO-FREQUENCY  
CONVERTER  
Table 6. AD824 In Amp Performance  
Parameter  
VS = 3 V, 0 V  
VS = 5 V  
80 dB  
The circuit shown in Figure 32 uses the AD824 to drive a low  
power timer, which produces a stable pulse of width, t1. The  
positive going output pulse is integrated by R1 and C1 and used  
as one input to the AD824, which is connected as a differential  
integrator. The other input (nonloading) is the unknown  
voltage, VIN. The AD824 output drives the timer trigger input,  
closing the overall feedback loop.  
CMRR  
74 dB  
Common-Mode Voltage Range −0.2 V to +2 V −5.2 V to +4 V  
3 dB BW  
G = 10  
G = 100  
180 kHz  
18 kHz  
180 kHz  
18 kHz  
tSETTLING  
2 V Step (VS = 0 V, 3 V)  
5 V (VS = 5 V)  
Noise @ f = 1 kHz  
G = 10  
2 μs  
10V  
5 μs  
U4  
REF02  
C5  
0.1µF  
2
270 nV/√Hz  
2.2 μV/√Hz  
270 nV/√Hz  
2.2 μV/√Hz  
V
= 5V  
REF  
6
5
G = 100  
CMOS  
74HCO4  
R
**  
OUT2  
OUT1  
3
SCALE  
10kΩ  
C3  
0.1µF  
4
U3B  
4
U3A  
2
5µs  
3
1
U2  
CMOS 555  
100  
90  
R2  
4
8
V+  
U1  
R3*  
C1  
0.01µF  
2%  
499kΩ  
R
116kΩ  
1%  
6
THR  
3
5
OUT  
CV  
R1  
1/4  
2
7
499kΩ  
TR  
AD824  
1%  
10  
DIS  
C6  
390pF  
5%  
0%  
GND  
0V TO 2.5V  
FULL SCALE  
1
1V  
(NPO)  
C4  
C2  
0.01µF  
2%  
0.1µF  
Figure 33. Pulse Response of In Amp to a 500 mV p-p Input Signal;  
VS = 5 V, 0 V; Gain = 10  
NOTES  
f
= V /(V × t ), t = 1.1 × R3 × C6 = 25kHz f AS SHOWN.  
OUT  
IN REF 1 1 S  
R1  
90kΩ  
R2  
9kΩ  
R3  
1kΩ  
R4  
1kΩ  
R5  
9kΩ  
R6  
90kΩ  
OHMTEK  
PART #1043  
* = 1% METAL FILM, <50ppm/°C TC  
** = 10%, 20T FILM, <100ppm/°C TC  
t
V
REF  
= 33µs FOR f  
= 20kHz @ V = 2.0V  
1
OUT  
IN  
Figure 32. Single Supply Voltage-to-Frequency Converter  
G = 10  
G = 100 G = 100  
G = 10  
Typical AD824 bias currents of 2 pA allow MΩ range source  
impedances with negligible dc errors. Linearity errors of 0.01%  
full scale can be achieved with this circuit. This performance is  
obtained with a 5 V single supply, which delivers less than 3 mA  
to the entire circuit.  
+V  
S
0.1µF  
2
3
6
1/4  
AD824  
1/4  
AD824  
1
7
R
1kΩ  
P
V
5
OUT  
V
V
IN1  
11  
R
1kΩ  
P
SINGLE SUPPLY PROGRAMMABLE GAIN  
INSTRUMENTATION AMPLIFIER  
IN2  
R6  
(G = 10) V  
(G = 10) V  
= (V  
= (V  
– V )(1 +  
IN2  
) + V  
REF  
OUT  
IN1  
R4 + R5  
The AD824 can be configured as a single supply instrumenta-  
tion amplifier that is able to operate from single supplies down  
to 5 V or dual supplies up to 1 5 V. AD824 FET inputs bias  
currents of 2 pA minimize offset errors caused by high  
unbalanced source impedances.  
R5 + R6  
R4  
– V )(1 +  
IN2  
) + V  
REF  
OUT  
IN1  
FOR R1 = R6, R2 = R5 AND R3 = R4  
Figure 34. A Single Supply Programmable Instrumentation Amplifier  
An array of precision thin-film resistors sets the in amp gain to  
be either 10 or 100. These resistors are laser-trimmed to ratio  
match to 0.01% and have a maximum differential TC of  
5 ppm/°C.  
Rev. E | Page 13 of 16  
 
 
 
 
AD824  
Data Sheet  
3 V, SINGLE SUPPLY STEREO HEADPHONE DRIVER  
LOW DROPOUT BIPOLAR BRIDGE DRIVER  
The AD824 exhibits good current drive and THD + N  
performance, even at 3 V single supplies. At 1 kHz, total  
harmonic distortion plus noise (THD + N) equals −62 dB  
(0.079%) for a 300 mV p-p output signal. This is comparable  
to other single supply op amps that consume more power and  
cannot run on 3 V power supplies.  
The AD824 can be used for driving a 350 Ω Wheatstone bridge.  
Figure 36 shows one half of the AD824 being used to buffer the  
AD589a 1.235 V low power reference. The output of 4.5 V  
can be used to drive an ADC front end. The other half of the  
AD824 is configured as a unity-gain inverter and generates the  
other bridge input of –4.5 V. Resistors R1 and R2 provide a  
constant current for bridge excitation. The AD620 low power  
instrumentation amplifier is used to condition the differential  
output voltage of the bridge. The gain of the AD620 is pro-  
grammed using an external resistor RG and determined by:  
In Figure 35, each channels input signal is coupled via a 1 µF  
Mylar capacitor. Resistor dividers set the dc voltage at the  
noninverting inputs so that the output voltage is midway  
between the power supplies (1.5 V). The gain is 1.5. Each half of  
the AD824 can then be used to drive a headphone channel. A  
5 Hz high-pass filter is realized by the 500 µF capacitors and the  
headphones, which can be modeled as 32 Ω load resistors to  
ground. This ensures that all signals in the audio frequency  
range (20 Hz to 20 kHz) are delivered to the headphones.  
3V  
49.4 k Ω  
G =  
+1  
RG  
+V  
S
49.9kΩ  
R1  
20Ω  
+1.235V  
1/4  
AD824  
TO ADC  
REFERENCE INPUT  
0.1µF  
0.1µF  
AD589  
95.3kΩ  
47.5kΩ  
1µF  
MYLAR  
CHANNEL 1  
26.4kΩ, 1%  
350Ω  
+V  
S
1/4  
AD824  
10kΩ  
1%  
350Ω  
500µF  
3
7
6
R
AD824  
350Ω  
350Ω  
95.3kΩ  
G
L
4.99kΩ  
5
10kΩ  
2
10kΩ  
1%  
4
HEADPHONES  
32Ω IMPEDANCE  
V
REF  
10kΩ  
1%  
10kΩ  
–V  
S
R
1/4  
AD824  
+V  
S
+5V  
–5V  
–4.5V  
4.99kΩ  
1/4  
0.1µF  
GND  
0.1µF  
1µF  
1µF  
R2  
20Ω  
1µF  
MYLAR  
47.5kΩ  
AD824  
–V  
S
500µF  
CHANNEL 2  
–V  
S
Figure 36. Low Dropout Bipolar Bridge Driver  
Figure 35. 3 Volt Single Supply Stereo Headphone Driver  
Rev. E | Page 14 of 16  
 
 
 
 
Data Sheet  
AD824  
A design consideration in sample-and-hold circuits is voltage  
A 3.3 V/5 V PRECISION SAMPLE-AND-HOLD  
AMPLIFIER  
droop at the output caused by op amp bias and switch leakage  
currents. By choosing an JFET op amp and a low leakage CMOS  
switch, this design minimizes droop rate error to better than  
0.1 µV/µs in this circuit. Higher values of CH will yield a lower  
droop rate. For best performance, CH and C2 should be  
polystyrene, polypropylene or Teflon capacitors.  
In battery-powered applications, low supply voltage operational  
amplifiers are required for low power consumption. Also, low  
supply voltage applications limit the signal range in precision  
analog circuitry. Circuits like the sample-and-hold circuit  
shown in Figure 37 illustrate techniques for designing precision  
analog circuitry in low supply voltage applications. To maintain  
high signal-to-noise ratios (SNRs) in a low supply voltage  
application requires the use of rail-to-rail, input/output  
operational amplifiers. This design highlights the ability of the  
AD824 to operate rail-to-rail from a single 3 V/5 V supply, with  
the advantages of high input impedance. The AD824, a quad  
JFET-input op amp, is well suited to sample-and-hold circuits  
due to its low input bias currents (3 pA, typical) and high input  
impedances (3 × 1013 Ω, typical). The AD824 also exhibits very  
low supply currents so the total supply current in this circuit is  
less than 2.5 mA.  
These types of capacitors exhibit low leakage and low dielectric  
absorption. Additionally, 1% metal film resistors were used  
throughout the design.  
In the sample mode, SW1 and SW4 are closed, and the output is  
V
OUT = −VIN. The purpose of SW4, which operates in parallel  
with SW1, is to reduce the pedestal, or hold step, error by  
injecting the same amount of charge into the noninverting  
input of A3 that SW1 injects into the inverting input of A3. This  
creates a common-mode voltage across the inputs of A3 and is  
then rejected by the CMR of A3; otherwise, the charge injection  
from SW1 creates a differential voltage step error that appears at  
3.3V/5V  
3.3V/5V  
V
OUT. The pedestal error for this circuit is less than 2 mV over  
0.1µF  
the entire 0 V to 3.3 V/5 V signal range. Another method of  
reducing pedestal error is to reduce the pulse amplitude applied  
to the control pins. To control the ADG513, only 2.4 V are  
required for the on state and 0.8 V for the off state. If possible,  
use an input control signal whose amplitude ranges from 0.8 V  
to 2.4 V instead of a full range 0 V to 3.3 V/5 V for minimum  
pedestal error.  
R1  
50kΩ  
AD824  
3
4
1
A1  
2
R2  
50kΩ  
FALSE GROUND (FG)  
11  
R4  
2kΩ  
3.3V/5V  
13  
ADG513  
15  
SW2  
14  
16  
9
R5  
2kΩ  
Other circuit features include an acquisition time of less than  
3 µs to 1%; reducing CH and C2 will speed up the acquisition  
time further, but an increased pedestal error will result. Settling  
time is less than 300 ns to 1%, and the sample-mode signal BW  
is 80 kHz.  
11  
10  
SW3  
AD824  
5
FG  
10  
CH  
500pF  
7
2
3
A2  
6
SW1  
1
8
8
A3  
+
9
The ADG513 was chosen for its ability to work with 3 V/5 V  
supplies and for having normally open and normally closed  
precision CMOS switches on a dielectrically isolated process.  
SW2 is not required in this circuit; however, it was used in  
parallel with SW3 to provide a lower RON analog switch.  
V
OUT  
7
6
5
AD824  
SW4  
C2  
500pF  
AD824  
12  
4
FG  
14  
A4  
13  
SAMPLE/  
HOLD  
FG  
Figure 37. 3.3 V/5.5 V Precision Sample-and-Hold Circuit  
In many single supply applications, the use of a false ground  
generator is required. In this circuit, R1 and R2 divide the  
supply voltage symmetrically, creating the false ground voltage  
at one-half the supply. Amplifier A1 then buffers this voltage  
creating a low impedance output drive. The sample-and-hold  
circuit is configured in an inverting topology centered around  
this false ground level.  
Rev. E | Page 15 of 16  
 
 
AD824  
Data Sheet  
OUTLINE DIMENSIONS  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 38. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-14)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
AD824AR-14  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
14-Lead Standard Small Outline Package [SOIC_N]  
14-Lead Standard Small Outline Package [SOIC_N]  
14-Lead Standard Small Outline Package [SOIC_N]  
14-Lead Standard Small Outline Package [SOIC_N]  
14-Lead Standard Small Outline Package [SOIC_N]  
14-Lead Standard Small Outline Package [SOIC_N]  
14-Lead Standard Small Outline Package [SOIC_N]  
14-Lead Standard Small Outline Package [SOIC_N]  
14-Lead Standard Small Outline Package [SOIC_N]  
14-Lead Standard Small Outline Package [SOIC_N]  
AD824AR-14-3V  
AD824AR-14-3V-REEL  
AD824AR-14-REEL  
AD824AR-14-REEL7  
AD824ARZ-14  
AD824ARZ-14-3V  
AD824ARZ-14-3V-RL  
AD824ARZ-14-REEL  
AD824ARZ-14-REEL7  
R-14  
R-14  
1 Z = RoHS Compliant Part.  
©2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00875-0-4/15(E)  
Rev. E | Page 16 of 16  
 
 

相关型号:

AD824AR-14-REEL

Single Supply, Rail-to-Rail Low Power, FET-Input Quad Op Amp
ADI

AD824AR-14-REEL7

QUAD OP-AMP, 4000uV OFFSET-MAX, 2MHz BAND WIDTH, PDSO14, PLASTIC, SOIC-14
ROCHESTER

AD824AR-16

Single Supply, Rail-to-Rail Low Power, FET-Input Op Amp
ADI

AD824AR-16-REEL

QUAD OP-AMP, 4000uV OFFSET-MAX, 2MHz BAND WIDTH, PDSO16, PLASTIC, SOIC-16
ROCHESTER

AD824AR-16-REEL

IC QUAD OP-AMP, 4000 uV OFFSET-MAX, 2 MHz BAND WIDTH, PDSO16, PLASTIC, SOIC-16, Operational Amplifier
ADI

AD824AR-3V

Single Supply, Rail-to-Rail Low Power, FET-Input Op Amp
ADI

AD824ARZ-14

Single Supply, Rail-to-Rail Low Power, FET-Input Op Amp
ADI

AD824ARZ-14

QUAD OP-AMP, 4000uV OFFSET-MAX, 2MHz BAND WIDTH, PDSO14, PLASTIC, SOIC-14
ROCHESTER

AD824ARZ-14-3V

Single Supply, Rail-to-Rail Low Power, FET-Input Quad Op Amp
ADI

AD824ARZ-14-3V

QUAD OP-AMP, 4000uV OFFSET-MAX, 2MHz BAND WIDTH, PDSO14, PLASTIC, SOIC-14
ROCHESTER

AD824ARZ-14-3V-RL

Single Supply, Rail-to-Rail Low Power, FET-Input Quad Op Amp
ADI

AD824ARZ-14-REEL7

Single Supply, Rail-to-Rail Low Power, FET-Input Op Amp
ADI