AD8264 [ADI]

Quad, 235 MHz, DC-Coupled VGA and Differential Output Amplifier; 四, 235兆赫,直流耦合VGA和差分输出放大器
AD8264
型号: AD8264
厂家: ADI    ADI
描述:

Quad, 235 MHz, DC-Coupled VGA and Differential Output Amplifier
四, 235兆赫,直流耦合VGA和差分输出放大器

放大器
文件: 总40页 (文件大小:1139K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad, 235 MHz, DC-Coupled VGA  
and Differential Output Amplifier  
AD8264  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
COMM  
VPOS  
VNEG  
Low noise  
OPP1  
Voltage noise: 2.3 nV/√Hz  
Current noise: 2 pA/√Hz  
Wide bandwidth  
Small signal: 235 MHz (VGAx); 80 MHz (differential output  
amplifier)  
Large signal: 80 MHz (1 V p-p)  
Gain range  
0 to 24 dB (input to VGA output)  
6 to 30 dB (input to differential output)  
Gain scaling: 20 dB/V  
DC-coupled  
Single-ended input and differential output  
Supplies: 2.5 V to 5 V  
VGA1  
VOL1  
+
IPP1  
IPN1  
PrA  
6dB  
ATTENUATOR  
–24dB TO 0dB  
+
18dB  
6dB  
VOH1  
OFS1  
GNH1  
+
CH1 GAIN  
CONTROL  
OPP2  
IPP2  
IPN2  
VGA2  
VOL2  
+
PrA  
6dB  
ATTENUATOR  
–24dB TO 0dB  
+
18dB  
18dB  
18dB  
6dB  
VOH2  
OFS2  
GNH2  
+
CH2 GAIN  
CONTROL  
OPP3  
IPP3  
IPN3  
VGA3  
VOL3  
+
PrA  
6dB  
ATTENUATOR  
–24dB TO 0dB  
+
6dB  
Low power: 140 mW per channel @ 3.3 V  
VOH3  
OFS3  
GNH3  
+
CH3 GAIN  
CONTROL  
APPLICATIONS  
OPP4  
IPP4  
VGA4  
VOL4  
Multichannel data acquisition  
Positron emission tomography  
Gain trim  
Industrial and medical ultrasound  
Radar receivers  
+
ATTENUATOR  
–24dB TO 0dB  
PrA  
6dB  
+
6dB  
IPN4  
VOH4  
OFS4  
GNH4  
+
CH4 GAIN  
CONTROL  
VOCM  
GNLO  
Figure 1.  
GENERAL DESCRIPTION  
The AD8264 is a 4-channel, linear-in-dB, general-purpose  
variable gain amplifier (VGA) with a preamplifier (preamp),  
and a flexible differential output buffer. Intended for a broad  
range of applications, dc coupling combined with wide band-  
width makes this amplifier a very good pulse processor.  
The gain of each channel is adjusted independently, and all  
channels are referenced to a single pin, GNLO. Combined with  
a multi-output, digital-to-analog converter (DAC), each section  
of the AD8264 can be used for active calibration or as a trim  
amplifier.  
Each channel includes a single-ended input preamp/VGA  
section to preserve the wide bandwidth and fast slew rate for low-  
distortion pulse applications. A 6 dB differential output buffer  
with common-mode and offset adjustments enable direct coupling  
to most modern high speed analog-to-digital converters (ADCs),  
using the converter reference output for perfect dc matching levels.  
The gain range of the VGA section is 24 dB. Operation from  
a dual polarity power supply enables amplification of negative  
voltage pulses that are generated by current-sinking pulses into  
a grounded load, such as is typical of photodiodes or photo-  
multiplier tubes (PMT). Delay-free processing of wide-band  
video signals is also possible. The differential output amplifier  
permits convenient level shifting and interfacing to single-  
supply ADCs using the VOCM and OFSx pins.  
The −3 dB bandwidth of the preamp/VGA is dc to 235 MHz,  
and the bandwidth of the differential driver is 80 MHz. The  
floating gain control interface provides a precise linear-in-dB scale  
of 20 dB/V and is easy to interface to a variety of external circuits.  
The AD8264 is available in a 40-lead, 6 mm × 6 mm LFCSP  
with an operating temperature range of −40°C to +105°C.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
AD8264  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 28  
Overview ..................................................................................... 28  
Preamp......................................................................................... 28  
VGA ............................................................................................. 28  
Post Amplifier............................................................................. 29  
Noise ............................................................................................ 29  
Applications Information.............................................................. 30  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
Maximum Power Dissipation ..................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Test Circuits..................................................................................... 20  
A Low Channel Count Application Concept Using a Discrete  
Reference ..................................................................................... 30  
A DC Connected Concept Example........................................ 31  
Evaluation Board ............................................................................ 34  
Connecting and Using the AD8264-EVALZ.......................... 34  
Outline Dimensions....................................................................... 38  
Ordering Guide .......................................................................... 38  
REVISION HISTORY  
5/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 40  
 
AD8264  
SPECIFICATIONS  
VS = 2.5 V, TA = 25°C, f = 10 MHz, CL = 5 pF, RL = 500 Ω per output (VGAx, VOHx, VOLx), VGAIN = (VGNHx − VGNLO) = 0 V,  
VOCM = GND, VOFSx = GND, gain range = 6 dB to 30 dB, unless otherwise specified.  
V
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
GENERAL PERFORMANCE  
–3 dB Small Signal Bandwidth (VGAx)  
–3 dB Large Signal Bandwidth (VGAx)  
–3 dB Small Signal Bandwidth (Differential Output)1 VOUT = 100 mV p-p  
–3 dB Large Signal Bandwidth (Differential Output)1 VOUT = 2 V p-p  
VOUT = 10 mV p-p  
VOUT = 1 V p-p  
235  
150  
80  
MHz  
MHz  
MHz  
MHz  
V/μs  
V/μs  
V/μs  
V/μs  
μA  
80  
Slew Rate  
VGAx, VOUT = 2 V p-p  
VGAx, VOUT = 1 V p-p  
Differential output, VOUT = 2 V p-p  
Differential output, VOUT = 1 V p-p  
Pins IPPx  
380  
290  
470  
220  
−5  
Input Bias Current  
−8  
−3  
Input Resistance  
Input Capacitance  
Pins IPPx at dc; ΔVIN/ΔIBIAS  
Pins IPPx  
4.2  
2
MΩ  
pF  
Input Impedance  
Pins IPPx at 10 MHz  
7.9  
kΩ  
Input Voltage Noise  
Input Current Noise  
Noise Figure (Differential Output)  
Output-Referred Noise (Differential Output)  
2.3  
2
9
72  
45  
3.5  
<1  
|VS| − 1.3  
|VS| − 1.3  
|VS| − 0.5  
|<1|  
|<5|  
|<10|  
nV/√Hz  
pA/√Hz  
dB  
nV/√Hz  
nV/√Hz  
Ω
Ω
V
V
V
VGAIN = 0.7 V, RS = 50 Ω, unterminated  
VGAIN = 0.7 V (Gain = 30 dB)  
VGAIN = −0.7 V (Gain = 6 dB)  
VGAx, dc to 10 MHz  
Differential output, dc to 10 MHz  
Preamp  
VGAx, RL ≥ 500 Ω  
Differential amplifier, RL ≥ 500 Ω per side  
Preamp offset  
Output Impedance  
Output Signal Range  
Output Offset Voltage  
−6  
−18  
−38  
+6  
+18  
+38  
mV  
mV  
mV  
VGAx offset, VGAIN = 0.7 V  
Differential output offset, VGAIN = 0.7 V  
DYNAMIC PERFORMANCE  
Harmonic Distortion  
VGAx = 1 V p-p, differential  
output = 2 V p-p (measured at VGAx)  
HD2  
HD3  
HD2  
HD3  
HD2  
HD3  
f = 1 MHz  
f = 10 MHz  
f = 35 MHz  
−73  
−68  
−71  
−61  
−60  
−53  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
VGAx = 1 V p-p, differential output = 2 V p-p  
(measured at differential output)  
HD2  
HD3  
HD2  
HD3  
HD2  
HD3  
f = 1 MHz  
f = 10 MHz  
f = 35 MHz  
−78  
−66  
−71  
−43  
−56  
−20  
7
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBm2  
dBm  
Input 1 dB Compression Point  
VGAIN = −0.7 V, f = 10 MHz  
VGAIN = +0.7 V, f = 10 MHz  
−9.6  
Rev. 0 | Page 3 of 40  
 
AD8264  
Parameter  
Conditions  
Min  
Typ  
−68  
−51  
−49  
−34  
32  
19  
23  
10  
30  
Max  
Unit  
dBc  
dBc  
dBc  
dBc  
dBm  
dBVRMS  
dBm  
dBVRMS  
dBm  
dBVRMS  
dBm  
dBVRMS  
Two-Tone Intermodulation Distortion (IMD3)  
VGAx = 1 V p-p, f1 = 10 MHz, f2 = 11 MHz  
VGAx = 1 V p-p, f1 = 35 MHz, f2 = 36 MHz  
VOUT = 2 V p-p, f1 = 10 MHz, f2 = 11 MHz  
VOUT = 2 V p-p, f1 = 35 MHz, f2 = 36 MHz  
VGAx = 1 V p-p, f = 10 MHz  
Output Third-Order Intercept  
VGAx = 1 V p-p, f = 35 MHz  
VOUT = 2 V p-p, f = 10 MHz  
VOUT = 2 V p-p, f = 35 MHz  
17  
21  
8
Overload Recovery  
VGAIN = 0.7 V, VIN stepped from  
0.1 V p-p to 1 V p-p  
1 MHz < f < 100 MHz, full gain range  
25  
ns  
ns  
Group Delay Variation  
ACCURACY  
Absolute Gain Error3  
1
−0.7 V < VGAIN < −0.6 V  
−0.6 V < VGAIN < −0.5 V  
−0.5 V < VGAIN < +0.5 V  
0.5 V < VGAIN < 0.6 V  
0
0.2 to 2  
0.35  
0.25  
0.35  
−0.2 to −2  
0.2  
3
dB  
−1.25  
−1  
−1.25  
−3  
+1.25 dB  
+1 dB  
+1.25 dB  
0.6 V < VGAIN < 0.7 V  
0
dB  
dB  
dB  
Gain Law Conformance4  
−0.5 V < VGAIN < +0.5 V, 2.5 V VS 5 V  
−0.5 V < VGAIN < +0.5 V, −40°C TA ≤ +105°C  
0.3  
Channel-to-Channel Matching  
Single IC, −0.5 V < VGAIN < +0.5 V,  
−40°C ≤ TA ≤ +105°C  
Multiple ICs, −0.5 V < VGAIN < +0.5 V,  
−40°C ≤ TA ≤ +105°C  
−0.5  
19.5  
0.1 to 0.25 +0.5  
dB  
dB  
0.25  
GAIN CONTROL INTERFACE  
Gain Scaling Factor  
Over Temperature  
Gain Range  
−0.5 V < VGAIN < +0.5 V  
−40°C TA ≤ +105°C  
20.0  
20.5  
dB/V  
dB/V  
dB  
20 0.5  
24  
Gain Intercept to VGAx  
Over Temperature  
Gain Intercept to Differential Output  
Over Temperature  
GNHx Input Voltage Range  
Input Resistance  
GNHx Input Bias Current  
Over Temperature  
11.5  
17.5  
−VS  
11.9  
11.9 0.4  
17.9  
12.2  
18.2  
+VS  
0
dB  
dB  
dB  
dB  
−40°C ≤ TA ≤ +105°C  
−40°C TA ≤ +105°C  
17.9 0.4  
GNLO = 0 V, no gain foldover  
ΔVIN/ΔIBIAS, −0.7 V < VGAIN < +0.7 V  
−0.7 V < VGAIN < 0.7 V  
−0.7 V < VGAIN < 0.7 V, −40°C ≤ TA ≤ +105°C  
−0.7 V < VGAIN < 0.7 V  
V
70  
−0.4  
−0.4 +0.2  
−1.2  
−1.2 +0.4  
200  
MΩ  
μA  
μA  
μA  
μA  
ns  
−0.9  
GNLO Input Bias Current  
Over Temperature  
Response Time  
−0.7 V < VGAIN < 0.7 V, −40°C ≤ TA ≤ +105°C  
24 dB gain change  
OUTPUT BUFFER  
VOCM Input Bias Current  
Over Temperature  
VOCM Input Voltage Range  
Gain (VGAx to Differential Output)  
Over Temperature  
0.3  
1.5  
1.5 0.3  
2.5  
nA  
nA  
V
dB  
dB  
−40°C ≤ TA ≤ +105°C  
OFSx = 0 V, VGAx = 0 V  
−1.4  
5.75  
+1.4  
6.25  
6
6
−40°C ≤ TA ≤ +105°C  
0.5  
Rev. 0 | Page 4 of 40  
AD8264  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
POWER SUPPLY  
Supply Voltage  
Power Consumption  
Quiescent Current  
2.5  
5
V
VS = 2.5 V  
VS = 2.5 V, −40°C ≤ TA ≤ +105°C  
VS = 3.3 V  
VS = 3.3 V, −40°C ≤ TA ≤ +105°C  
VS = 5 V  
VS = 5 V, −40°C ≤ TA ≤ +85°C5  
VS = 2.5 V  
65  
70  
81  
79  
79 25  
85  
85 30  
99  
99 30  
395  
560  
990  
−15  
−15  
88  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
mW  
mW  
dB  
95  
110  
Power Dissipation  
VS = 3.3 V  
VS = 5 V  
PSRR  
From VPOS to differential output, VGAIN = 0.7 V  
From VNEG to differential output, VGAIN = 0.7 V  
dB  
1 Differential Output = (VOHx − VOLx).  
2 All dBm values are calculated with 50 Ω reference, unless otherwise noted.  
3 Conformance to theoretical gain expression (see Equation 1 in the Theory of Operation section).  
4 Conformance to best-fit dB linear curve.  
5 For supplies greater than 3.3 V, the operating temperature range is limited to −40°C ≤ TA ≤ +85°C.  
Rev. 0 | Page 5 of 40  
 
 
AD8264  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages. The θJA  
values in Table 3 assume a 4-layer JEDEC standard board with  
zero airflow.  
Parameter  
Rating  
Voltage  
Supply Voltage (VPOS, VNEG)  
Input Voltage (INPx)  
Gain Voltage (GNHx, GNLO)  
Power Dissipation  
Temperature  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering, 60 sec)  
Package Glass Transition Temperature (TG)  
6 V  
VPOS, VNEG  
VPOS, VNEG  
2.5 W  
Table 3. Thermal Resistance  
Package Type  
40-Lead LFCSP1  
θJA  
θJC  
Unit  
31.0  
2.3  
°C/W  
−40°C to +105°C  
−65°C to +150°C  
300°C  
1 4-Layer JEDEC board (2S2P).  
MAXIMUM POWER DISSIPATION  
150°C  
The maximum safe power dissipation for the AD8264 is limited  
by the associated rise in junction temperature (TJ) on the die. At  
approximately 150°C, which is the glass transition temperature,  
the properties of the plastic change. Even temporarily exceeding  
this temperature limit may change the stresses that the package  
exerts on the die, permanently shifting the parametric performance  
of the amplifiers. Exceeding a temperature of 150°C for an  
extended period can cause changes in silicon devices, potentially  
resulting in a loss of functionality.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. 0 | Page 6 of 40  
 
 
 
AD8264  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
40 39 38 37 36 35 34 33 32 31  
IPN1  
VOL1  
VOH1  
VOH2  
VOL2  
VGA2  
VGA3  
VOL3  
VOH3  
VOH4  
VOL4  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
1
2
3
4
5
6
7
8
9
10  
OPP1  
OPP2  
IPN2  
IPP2  
PIN1  
INDICATOR  
AD8264  
TOP VIEW  
IPP3  
(Not to Scale)  
IPN3  
OPP3  
OPP4  
IPN4  
11 12 13 14 15 16 17 18 19 20  
NOTES  
1. EXPOSED PADDLE (PIN 0) NEEDS AN ELECTRICAL  
CONNECTION TO GROUND. FOR PROPER RF GROUNDING  
AND INCREASED RELIABILITY, THE PAD MUST BE  
CONNECTED TO THE GROUND PLANE.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
0 (EP), 12, 39  
COMM  
Ground. Exposed paddle (EP, Pin 0) needs an electrical connection to ground. For proper RF grounding  
and increased reliability, the pad must be connected to the ground plane.  
1, 4, 7, 10  
IPN1, IPN2,  
IPN3, IPN4  
Negative Preamp Inputs for Channel 1 Through Channel 4. Normally, no external connection is needed.  
2, 3, 8, 9  
OPP1, OPP2,  
OPP3, OPP4  
Preamp Output for Channel 1 Through Channel 4. This pin is internally connected to the attenuator  
(VGA) input, and normally, no external connection is needed.  
5, 6, 11, 40  
13, 14, 37, 38  
IPP1, IPP2,  
IPP3, IPP4  
GNH1, GNH2,  
GNH3, GNH4  
Positive Preamp Input for Channel 1 Through Channel 4. High impedance.  
Positive Gain Control Voltage Input for Channel 1 Through Channel 4. This pin is referenced to GNLO (Pin 36).  
15  
16, 35  
17, 34  
VOCM  
VPOS  
VNEG  
This pin sets the differential output amplifier (VOHx and VOLx) common-mode voltage.  
Positive Supply (Internally Tied Together).  
Negative Supply (Internally Tied Together).  
18, 19, 32, 33  
OFS1, OFS2,  
OFS3, OFS4  
Voltage sets the differential output offset for Channel 1 through Channel 4. This is the noninverting input  
to the differential amplifier, and it has the same bandwidth as the inverting input (VGAx).  
20, 25, 26, 31  
21, 24, 27, 30  
22, 23, 28, 29  
36  
VGA4, VGA3  
VGA2, VGA1  
VOL1, VOL2  
VOL3, VOL4  
VOH1, VOH2,  
VOH3, VOH4  
GNLO  
VGA Output for Channel 1 Through Channel 4.  
Negative Differential Amplifier Output for Channel 1 Through Channel 4.  
Positive Differential Amplifier Output for Channel 1 Through Channel 4.  
Negative Gain Control Input (Reference for GNHx Pins).  
Rev. 0 | Page 7 of 40  
 
AD8264  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 2.5 V, TA = 25°C, f = 10 MHz, CL = 5 pF, RL = 500 Ω per output (VGAx, VOHx, VOLx), VGAIN = (VGNHx − VGNLO) = 0 V,  
VVOCM = GND, VOFSx = GND, gain range = 6 dB to 30 dB, unless otherwise specified.  
140  
120  
100  
36  
30  
24  
18  
12  
6
V
= 0V  
MEAN: –0.1dB  
SD: 0.05dB  
–40°C  
–40°C  
+25°C  
+25°C  
+85°C  
+85°C  
+105°C  
+105°C  
GAIN  
DIFFERENTIAL  
OUTPUT  
80  
60  
40  
20  
0
VGA  
0
–6  
–0.7  
–0.6  
–0.4  
–0.2  
0
0.2  
0.4  
–0.5  
–0.3  
–0.1  
0.1  
(V)  
0.3  
0.5  
0.7  
0.7  
0.7  
GAIN ERROR (dB)  
V
GAIN  
Figure 6. VGA Absolute Gain Error Histogram  
Figure 3. Gain vs. VGAIN vs. Temperature  
2.0  
MEAN: 20.1dB  
SD: 0.09dB  
T
T
T
= +105°C  
= +25°C  
= –40°C  
A
A
A
180  
1.5  
1.0  
MAX  
MIN  
150  
120  
90  
60  
30  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
19.0  
19.5  
20.0  
20.5  
21.0  
–0.7  
–0.5  
–0.3  
–0.1  
0.1  
(V)  
0.3  
0.5  
GAIN SCALING (dB/V)  
V
GAIN  
Figure 7. Gain Scale Factor Histogram (−0.4 V < VGAIN < +0.4 V)  
Figure 4. Gain Error vs. VGAIN vs. Temperature  
2
1
MEAN: 11.9dB  
SD: 0.08dB  
1MHz  
10MHz  
70MHz  
100MHz  
150MHz  
80  
60  
40  
20  
0
0
–1  
–2  
–3  
–4  
11.7  
11.8  
11.9  
12.0  
12.1  
–0.7  
–0.5  
–0.3  
–0.1  
0.1  
(V)  
0.3  
0.5  
GAIN INTERCEPT (dB)  
V
GAIN  
Figure 5. Gain Error vs. VGAIN at Various Frequencies to VGAx  
Figure 8. VGA Gain Intercept Histogram  
Rev. 0 | Page 8 of 40  
 
 
 
 
AD8264  
700  
600  
500  
400  
300  
200  
100  
0
30  
20  
V
= 0.1V p-p  
CH 1 TO CH 2  
CH 1 TO CH 3  
CH 1 TO CH 4  
V
= 0V  
OUT  
GAIN  
10  
0
–10  
–20  
–30  
–40  
C
C
C
= 0pF  
= 10pF  
= 22pF  
L
L
L
–0.5 –0.4 –0.3 –0.2 –0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
100k  
1M  
10M  
100M  
500M  
GAIN ERROR MATCHING (dB)  
FREQUENCY (Hz)  
Figure 9. Channel-to-Channel Gain Match Histogram  
Figure 12. Frequency Response to Differential Output for  
Various Capacitive Loads  
30  
24  
18  
12  
6
30  
P
= –28dBm  
V
= 0.1V p-p  
IN  
OUT  
20  
10  
0
–10  
–20  
–30  
–40  
0
V
V
V
V
V
V
V
= +0.7V  
= +0.5V  
= +0.2V  
= 0V  
= –0.2V  
= –0.5V  
= –0.7V  
GAIN  
GAIN  
GAIN  
GAIN  
GAIN  
GAIN  
GAIN  
–6  
–12  
–18  
C
C
C
= 0pF  
= 10pF  
= 22pF  
L
L
L
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 10. Frequency Response vs. Gain to VGAx for  
Various Values of VGAIN  
Figure 13. Frequency Response to Differential Output for  
Various Capacitive Loads with Series R = 10 Ω  
40  
30  
20  
P
= –44dBm  
V
= 0.1V p-p  
OUT  
IN  
10  
20  
10  
0
0
–10  
–20  
–30  
–10  
–20  
–30  
–40  
V
= +0.7V  
GAIN  
GAIN  
GAIN  
GAIN  
GAIN  
GAIN  
GAIN  
V
= +0.5V  
= +0.2V  
= 0V  
V
V
V
V
V
C
C
C
C
= 0pF  
L
L
L
L
= –0.2V  
= –0.5V  
= –0.7V  
= 10pF  
= 22pF  
= 47pF  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
500M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 14. Small Signal Frequency Response to VGAx for  
Various Capacitive Loads  
Figure 11. Frequency Response vs. Gain to Differential Output for  
Various Values of VGAIN  
Rev. 0 | Page 9 of 40  
 
 
 
 
 
AD8264  
20  
P
30  
24  
18  
12  
6
V
= 0.1V p-p  
= –10dBm  
OUT  
IN  
V
= +0.7V  
= 0V  
GAIN  
10  
0
V
GAIN  
V
= –0.7V  
GAIN  
–10  
–20  
–30  
0
–6  
–12  
–18  
C
C
C
C
= 47pF  
= 22pF  
= 9pF  
L
L
L
L
V
V
V
= ±5V  
= ±3.3V  
= ±2.5V  
S
S
S
= 0pF  
100k  
1M  
10M  
100M  
500M  
100k  
1M  
10M  
100M  
500M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 15. Large Signal Frequency Response to VGAx for  
Various Capacitive Loads  
Figure 18. Small Signal Frequency Response vs. Gain to VGAx for  
Various Supply Voltages  
20  
10  
40  
P
= –28dBm  
V
= 0.1V p-p  
OUT  
IN  
V
= +0.7V  
= 0V  
GAIN  
30  
20  
V
V
GAIN  
GAIN  
10  
= –0.7V  
0
0
–10  
–20  
–30  
–10  
–20  
–30  
–40  
C
= 47pF  
L
V
V
V
= ±5V  
= ±3.3V  
= ±2.5V  
C
C
C
= 22pF  
= 10pF  
= 0pF  
S
S
S
L
L
L
100k  
1M  
10M  
100M  
500M  
100k  
1M  
10M  
100M  
500M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 16. Small Signal Frequency Response to VGAx for  
Various Capacitive Loads with Series R = 10 Ω  
Figure 19. Small Signal Frequency Response vs. Gain to Differential Output  
for Various Supply Voltages  
20  
10  
36  
P
= –8dBm  
V
V
= 0.1V p-p  
= 0.7V  
IN  
OUT  
DIFFERENTIAL  
OUTPUT  
GAIN  
30  
24  
18  
12  
6
VGA  
0
–10  
–20  
–30  
V
V
V
V
V
V
= ±5V  
S
S
S
S
S
S
= ±3.3V  
= ±2.5V  
= ±5V  
C
= 47pF  
= 22pF  
= 10pF  
= 0pF  
L
L
L
L
0
C
C
C
= ±3.3V  
= ±2.5V  
–6  
100k  
100k  
1M  
10M  
100M  
500M  
1M  
10M  
100M  
500M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Large Signal Frequency Response to VGAx for  
Various Capacitive Loads with Series R = 10 Ω  
Figure 20. Large Signal Frequency Response to VGAx and  
Differential Output for Various Supply Voltages  
Rev. 0 | Page 10 of 40  
 
 
AD8264  
5
4
3
2
1
0
1
0
P
= –16dBm  
IN  
V
= 0V  
GAIN  
V
= –0.7V  
= +0.7V  
–1  
–2  
–3  
GAIN  
V
GAIN  
V
= ±2.5V, VOHx  
S
S
S
S
S
S
V
V
V
V
V
= ±3.3V, VOHx  
= ±5V, VOHx  
= ±2.5V, VOLx  
= ±3.3V, VOLx  
= ±5V, VOLx  
1M  
10M  
100M  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
FREQUENCY (Hz)  
Figure 21. Frequency Response from VOCM to VOHx and VOLx for  
Various Supplies  
Figure 24. Group Delay vs. Frequency to VGAx  
8
7
6
5
4
3
2
9
V
= 0.1V p-p  
OUT  
3
–3  
V
V
= –0.7V  
= +0.7V  
GAIN  
GAIN  
V
= 0V  
GAIN  
–9  
–15  
V
V
V
= ±5V  
= ±3.3V  
= ±2.5V  
S
S
S
–21  
100k  
1M  
10M  
100M  
1M  
10M  
100M  
500M  
(Hz)  
CY  
EN  
QU  
FRE  
FREQUENCY (Hz)  
Figure 22. Frequency Response from OFSx to Differential Output for  
Various Supply Voltages  
Figure 25. Group Delay vs. Frequency to Differential Output  
15  
10  
5
12  
P
= –22dBm  
T
T
T
= +105°C  
= +25°C  
= –40°C  
IN  
A
A
A
MAX  
MIN  
6
0
0
–6  
–5  
–10  
V
V
V
= ±2.5V  
= ±3.3V  
= ±5V  
S
S
S
–12  
100k  
–0.7  
–0.5  
–0.3  
–0.1  
V
0.1  
(V)  
0.3  
0.5  
0.7  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
GAIN  
Figure 23. Preamp Frequency Response to OPPx  
Figure 26. Differential Output Offset Voltage vs. VGAIN vs. Temperature  
Rev. 0 | Page 11 of 40  
 
 
 
AD8264  
10  
T
100  
10  
1
= +105°C  
= +25°C  
= –40°C  
A
A
A
T
T
MAX  
MIN  
5
0
V
= ±2.5V  
S
V
= ±5V  
S
–5  
0.1  
0.1  
–10  
–0.7  
–0.5  
–0.3  
–0.1  
V
0.1  
(V)  
0.3  
0.5  
0.7  
1
10  
FREQUENCY (MHz)  
100  
IN  
GA  
Figure 27. VGAx Output Offset Voltage vs. VGAIN vs. Temperature  
Figure 30. Output Resistance (VOHx, VOLx) vs.Frequency  
3000  
10  
V
V
V
= –0.4V  
= 0V  
= +0.4V  
GAIN  
GAIN  
GAIN  
2500  
2000  
1500  
1000  
500  
V
= ±5V  
S
V
= ±2.5V  
S
0
–30  
1
0.1  
–20  
–10  
0
10  
20  
30  
1
10  
FREQUENCY (MHz)  
100  
OUTPUT OFFSET VOLTAGE (mV)  
Figure 28. Output Offset Histogram to VGAx  
Figure 31. Output Resistance (VGAx) vs. Frequency  
800  
700  
600  
500  
400  
300  
200  
100  
0
100  
80  
60  
40  
20  
0
V
V
V
= –0.4V  
= 0V  
GAIN  
GAIN  
GAIN  
= +0.4V  
DIFFERENTIAL OUTPUT  
VGAx  
–30  
–20  
–10  
0
10  
20  
30  
–0.7  
–0.5  
–0.3  
–0.1  
0.1  
(V)  
0.3  
0.5  
0.7  
OUTPUT OFFSET VOLTAGE (mV)  
V
GAIN  
Figure 29. Output Offset Histogram to Differential Output  
Figure 32. Output Referred Noise to VGAx and Differential Output vs. VGAIN  
Rev. 0 | Page 12 of 40  
 
 
 
AD8264  
100  
10  
1
35  
30  
25  
20  
15  
10  
5
DIFFERENTIAL OUTPUT  
(TERMINATED)  
VGAx (TERMINATED)  
DIFFERENTIAL OUTPUT  
VGAx (UNTERMINATED)  
VGAx  
DIFFERENTIAL OUTPUT  
(UNTERMINATED)  
–0.7  
–0.5  
–0.3  
–0.1  
V
0.1  
(V)  
0.3  
0.5  
0.7  
–0.7  
–0.5  
–0.3  
–0.1  
V
0.1  
(V)  
0.3  
0.5  
0.7  
GAIN  
GAIN  
Figure 33. Input Referred Noise from VGAx and Differential Output vs. VGAIN  
Figure 36. Noise Figure vs. VGAIN  
100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
10  
DIFFERENTIAL OUTPUT  
VGAx  
1
1
100  
1k  
10k  
100k  
1M  
10M  
100M  
0.1  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (Hz)  
Figure 34. Input Referred Noise vs. Frequency at Maximum Gain  
Figure 37. VOCM Common-Mode Rejection Ratio vs. Frequency  
100  
30  
HD2, V = ±2.5V  
S
HD3, V = ±2.5V  
S
HD2, V = ±5V  
S
40  
50  
60  
70  
80  
90  
HD3, V = ±5V  
S
10  
DIFFERENTIAL OUTPUT  
VGAx  
1
1
10  
100  
1k  
10k  
0
400  
800  
1200  
()  
1600  
2000  
R
()  
R
LOAD  
SOURCE  
Figure 35. Input Referred Noise vs. RSOURCE  
Figure 38. Harmonic Distortion to VGAx vs. RLOAD and Various Supplies  
Rev. 0 | Page 13 of 40  
 
 
 
 
AD8264  
30  
40  
50  
60  
70  
80  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
HD2, V = ±2.5V  
S
HD3, V = ±2.5V  
S
HD2, V = ±5V  
S
HD3, V = ±5V  
S
1MHz  
10MHz  
35MHz  
100MHz  
90  
0
10  
20  
30  
(pF)  
40  
50  
–0.7  
–0.5  
–0.3  
–0.1  
0.1  
(V)  
0.3  
0.5  
0.7  
0.7  
0.7  
C
V
GAIN  
LOAD  
Figure 39. Harmonic Distortion to VGAx vs. CLOAD  
Figure 42. HD2 vs. VGAIN vs. Frequency to VGAx  
20  
30  
40  
50  
60  
70  
80  
90  
30  
40  
50  
60  
70  
80  
HD2, V = ±2.5V  
S
HD3, V = ±2.5V  
S
HD2, V = ±5V  
S
HD3, V = ±5V  
S
1MHz  
10MHz  
35MHz  
100MHz  
90  
–0.7  
–0.5  
–0.3  
–0.1  
V
0.1  
(V)  
0.3  
0.5  
0
400  
800  
1200  
()  
1600  
2000  
R
GAIN  
LOAD  
Figure 43. HD3 vs. VGAIN vs. Frequency to VGAx  
Figure 40. Harmonic Distortion to Differential Output vs.  
LOAD and Various Supplies  
R
30  
40  
50  
60  
70  
80  
90  
30  
40  
50  
60  
70  
80  
90  
VGAx = 0.5Vp-p  
VGAx = 1Vp-p  
VGAx = 2Vp-p  
HD2, V = ±2.5V  
S
HD3, V = ±2.5V  
S
INPUT LIMITED  
–0.7  
–0.5  
–0.3  
–0.1  
V
0.1  
(V)  
0.3  
0.5  
0
10  
20  
30  
(pF)  
40  
50  
C
GAIN  
LOAD  
Figure 44. HD2 vs. Amplitude to VGAx  
Figure 41. Harmonic Distortion to Differential Output vs. CLOAD  
Rev. 0 | Page 14 of 40  
 
 
 
AD8264  
30  
40  
50  
60  
70  
80  
90  
30  
40  
50  
60  
70  
80  
90  
VGAx = 0.5V p-p  
VGAx = 1V p-p  
VGAx = 2V p-p  
V
V
V
= 0.5V p-p  
= 1V p-p  
= 2V p-p  
OUT  
OUT  
OUT  
INPUT LIMITED  
–0.7  
–0.5  
–0.3  
–0.1  
V
0.1  
(V)  
0.3  
0.5  
0.7  
–0.7  
–0.5  
–0.3  
–0.1  
V
0.1  
(V)  
0.3  
0.5  
0.7  
GAIN  
GAIN  
Figure 45. HD3 vs. Amplitude to VGAx  
Figure 48. HD2 vs. Amplitude to Differential Output  
30  
40  
50  
60  
70  
80  
90  
30  
40  
50  
60  
70  
80  
90  
1MHz  
10MHz  
35MHz  
V
V
V
= 0.5V p-p  
= 1V p-p  
= 2V p-p  
OUT  
OUT  
OUT  
–0.7  
–0.5  
–0.3  
–0.1  
V
0.1  
(V)  
0.3  
0.5  
0.7  
–0.7  
–0.5  
–0.3  
–0.1  
V
0.1  
(V)  
0.3  
0.5  
0.7  
GAIN  
GAIN  
Figure 46. HD2 vs. VGAIN vs. Frequency to Differential Output  
Figure 49. HD3 vs. Amplitude to Differential Output  
0
0
20  
1MHz  
10MHz  
35MHz  
V
= 1V p-p  
OUT  
15  
30  
45  
60  
75  
90  
40  
60  
80  
LOW TONE, f – 50kHz  
HIGH TONE, f + 50kHz  
100  
1M  
10M  
100M  
–0.7  
–0.5  
–0.3  
–0.1  
0.1  
(V)  
0.3  
0.5  
0.7  
FREQUENCY (Hz)  
V
GAIN  
Figure 47. HD3 vs. VGAIN vs. Frequency to Differential Output  
Figure 50. IMD3 vs. Frequency to VGAx  
Rev. 0 | Page 15 of 40  
 
 
 
 
AD8264  
20  
15  
10  
5
50  
40  
30  
20  
10  
f = 1MHz, OIP3L  
f = 1MHz, OIP3H  
f = 10MHz, OIP3L  
f = 10MHz, OIP3H  
f = 35MHz, OIP3L  
f = 35MHz, OIP3H  
f = 100MHz, OIP3L  
f = 100MHz, OIP3H  
0
VGAx (V = ±5V)  
S
5  
10  
15  
DIFF OUT (V = ±5V)  
S
VGAx (V = ±3.3V)  
S
DIFF OUT (V = ±3.3V)  
S
VGAx (V = ±2.5V)  
S
DIFF OUT (V = ±2.5V)  
S
0
–0.7  
–0.7  
–0.5  
–0.3  
–0.1  
V
0.1  
(V)  
0.3  
0.5  
0.7  
–0.5  
–0.3  
–0.1  
V
0.1  
(V)  
0.3  
0.5  
0.7  
GAIN  
GAIN  
Figure 54. Input P1dB vs. VGAIN  
Figure 51. OIP3 vs. VGAIN vs. Frequency to VGAx  
0.10  
0.05  
0
0
V = 0.7V  
GAIN  
V
= 1V p-p  
OUT  
20  
40  
60  
LOW TONE, f – 50kHz  
–0.05  
–0.10  
80  
HIGH TONE, f + 50kHz  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
1M  
10M  
FREQUENCY (Hz)  
100M  
TIME (ns)  
Figure 52. IMD3 vs. Frequency to Differential Output  
Figure 55. Small Signal Pulse Response to VGAx  
50  
0.15  
0.10  
0.05  
0
V
= 0.7V  
GAIN  
40  
30  
20  
10  
0
–0.05  
–0.10  
–0.15  
f = 1MHz, OIP3L  
f = 1MHz, OIP3H  
f = 10MHz, OIP3L  
f = 10MHz, OIP3H  
f = 35MHz, OIP3L  
f = 35MHz, OIP3H  
–0.7  
–0.5  
–0.3  
–0.1  
0.1  
(V)  
0.3  
0.5  
0.7  
–40  
–20  
0
20  
40  
60  
80  
100  
V
GAIN  
TIME (ns)  
Figure 53. OIP3 vs. Frequency to Differential Output  
Figure 56. Small Signal Pulse Response to Differential Output  
Rev. 0 | Page 16 of 40  
 
 
 
 
AD8264  
1.5  
1.0  
1.5  
1.0  
V
= 0.7V  
GAIN  
0.5  
0.5  
0
0
1V p-p  
2V p-p  
1V p-p  
2V p-p  
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
–40  
–20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
TIME (ns)  
TIME (ns)  
Figure 57. Large Signal Pulse Response to VGAx  
Figure 60. OFSx Large Signal Pulse Response  
1.5  
1.0  
1.0  
0.5  
V
GAIN  
= 0.7V  
C
C
C
= 0pF  
= 10pF  
= 22pF  
V
= 0.7V  
L
L
L
GAIN  
0.5  
0
0
1V p-p  
2V p-p  
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–40  
–40  
–20  
0
20  
40  
60  
80  
100  
–20  
0
20  
40  
60  
80  
100  
TIME (ns)  
TIME (ns)  
Figure 58. Large Signal Pulse Response to Differential Output  
Figure 61. Large Signal Pulse Response to VGAx for Various Capacitive Loads  
1.5  
2.0  
2V p-p (V  
2V p-p (V  
1V p-p (V  
1V p-p (V  
)
OL  
C
C
C
= 0pF  
= 10pF  
= 22pF  
L
L
L
)
OH  
1.5  
1.0  
)
OL  
1.0  
0.5  
)
OH  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
0
20  
40  
60  
80  
100  
120  
140  
160  
–40  
–20  
0
20  
40  
60  
80  
100  
TIME (ns)  
TIME (ns)  
Figure 59. VOCM Large Signal Pulse Response  
Figure 62. Large Signal Pulse Response to Differential Output for  
Various Capacitive Loads  
Rev. 0 | Page 17 of 40  
 
 
 
 
 
AD8264  
–2.0  
V
1.5  
1.0  
= 0.7V  
C
C
C
= 0pF  
= 10pF  
= 22pF  
GAIN  
L
L
L
–1.5  
–1.0  
–0.5  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–40  
–20  
0
20  
40  
60  
80  
100  
0
200  
400  
600  
800  
1000  
1200  
TIME (ns)  
TIME (ns)  
Figure 63. Large Signal Pulse Response to Differential Output for  
Various Capacitive Loads with Series R = 10 Ω  
Figure 66. Preamp Overdrive Recovery  
1.5  
1.5  
1.0  
1.0  
V
PULSE  
GAIN  
0.5  
0
0.5  
GAIN  
RESPONSE  
0
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
0
400  
800  
1200  
1600  
2000  
0
200  
400  
600  
800  
1000  
1200  
TIME (ns)  
TIME (ns)  
Figure 64. VGAx Response to Change in VGAIN  
Figure 67. VGA Overdrive Recovery  
1.5  
1.0  
0
–10  
–20  
–30  
–40  
–50  
–60  
VGAx (V  
= +0.7V)  
GAIN  
DIFF OUT (V  
VGAx (V  
= +0.7V)  
GAIN  
= 0.7V)  
GAIN  
DIFF OUT (V  
GAIN  
= 0.7V)  
0.5  
GAIN  
RESPONSE  
0
–0.5  
–1.0  
–1.5  
V
PULSE  
GAIN  
100k  
1M  
10M  
100M  
0
400  
800  
1200  
1600  
2000  
FREQUENCY (Hz)  
TIME (ns)  
Figure 65. Differential Output Response to Change in VGAIN  
Figure 68. Power Supply Rejection vs. Frequency (VPOS)  
Rev. 0 | Page 18 of 40  
 
 
 
 
 
AD8264  
5
–5  
135  
125  
115  
105  
95  
VGAx (V  
= +0.7V)  
GAIN  
DIFF OUT (V  
VGAx (V  
= +0.7V)  
GAIN  
= 0.7V)  
GAIN  
±5V  
DIFF OUT (V  
GAIN  
= 0.7V)  
–15  
–25  
–35  
–45  
–55  
±2.5V  
±3.3V  
85  
75  
65  
55  
–40  
100k  
1M  
10M  
100M  
–15  
10  
35  
60  
85  
110  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 69. Power Supply Rejection vs. Frequency (VNEG)  
Figure 70. Quiescent Supply Current vs. Temperature  
Rev. 0 | Page 19 of 40  
 
AD8264  
TEST CIRCUITS  
VS = 2.5 V, TA = 25°C, f = 10 MHz, CL = 5 pF, RL = 500 Ω per output (VGAx, VOHx, VOLx), VGAIN = (VGNHx − VGNLO) = 0 V,  
VVOCM = GND, VOFSx = GND, gain range = 6 dB to 30 dB, unless otherwise specified.  
DC  
METER  
500  
500ꢀ  
500ꢀ  
AD8264  
VGAx  
IPPx  
IPNx  
+
PrA  
6dB  
VOLx  
VOHx  
50ꢀ  
+
DC  
METER  
6dB  
GNHx  
GNLO  
VOCM  
OFSx  
V
GAIN  
OVEN  
Figure 71. Gain vs. VGAIN vs. Temperature (See Figure 3 and Figure 4)  
NETWORK ANALYZER  
OSCILLOSCOPE  
SIGNAL  
GENERATOR  
OUT  
50ꢀ  
CH1  
CH2  
CH1  
CH2  
50ꢀ  
50ꢀ  
50ꢀ  
50ꢀ  
DIFFERENTIAL  
PROBE  
DIFFERENTIAL  
PROBE  
DIFFERENTIAL  
PROBE  
AD8264  
AD8264  
VGAx  
VGAx  
IPPx  
IPNx  
+
500ꢀ  
IPPx  
IPNx  
+
PrA  
6dB  
VOLx  
50ꢀ  
+
PrA  
6dB  
VOLx  
VOHx  
50ꢀ  
+
500ꢀ  
6dB  
6dB  
VOHx  
500ꢀ  
GNHx  
GNLO  
VOCM  
OFSx  
GNHx  
GNLO  
VOCM  
OFSx  
V
GAIN  
V
GAIN  
Figure 74. Frequency Response vs. Gain to Differential Output for Various  
Values of VGAIN (See Figure 11)  
Figure 72. Gain Error vs. VGAIN at Various Frequencies to VGAx (See Figure 5)  
NETWORK ANALYZER  
NETWORK ANALYZER  
CH1  
CH2  
50  
50ꢀ  
DIFFERENTIAL  
PROBE  
CH1  
CH2  
50  
50ꢀ  
AD8264  
DIFFERENTIAL  
PROBE  
VGAx  
500ꢀ  
IPPx  
50ꢀ  
IPNx  
+
AD8264  
PrA  
6dB  
VOLx  
6dB  
+
VGAx  
VOLx  
IPPx  
IPNx  
+
PrA  
6dB  
50ꢀ  
+
VOHx  
500ꢀ  
VOHx  
6dB  
CL  
GNHx  
GNLO  
VOCM  
OFSx  
500ꢀ  
CL  
GNHx  
GNLO  
VOCM  
OFSx  
V
GAIN  
Figure 75. Frequency Response to Differential Output for  
Various Capacitive Loads (See Figure 12)  
Figure 73. Frequency Response vs. Gain to VGAx for Various Values of VGAIN  
GAIN = GNHx – GNLO (See Figure 10)  
,
V
Rev. 0 | Page 20 of 40  
 
AD8264  
NETWORK ANALYZER  
NETWORK ANALYZER  
CH1  
CH2  
50ꢀ  
50ꢀ  
DIFFERENTIAL  
CH1  
CH2  
PROBE  
50ꢀ  
50ꢀ  
AD8264  
DIFFERENTIAL  
PROBE  
VGAx  
VOLx  
IPPx  
50ꢀ  
IPNx  
+
PrA  
6dB  
AD8264  
+
VGAx  
6dB  
IPPx  
IPNx  
+
10ꢀ  
PrA  
6dB  
VOLx  
VOHx  
50ꢀ  
+
500ꢀ  
6dB  
C
L
VOHx  
10ꢀ  
V
GNHx  
OFSx  
GNLO  
VOCM  
S
500ꢀ  
V
V
GNHx  
GNLO  
VOCM  
OFSx  
C
L
GAIN  
SUPPLY  
Figure 76. Frequency Response to Differential Output for Various Capacitive  
Loads with Series R = 10 Ω (See Figure 13)  
Figure 79. Frequency Response vs. Gain to VGAx for  
Various Supply Voltages (See Figure 18)  
NETWORK ANALYZER  
NETWORK ANALYZER  
CH1  
CH2  
CH1  
CH2  
50  
50ꢀ  
50  
50ꢀ  
DIFFERENTIAL  
PROBE  
DIFFERENTIAL  
PROBE  
AD8264  
VGAx  
AD8264  
500ꢀ  
C
L
VGAx  
IPPx  
50ꢀ  
IPNx  
+
PrA  
6dB  
VOLx  
6dB  
+
IPPx  
IPNx  
+
PrA  
6dB  
VOLx  
50ꢀ  
+
500ꢀ  
6dB  
VOHx  
VOHx  
GNHx  
GNLO  
VOCM  
OFSx  
500ꢀ  
GNHx  
GNLO  
VOCM  
OFSx  
V
S
V
GAIN  
V
V
GAIN  
SUPPLY  
Figure 80. Frequency Response vs. Gain to Differential Output for  
Various Supply Voltages (See Figure 19)  
Figure 77. Frequency Response to VGAx for Various Capacitive Loads  
(See Figure 14)  
NETWORK ANALYZER  
NETWORK ANALYZER  
CH1  
CH2  
CH1  
CH2  
50  
50ꢀ  
50ꢀ  
50ꢀ  
DIFFERENTIAL  
PROBE  
DIFFERENTIAL  
PROBE  
AD8264  
10ꢀ  
VGAx  
AD8264  
500ꢀ  
C
L
VGAx  
IPPx  
50ꢀ  
IPNx  
+
PrA  
6dB  
VOLx  
VOHx  
+
IPPx  
IPNx  
+
PrA  
6dB  
VOLx  
6dB  
+
500ꢀ  
6dB  
VOHx  
GNHx  
GNLO  
VOCM  
OFSx  
500ꢀ  
GNHx  
GNLO  
VOCM  
OFSx  
V
S
V
GAIN  
V
SUPPLY  
50ꢀ  
Figure 81. VOCM Frequency Response to Differential Output (See Figure 21)  
Figure 78. Frequency Response to VGAx for Various Capacitive Loads with  
Series R =10 Ω (See Figure 16)  
Rev. 0 | Page 21 of 40  
AD8264  
NETWORK ANALYZER  
CH1  
CH2  
SPECTRUM ANALYZER  
50ꢀ  
50ꢀ  
CH1  
CH2  
DIFFERENTIAL  
PROBE  
50  
50ꢀ  
AD8264  
VGAx  
IPPx  
IPNx  
+
AD8264  
AD8129  
10×  
PrA  
6dB  
VOLx  
VGAx  
VOLx  
+
500ꢀ  
6dB  
IPPx  
IPNx  
+
PrA  
6dB  
+
VOHx  
6dB  
AD8129  
10×  
500ꢀ  
VOHx  
GNHx  
GNLO  
VOCM  
OFSx  
V
S
GNHx  
OFSx  
GNLO  
VOCM  
V
SUPPLY  
50ꢀ  
V
GAIN  
Figure 85. Output Referred Noise vs. VGAIN (See Figure 32)  
Figure 82. OFSx Frequency Response to Differential Output (See Figure 22)  
SPECTRUM ANALYZER  
220ꢀ  
50ꢀ  
CH1  
CH2  
50ꢀ  
50ꢀ  
500  
AD8264  
VGAx  
IPPx  
IPNx  
500ꢀ  
500ꢀ  
+
PrA  
6dB  
VOLx  
VOHx  
+
AD8264  
AD8129  
10×  
DC  
METER  
6dB  
VGAx  
IPPx  
IPNx  
+
PrA  
6dB  
VOLx  
VOHx  
+
6dB  
GNHx  
GNLO  
VOCM  
OFSx  
AD8129  
10×  
OVEN  
GNHx  
OFSx  
GNLO  
VOCM  
VGAIN  
Figure 86. Input Referred Noise vs. Frequency (See Figure 34)  
Figure 83. Output Offset Voltage vs. VGAIN vs. Temperature  
(See Figure 26 and Figure 27)  
NOISE METER  
NETWORK ANALYZER  
CH1  
CH2  
50ꢀ  
NOISE  
SOURCE  
50ꢀ  
50ꢀ  
AD8264  
VGAx  
IPPx  
IPNx  
+
AD8264  
PrA  
6dB  
VOLx  
VOHx  
50ꢀ  
+
VGAx  
VOLx  
6dB  
IPPx  
50ꢀ  
IPNx  
+
PrA  
6dB  
+
6dB  
GNHx  
OFSx  
GNLO  
VOCM  
VOHx  
V
GAIN  
V
GNHx  
OFSx  
GNLO  
VOCM  
S
V
SUPPLY  
Figure 87. Noise Figure vs. VGAIN (See Figure 36)  
Figure 84. Output Resistance vs. Frequency  
(See Figure 30 and Figure 31)  
Rev. 0 | Page 22 of 40  
AD8264  
SPECTRUM ANALYZER  
220  
50ꢀ  
CH1  
CH2  
50ꢀ  
50ꢀ  
50ꢀ  
0.1µF  
AD8264  
AD8129  
10×  
VGAx  
IPPx  
IPNx  
+
PrA  
6dB  
VOLx  
VOHx  
+
R
S
6dB  
50ꢀ  
0.1µF  
AD8129  
10×  
50ꢀ  
0.1µF  
GNHx  
OFSx  
GNLO  
VOCM  
1kꢀ  
1kꢀ  
Figure 88. Input Referred Noise vs. RSOURCE (See Figure 35)  
SPECTRUM ANALYZER  
NETWORK ANALYZER  
SIGNAL  
GENERATOR  
OUT  
50ꢀ  
CH1  
CH1  
CH2  
50ꢀ  
50  
50ꢀ  
DIFFERENTIAL  
PROBE  
LPF  
AD8264  
10ꢀ  
AD8264  
VGAx  
VOLx  
VGAx  
C
L
IPPx  
+
PrA  
6dB  
IPPx  
IPNx  
+
50ꢀ  
+
PrA  
6dB  
VOLx  
500ꢀ  
VOHx  
50ꢀ  
+
IPNx  
6dB  
6dB  
VOHx  
500ꢀ  
GNHx  
GNLO  
VOCM  
OFSx  
GNHx  
GNLO  
VOCM  
OFSx  
Figure 89. VOCM Common-Mode Rejection vs. Frequency (See Figure 37)  
Figure 91. Harmonic Distortion to VGAx vs. CLOAD (Figure 39)  
SPECTRUM ANALYZER  
SIGNAL  
GENERATOR  
OUT  
50ꢀ  
CH1  
50ꢀ  
SPECTRUM ANALYZER  
SIGNAL  
GENERATOR  
OUT  
CH1  
50  
500ꢀ  
50ꢀ  
LPF  
AD8264  
450ꢀ  
VGAx  
LPF  
AD8264  
IPPx  
IPNx  
+
VGAx  
PrA  
6dB  
VOLx  
VOHx  
50ꢀ  
+
IPPx  
IPNx  
+
PrA  
6dB  
6dB  
VOLx  
VOHx  
50ꢀ  
+
6dB  
AD8130  
1×  
R
R
L
V
GNHx  
GNLO  
VOCM  
OFSx  
L
S
V
GNHx  
GNLO  
VOCM  
OFSx  
S
V
V
SUPPLY  
SUPPLY  
Figure 90. Test Circuit Harmonic Distortion to VGAx vs.  
RLOAD and Various Supplies (See Figure 38)  
Figure 92. Harmonic Distortion to Differential Output vs. RLOAD and Various  
Supplies (See Figure 40)  
Rev. 0 | Page 23 of 40  
AD8264  
SPECTRUM ANALYZER  
SIGNAL  
GENERATOR  
SPECTRUM ANALYZER  
OUT  
50ꢀ  
SIGNAL  
GENERATOR  
CH1  
OUT  
50ꢀ  
CH1  
50ꢀ  
50ꢀ  
350ꢀ  
LPF  
450ꢀ  
AD8264  
LPF  
VGAx  
AD8264  
VGAx  
IPPx  
IPNx  
+
PrA  
VOLx  
+
IPPx  
IPNx  
+
50ꢀ  
6dB  
PrA  
6dB  
VOLx  
+
50ꢀ  
6dB  
AD8130  
10ꢀ  
10ꢀ  
1×  
6dB  
AD8130  
1×  
VOHx  
VOHx  
V
S
GNHx  
GNLO  
VOCM  
OFSx  
C
L
C
GNHx  
GNLO  
VOCM  
OFSx  
L
V
GAIN  
Figure 93. Harmonic Distortion to Differential Output vs.  
CLOAD (See Figure 41)  
Figure 95. HD2 and HD3 to Differential Output (See Figure 46 through Figure 49)  
SPECTRUM ANALYZER  
SPECTRUM ANALYZER  
SIGNAL  
GENERATOR  
OUT  
50ꢀ  
CH1  
CH1  
50  
50ꢀ  
450ꢀ  
OUT  
450ꢀ  
SIGNAL  
GENERATOR  
AD8264  
LPF  
50ꢀ  
50ꢀ  
50ꢀ  
VGAx  
VOLx  
AD8264  
IPPx  
IPNx  
+
VGAx  
VOLx  
PrA  
6dB  
+
OUT  
SIGNAL  
GENERATOR  
6dB  
IPPx  
IPNx  
+
PrA  
50ꢀ  
VOHx  
+
50ꢀ  
6dB  
6dB  
GNHx  
GNLO  
VOCM  
OFSx  
VOHx  
V
GAIN  
GNHx  
GNLO  
VOCM  
OFSx  
V
GAIN  
Figure 94. HD2 and HD3 to VGAx (See Figure 42 Through Figure 45)  
Figure 96. IMD3 and OIP3 to VGAx (See Figure 50 and Figure 51)  
SPECTRUM ANALYZER  
CH1  
50ꢀ  
450ꢀ  
OUT  
OUT  
SIGNAL  
GENERATOR  
AD8264  
50ꢀ  
50ꢀ  
50ꢀ  
VGAx  
VOLx  
10ꢀ  
IPPx  
IPNx  
+
PrA  
6dB  
+
SIGNAL  
GENERATOR  
AD8130  
1×  
6dB  
10ꢀ  
VOHx  
50ꢀ  
500ꢀ  
500ꢀ  
GNHx  
GNLO  
VOCM  
OFSx  
Figure 97. IMD3 and OIP3 to Differential Output (See Figure 52 and Figure 53)  
Rev. 0 | Page 24 of 40  
AD8264  
OSCILLOSCOPE  
NETWORK ANALYZER  
CH2  
CH3  
CH1  
CH1  
50  
DIFFERENTIAL  
PROBE  
50ꢀ  
5050ꢀ  
500  
AD8264  
VGAx  
IPPx  
IPNx  
+
PrA  
6dB  
VOLx  
500ꢀ  
VOHx  
50ꢀ  
+
AD8264  
6dB  
VGAx  
IPPx  
IPNx  
+
500ꢀ  
PrA  
6dB  
VOLx  
500ꢀ  
VOHx  
50ꢀ  
+
GNHx  
GNLO  
VOCM  
OFSx  
6dB  
OUT  
PULSE  
GENERATOR  
50ꢀ  
50ꢀ  
500ꢀ  
GNHx  
GNLO  
VOCM  
OFSx  
V
GAIN  
Figure 101. VOCM Pulse Response (See Figure 59)  
Figure 98. Input P1dB vs. VGAIN (See Figure 54)  
OSCILLOSCOPE  
OSCILLOSCOPE  
PULSE  
GENERATOR  
OUT  
CH1  
CH2  
CH1  
50ꢀ  
50ꢀ  
50ꢀ  
50ꢀ  
DIFFERENTIAL  
PROBE  
DIFFERENTIAL  
PROBE  
DIFFERENTIAL  
PROBE  
AD8264  
VGAx  
VOLx  
AD8264  
IPPx  
IPNx  
+
VGAx  
PrA  
6dB  
50ꢀ  
+
500ꢀ  
IPPx  
IPNx  
+
6dB  
PrA  
6dB  
VOLx  
VOHx  
50ꢀ  
+
VOHx  
6dB  
GNHx  
GNLO  
VOCM  
OFSx  
OUT  
PULSE  
GENERATOR  
GNHx  
GNLO  
VOCM  
OFSx  
50ꢀ  
50ꢀ  
Figure 99. Pulse Response to VGAx, VGAIN = 0.7 V (See Figure 55 and Figure 57)  
Figure 102. OFSx Pulse Response (See Figure 60)  
OSCILLOSCOPE  
OSCILLOSCOPE  
PULSE  
GENERATOR  
CH1  
PULSE  
GENERATOR  
OUT  
50ꢀ  
OUT  
CH1  
CH2  
50ꢀ  
50ꢀ  
50ꢀ  
50ꢀ  
DIFFERENTIAL  
PROBE  
DIFFERENTIAL  
PROBE  
DIFFERENTIAL  
PROBE  
AD8264  
AD8264  
VGAx  
VOLx  
VGAx  
C
IPPx  
50ꢀ  
+
L
IPPx  
+
PrA  
6dB  
+
PrA  
6dB  
VOLx  
500ꢀ  
VOHx  
50ꢀ  
500ꢀ  
+
IPNx  
6dB  
IPNx  
6dB  
VOHx  
500ꢀ  
GNHx  
GNLO  
VOCM  
OFSx  
GNHx  
GNLO  
VOCM  
OFSx  
Figure 100. Pulse Response to Differential Outputs, VGAIN = 0.7 V  
(See Figure 56 and Figure 58)  
Figure 103. Pulse Response to VGAx for Various Capacitive Loads,  
VGAIN = 0.7 V (See Figure 61)  
Rev. 0 | Page 25 of 40  
AD8264  
OSCILLOSCOPE  
CH1  
SIGNAL  
GENERATOR  
OSCILLOSCOPE  
OUT  
50ꢀ  
PULSE  
GENERATOR  
DIFFERENTIAL  
PROBE  
50ꢀ  
OUT  
CH1  
50  
50ꢀ  
OPPx  
AD8264  
DIFFERENTIAL  
PROBE  
VGAx  
VOLx  
AD8264  
IPPx  
IPNx  
+
VGAx  
PrA  
6dB  
50ꢀ  
+
IPPx  
IPNx  
+
6dB  
PrA  
6dB  
VOLx  
50ꢀ  
+
C
500ꢀ  
L
6dB  
VOHx  
VOHx  
C
500ꢀ  
L
GNHx  
GNLO  
VOCM  
OFSx  
GNHx  
GNLO  
VOCM  
OFSx  
Figure 104. Pulse Response to Differential Output for Various Capacitive  
Loads, VGAIN = 0.7 V (See Figure 62)  
Figure 107. Preamp Overdrive Recovery (See Figure 66)  
OSCILLOSCOPE  
CH1  
OSCILLOSCOPE  
SIGNAL  
GENERATOR  
PULSE  
OUT  
GENERATOR  
OUT  
50ꢀ  
50ꢀ  
CH1  
DIFFERENTIAL  
50ꢀ  
PROBE  
50ꢀ  
DIFFERENTIAL  
PROBE  
AD8264  
VGAx  
AD8264  
VGAx  
IPPx  
IPNx  
+
PrA  
6dB  
VOLx  
VOHx  
50ꢀ  
IPPx  
+
10ꢀ  
+
PrA  
6dB  
VOLx  
VOHx  
50ꢀ  
+
C
L
6dB  
500ꢀ  
IPNx  
6dB  
10ꢀ  
C
500ꢀ  
L
GNHx  
GNLO  
VOCM  
OFSx  
GNHx  
GNLO  
VOCM  
OFSx  
Figure 105. Pulse Response to Differential Output for Various Capacitive  
Loads with Series R = 10 Ω, VGAIN = 0.7 V (See Figure 63)  
Figure 108. VGA Overdrive Recovery, VGAIN = 0.7 V (See Figure 67)  
OSCILLOSCOPE  
CH1  
SIGNAL  
GENERATOR  
OUT  
50  
CH2  
5050ꢀ  
DIFFERENTIAL  
PROBE  
AD8264  
500ꢀ  
VGAx  
VOLx  
IPPx  
IPNx  
+
PrA  
6dB  
50ꢀ  
+
500ꢀ  
6dB  
VOHx  
500ꢀ  
GNHx  
GNLO  
VOCM  
OFSx  
OUT  
PULSE  
GENERATOR  
50ꢀ  
Figure 106. Gain Response to VGAx or Differential Output  
(See Figure 64 and Figure 65)  
Rev. 0 | Page 26 of 40  
AD8264  
OSCILLOSCOPE  
CH2  
CH3  
CH1  
5050ꢀ  
50ꢀ  
DMM  
(+1)  
DMM  
(–1)  
DIFFERENTIAL  
PROBE  
VPOS  
VNEG  
AD8264  
AD8264  
VGAx  
VGAx  
VOLx  
VOHx  
500ꢀ  
IPPx  
IPNx  
+
IPPx  
IPNx  
+
PrA  
6dB  
VOLx  
500ꢀ  
50ꢀ  
+
PrA  
6dB  
50ꢀ  
+
6dB  
6dB  
VOHx  
500ꢀ  
VS  
GNHx  
GNLO  
VOCM  
OFSx  
VGAIN  
VSUPPLY  
GNHx  
GNLO  
VOCM  
OFSx  
Figure 110. Quiescent Supply Current (See Figure 70)  
Figure 109. PSRR (See Figure 68 and Figure 69)  
Rev. 0 | Page 27 of 40  
AD8264  
THEORY OF OPERATION  
OVERVIEW  
VGA  
The AD8264 is a dc-coupled quad channel VGA with a fixed  
gain-of-2 (6 dB) preamplifier and a single-ended-to-differential  
output amplifier with level shift capability that can be used as an  
ADC driver. Figure 111 shows a representative block diagram of  
a single channel; all four channels are identical. The supply can  
operate from 2.5 V to 5 V. The primary application is as a  
pulse processor for medical positron emission tomography  
(PET) imaging; however, the part is useful for any dc-coupled  
application that can benefit from variable gain.  
The VGA has a voltage feedback architecture and uses analog  
control to vary the gain. Its low gain range helps to maintain  
low offset and is intended for gain trim applications. The offset  
of the preamp and the VGA are trimmed; therefore, the maximum  
input referred offset is <0.5 mV over temperature (see Figure 26).  
Keeping the gain of each stage relatively low also allows the  
bandwidth to stay high.  
The gain of the VGA is adjusted using the fully differential  
control inputs, GNHx and GNLO. The GNLO pin is internally  
connected to all four channels and must be biased externally.  
Under typical conditions, the GNLO pin is grounded. The gain  
high control pins (GNHx) are independent for each channel.  
The gain slope is nominally 20 dB/V. With GNLO connected to  
ground, each GNHx input can have a voltage applied from VNEG  
to VPOS without gain foldover.  
The signal chain consists of three fundamental stages: the  
preamplifier, the variable gain amplifier, and the differential  
output buffer amplifier. The preamplifier has an internally fixed  
gain-of-2 (6 dB). The VGA comprises an attenuator that  
provides 0 dB to 24 dB of attenuation, followed by a fixed gain  
18 dB (8×) amplifier. The single-ended VGA output is connected  
directly to the noninverting input of the differential output  
(post) amplifier, which has a differential fixed gain-of-2 (6 dB).  
To make use of the full gain range of the VGA, the nominal gain  
control voltage needed at GNHx is 0.65 V relative to the voltage  
applied to GNLO. At the lowest supply voltage of 2.5 V, the pin  
GNLO should always be grounded. With increasing supply, the  
common-mode range of the gain control interface increases.  
This means that GNLO can be anywhere within ±1.2 V at  
±3.3 V supplies and ±2.8 V at 5 V supplies.  
The gain range from the preamp input to the VGA output is  
0 dB to 24 dB. The aggregate gain range from preamp input to  
the differential postamplifier output is 6 dB to 30 dB.  
The ideal gain equation for the gain from the single-ended  
input to the output is  
V
GAIN = VGNHx VGNLO  
(1)  
(2)  
Table 5. Gain Control Input Range  
Supply Voltage (V) GNLO Voltage Range (V) VGAIN Range (V)  
dB  
Gain = 20  
×VGAIN + ICPT  
5
3.3  
2.5  
2.8  
1.2  
0.65  
0.65  
0.65  
V
The ideal value for ICPT, or the intercept, is defined at VGAIN = 0 V.  
The ICPT for the VGA output and differential amplifier outputs  
equals 12.1 dB and 18.1 dB, respectively. The actual intercept  
varies with any additional gain or loss along the signal path.  
The measured values are both approximately 0.2 dB low.  
0
For example, at 3.3 V supplies, the outputs of a single-supply  
unipolar DAC, such as the 10-bit, 4-channel AD5314, can be  
used to drive the GNHx pins directly, in conjunction with using  
the ADR318 1.8 V reference to bias the GNLO pin at VREF/2 = 0.9.  
Because the GNLO pin sources only about 1.2 μA for the four  
channels (~300 nA per channel, the same as for the GNHx pins), a  
simple resistive divider is generally adequate to set the voltage at  
the GNLO input.  
PREAMP  
The preamplifier is a current feedback amplifier, designed to  
drive the internal 100 Ω gain setting resistors and the resistive  
attenuator, which together result in a nominal load to the  
preamplifier of about 113 Ω. Normally, the negative preamp  
input, IPNx, is not connected externally. The positive input  
IPPx is the high impedance input of the current feedback amp.  
Note that, at the largest supply voltage of 5 V, the input signal  
can become so large that the preamplifier output cannot deliver  
the required current to drive the 113 Ω load and, therefore, limits  
at 6 V p-p. This means that the input limits at 3 V p-p.  
The short-circuit input referred noise at maximum VGA gain is  
about 2.3 nV/Hz, and this accounts for all of the amplifiers and  
gain setting resistors. When measuring the input referred noise  
from the VGA output, the number is slightly lower at 2.1 nV/Hz  
because the noise of the postamplifier is not included in the  
noise calculation.  
Rev. 0 | Page 28 of 40  
 
 
AD8264  
COMPOSITE GAIN IS +6dB TO +30dB  
PREAMP OUTPUT  
(NOT USED)  
SINGLE-ENDED HS  
VGA OUTPUT  
OPPx  
VGAx  
3
NONINVERTING  
AMPLIFIER INPUT  
FIXED GAIN VGA  
AMPLIFIER  
DIFFERENTIAL OUTPUT  
AMPLIFIER 6dB (2×)  
PREAMP  
6dB (2×)  
18dB (8×)  
IPPx  
1
IPNx  
1kꢀ  
2kꢀ  
+
ATTENUATOR  
–24dB TO 0dB  
100ꢀ  
747ꢀ  
107ꢀ  
VOLx  
2
DIFFERENTIAL  
VGA OUTPUT  
INVERTING AMPLIFIER  
INPUT (NOT USED)  
100ꢀ  
VOHx  
GAIN  
INTERFACE  
INTERPOLATOR  
VPOS  
VNEG  
2kꢀ  
POWER  
BIAS  
SUPPLIES  
1kꢀ  
COMM  
GNHx GNLO  
VOCM  
OFSx  
DIFFERENTIAL GAIN  
CONTROL INPUTS  
OUTPUT COMMON-MODE  
VOLTAGE ADJUSTMENT  
OFFSET  
ADJUST  
DIFFERENTIAL OUTPUT NEVER LIMITS  
BECAUSE VGA LIMITS FIRST.  
DIFFERENTIAL OUTPUT SWING = 2x VGA OUT  
5.2V p-p MAX @ ±2.5V  
2.6V p-p MAX @ ±2.5V  
4V p-p MAX @ ±3.5V TO ±3.3V  
7.5V p-p MAX @ ±5V  
34nV/Hz  
1.2V p-p MAX @ ±2.5V  
2V p-p MAX @ ±3.5V TO ±3.3V  
3V p-p MAX@ ±5V (PREAMP  
DRIVE LIMITED)  
1
2
3
8V p-p MAX @ ±3.5V TO ±3.3V  
15V p-p MAX @ ±5V  
2.3nV/Hz  
73nV/Hz  
Figure 111. Single-Channel Block Diagram  
If dc offset is not desired, then the OFSx pins should be connected  
to ground. However, the OFSx pins can also be used as separate  
inputs if the user wants this function.  
POST AMPLIFIER  
From the preamp input to the VGA output (VGAx), the gain  
is noninverting. As can be seen in Figure 111, the VGAx pins  
drive the positive input of the differential amplifier. The gain  
is inverting from the input of the preamp to the output pin at  
VOLx, and the gain is noninverting to the output VOHx.  
NOISE  
At maximum gain, the preamplifier is the primary contributor  
of noise and results in a differential output referred noise of  
roughly 73 nV/Hz. The noise at the VGAx outputs is 34 nV/Hz,  
and because of the gain-of-2, the VGA output noise is amplified  
by 6 dB to 68 nV/Hz. The differential amplifier, including the  
gain setting resistors, contributes another 26 nV/Hz, and the  
rms sum results in a total noise of 73 nV/Hz. At the lowest  
gain, the noise at the VGA output is approximately 19 nV/Hz, and  
when multiplied by two, it results in 38 nV/Hz at the differential  
output; again, rms summing this with the 26 nV/Hz of the  
differential amplifier causes the total output referred noise to  
be approximately 46 nV/Hz.  
Other than the input from VGAx, each differential amplifier  
has two additional inputs: VOCM and OFSx. A common  
VOCM pin is shared among all four postamplifiers, while  
separate OFSx pins are provided for each channel.  
VOCM Pin  
The VOCM pin sets the common-mode voltage of the differential  
output and must be biased by an external voltage. When driving  
a dc-coupled ADC, the voltage typically comes from the ADC  
reference, as shown in the Applications Information section.  
If dc level shift is not necessary, the VOCM pin is connected  
to ground.  
The input referred noise to the preamplifier at maximum gain  
is 2.3 nV/Hz and increases with decreasing gain. Note that all  
noise numbers include the necessary gain setting resistors.  
OFSx Pins  
The OFSx pins are the inverting inputs of the differential post  
amplifiers and can be used to prebias a differential dc offset at  
the output. This is very useful when the input is a unipolar pulse  
because the user can set up the gain and the offset in such a way  
as to optimally map a unipolar pulse into the full-scale input of  
an ADC, while dc coupling throughout.  
Rev. 0 | Page 29 of 40  
 
 
AD8264  
APPLICATIONS INFORMATION  
A LOW CHANNEL COUNT APPLICATION CONCEPT  
USING A DISCRETE REFERENCE  
Figure 112 also includes the DAC output equation, which  
indicates that the output can vary between 0 V and VREF = 1.25 V.  
The output of the AD8264 is ideal to drive an ADC like the 1.8 V  
quad-channel AD9228. If eight channels are needed, two AD8264s  
with the octal AD9222 ADC achieve the same thing. The same  
resistive divider can be used for two AD8264s because the bias  
current flowing is now ~2 μA, but this still only introduces an  
error of 1 mV with ideally matched resistors. With 20 dB/V gain  
scaling, this is a gain error of only 0.02 dB, which is much  
smaller than the fundamental gain error of the AD8264  
(typically ~0.2 dB).  
The AD8264 is particularly well suited for use in the analog  
front end of medical PET imaging systems. Figure 112 shows  
how the AD8264 may be used with the AD5314 (a 4-channel,  
10-bit DAC) and the AD9222/AD9228 (an octal or quad, 12-bit  
ADC, respectively). The DAC sets the gain of the AD8264. Note  
that the full gain span of 24 dB is achieved with this setup because  
the gain control input range of the AD8264 is very close to 1.25 V.  
The GNLO pin must offset by 1.25/2 = 625 mV because the  
gain control input is bipolar around the voltage applied at GNLO.  
This is done with two 1 kΩ, 1% resistors. The approximately 1 μA  
of bias current flowing from the GNLO pin does not contribute  
a significant error because the basic gain error of the AD8264 is  
the limiting factor.  
The single-ended-to-differential amplifier of the AD8264  
amplifies the VGA output signal by 6 dB and can provide the  
required dc bias of the AD9222/AD9228, as shown in Figure 112.  
The ADC is connected with the default internal reference because  
the SENSE pin is grounded. With this connection, the AD9222/  
AD9228 VREF pin is an output that provides 1 V; this is then  
connected to the VOCM input of the AD8264, which sets the  
output common-mode voltage of the VOHx and VOLx pins to  
1 V. This voltage is very close to the recommended optimal value of  
VDD/2 = 0.9 V. With this configuration, the ADC inputs are set  
to a full-scale (FS) of 2 V p-p.  
The ADR127 1.25 V precision reference with an input of 3.3 V  
can supply −2 mA to +5 mA from −40°C to +125°C, which is  
sufficient to drive both the resistive divider and the REFIN pin  
of the AD5314. The AD5314 is based on the string DAC concept,  
which means that the REFIN pin looks like a resistor that is  
nominally 45 kΩ; this results in a current draw of 1.25V/45 kΩ =  
28 μA. Even at the lowest specified resistance of 37 kΩ, this is  
still only a current of 34 μA. Therefore, the total current draw from  
the ADR127 is the 625 μA of the resistive divider plus ~30 μA,  
which equals ~655 μA, well below the 5 mA maximum current.  
ADR127  
Note that the ADC VREF should not drive many loads; therefore,  
for multiple AD8264s, the VREF should be buffered.  
NC  
NC  
NC  
6
5
4
1
2
3
+3.3V  
GND  
1.25V  
1µF  
V
× D  
REFIN  
N
2
V
=
V
V
OUT  
OUT  
IN  
0.1µF  
V
RANGE = 0V TO 1.25V  
EACH  
OUT  
+3.3V  
10µF  
REFIN  
V
1kꢀ  
1%  
DD  
V
V
A
B
OUT  
OUT  
625mV  
DAC  
AD5314  
1kꢀ  
1%  
V
C
OUT  
0.1µF  
V
D
OUT  
GND  
+3.3V  
~250nA EACH  
VPOS  
IPPx  
GNLO  
R
GNH1  
S
GNH2  
GNH3  
GNH4  
R
TERM  
AD8264  
VGA OUTPUTS TO OTHER  
SIGNAL PROCESSING  
VGAx  
+1.8V  
VNEG VOCM OFSx VOHx VOLx  
FS = 2V p-p  
R
R
FILT  
VDD  
V
– x  
ADC  
IN  
–3.3V  
AD9222/  
C
GND  
FILT  
10µF  
0.1µF  
AD9228  
V
+ x  
VREF SENSE  
IN  
FILT  
OUTPUT COMMON-MODE VOLTAGE = 1V  
VOHx = 1V, VOLx = 1V; VOFS = 0V  
SENSE GROUNDED: VREF = 1V  
Figure 112. Application Concept of the AD8264 with the AD5314 10-Bit DAC and the AD9222/AD9228 12-Bit ADC  
Rev. 0 | Page 30 of 40  
 
 
 
AD8264  
Figure 113 shows how the AD8264 is connected in a PET  
A DC CONNECTED CONCEPT EXAMPLE  
application. The PMT generates a negative-going current pulse  
that results in a voltage pulse at the preamplifier input and a  
differential output pulse on VOLx and VOHx.  
The dc connected concept example in Figure 113 is an application  
with the 40-channel AD5381, 3 V, 12-bit DAC. The main difference  
between this example and Figure 112 is that, for the same ADR127  
1.25 V reference, the full-scale output of the DAC is from  
0 V to 2 × VREFIN = 2.5 V. Two options for gain control  
include the following:  
To fully appreciate the advantages of the AD8264, note the  
common-mode and polarity conversion afforded. The AD9228,  
as with most modern ADCs, is a low voltage, single-polarity  
device. Recall that the PMT is a high voltage device that yields a  
negative pulse. To map the pulse to the input range of the ADC,  
the pulse must be inverted, shifted, and amplified to the full  
input range of the ADC. This is done by using the gain control,  
signal offset, and common-mode features of the AD8264.  
Use the same circuit as in Figure 112 but use only half the  
DAC output voltage from 0 V to 1.25 V. This is the simplest  
solution, requiring the fewest extra components. Note that  
the overall gain resolution increases by one bit to 11 bits  
over the 10-bit AD5314.  
The full-scale input of the converter is 0 V to 2 V, with a common-  
mode of 1 V. Match the VOCM voltage of the AD8264 to the  
ADC common mode (VREF = 1 V), and the two devices can be  
connected directly using an appropriate level of the antialiasing  
filter. The PMT signal is 0 V to −0.1 V. With a gain of 20× (26 dB),  
the AD8264 output signal range is 2 V p-p. Prebias the signal  
negative by −0.5 V using the AD8264 OFSx inputs, which sets  
VOHx = 1.5 V and VOLx = 0.5 V for VOCM = 1 V. The output  
is perfectly matched to the input of the ADC.  
Ground GNLO and scale the DAC output so that the  
GNHx inputs vary from −0.652 V to +0.625 V. Figure 113  
shows a possible circuit implementation using a divider  
between the DAC output and a −1.25 V reference.  
GNLO cannot simply be increased to 1.25 V because, for a  
given supply voltage, GNLO has a limited voltage range to  
achieve the full gain span (see Table 5).  
However, a third possibility is to use another voltage that is  
between 1.2 V and 625 mV on GNLO, such as 1 V. In this case,  
the DAC must vary from 0.375 V to 1.625 V to achieve the fully  
specified gain range.  
Note that, by connecting VOLx to the positive ADC input and  
VOHx to the negative ADC input, the negative input pulse is  
inverted automatically. The VGAx output is still a negative  
pulse, amplified by 20 dB for this example.  
Note the gain limits when the differential gain control exceeds  
0.625 V, either to 6 dB or to 30 dB. If the differential gain  
control input voltage is exceeded, no gain foldover occurs.  
ADR127  
NC  
NC  
NC  
6
5
4
1
2
3
+3.3V  
GND  
VREF = 1.25V  
1µF  
2 × V  
× D  
REFIN  
V
=
OUT  
V
V
OUT  
IN  
N
2
0.1µF  
VOLTAGE FROM DAC AD5381 = 0 TO 2.5V  
39  
V
RANGE = 0V TO 1.25V  
EACH  
+3.3V  
OUT  
V
0
V
OUT  
OUT  
10µF  
VARIES FROM  
12.5 TO 32.5µA  
REFIN  
V
VOUT0  
VOUT1  
VOUT2  
VOUT4  
DD  
DAC  
AD5381  
49.9k  
49.9kꢀ  
1%  
~250nA  
GNH4  
–625mV  
TO  
1%  
TO 9 OTHER  
AD8264s  
GNH1  
GND  
VOUT39  
49.9kꢀ  
1%  
49.9kꢀ  
1%  
+625mV  
0.1µF  
0.1µF  
EXAMPLE  
0V  
+3.3V  
VREF = 1.25V  
~250nA EACH  
49.9k49.9kꢀ  
SCALE  
VPOS  
IPPx  
GNLO  
1%  
1%  
–0.1V  
SCALE CIRCUIT  
10µF 0.1µF  
GNH1  
SCALE CIRCUIT  
SCALE CIRCUIT  
SCALE CIRCUIT  
SCALE CIRCUIT  
CIRCUIT  
GNH2  
GNH3  
GNH4  
–1.25V  
100ꢀ  
+3.3V  
AD8264  
PMT  
VGA OUTPUTS TO OTHER  
SIGNAL PROCESSING  
VGAx  
+1.8V  
VDD  
AD8663  
–3.3V  
VNEG VOCM OFSx VOHx VOLx  
FS = 2V p-p  
R
R
FILT  
V
+ x ADC  
AD9222/  
AD9228  
IN  
–3.3V  
C
GND  
FILT  
V
– x  
VREF SENSE  
IN  
VOFS = –0.5V  
FILT  
10µF  
0.1µF  
OUTPUT COMMON-MODE VOLTAGE = 1V  
VOHx = 1.5V, VOLx = 0.5V; VOFx = –0.5V  
SENSE GROUNDED: VREF = 1V  
Figure 113. Concept Application of AD8264 with 40-Channel AD5381 12-Bit, 3 V DAC and AD9222/AD9228 12-Bit ADC  
Rev. 0 | Page 31 of 40  
 
 
AD8264  
TO  
V
RANGE = 0V TO 1.25V  
EACH  
OUT  
+3.3V  
VPOS  
–3.3V  
VNEG  
SWITCHING  
POWER  
SUPPLY  
+3.3V +3.3V  
DVDD AVDDx  
VPOS  
VOUT0  
VOUT1  
VOUT3  
VOUT4  
GNH1  
–INx  
+INx  
VOHx  
GNH2  
GNH3  
GNH4  
DAC  
VOLx  
USB 2.0 TO PC  
ADI VISUAL  
ANALOG  
PARALLEL  
INTERFACE  
TO PC  
VGA  
AD5381  
TO 9  
OTHER  
AD8264s  
ADC  
OUTPUTS TO  
OTHER  
EVAL BOARD  
AD8264 VGA  
AD9228  
ANALYSIS  
SOFTWARE  
SIGNAL  
PROCESSING  
CONTROL  
EVAL BOARD  
VOUT39  
EVAL KIT  
IPPx  
+1.0V  
+2.5V  
VGAx  
OFSx VOCM  
DGND AGNDx  
VREF  
GNLO  
REFIN  
(ON BOARD)  
1.0  
0.8  
0.6  
0V  
0.4  
0.2  
GNLO = 625mV OFSx = 0.5V VOCM = 1.0V  
–0.1V  
0
INx  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
PULSE  
GENERATOR  
0
50 100 150 200 250 300  
SAMPLES  
Figure 114. Evaluation Setup for DC-Coupled Analog Front-End Pulse Processing Application Using the AD8264  
Figure 115. AD5381 Evaluation Software  
A convenient method of verifying and customizing the signal  
chains shown in Figure 112 or Figure 113 is by ordering the  
corresponding evaluation boards available on www.analog.com.  
The AD8264-EVALZ is a platform through which the user can  
quickly become familiar with the features and performance  
capabilities of the AD8264. See the Evaluation Board section for  
more information.  
and program such DAC parameters as input codes, offset level,  
and output range based on a 2.5 V or 1.25 V reference. For  
example, as shown in Figure 114, the reference can be set to 1.25 V,  
with a 0 V to 1.25 V output range to drive the GNHx inputs.  
The ADC evaluation kit includes the AD9228-65EBZ board and  
HSC-ADC-FIFO5 board to decode the ADC output. It also  
leverages the capabilities of VisualAnalog®, powerful simulation  
and data analysis software that enables the user to run FFTs and  
to do real-time capture of the output levels.  
The EVAL-AD5381EB (40-channel DAC) includes a parallel PC  
interface and software evaluation program to control the DAC.  
The AD5381evaluation software allows the user to configure  
Rev. 0 | Page 32 of 40  
 
AD8264  
TO  
V
RANGE = 0V TO 1.25V  
EACH  
OUT  
+3.3V  
VPOS  
–3.3V  
VNEG  
SWITCHING  
POWER  
+3.3V +3.3V  
SUPPLY  
VPOS  
DVDD AVDDx  
V
GNH1  
–INx  
+INx  
OUT0  
OUT1  
OUT3  
OUT4  
V
V
V
VOHx  
GNH2  
GNH3  
GNH4  
DAC  
VOLx  
USB 2.0 TO PC  
ADI VISUAL  
ANALOG  
PARALLEL  
INTERFACE  
TO PC  
VGA  
AD5381  
TO 9  
OTHER  
AD8264S  
ADC  
OUTPUTS TO  
OTHER  
EVAL BOARD  
AD8264 VGA  
AD9228  
ANALYSIS  
SOFTWARE  
SIGNAL  
PROCESSING  
CONTROL  
EVAL BOARD  
V
OUT39  
EVAL KIT  
IPPx  
+1.0V  
+2.5V  
VGAx  
OFSx VOCM  
DGND AGNDx  
VREF  
GNLO  
REFIN  
(ON BOARD)  
0
–15  
–30  
–45  
–60  
–75  
–90  
–105  
–120  
–135  
–150  
GNLO = 625mV  
VOCM = 1.0V  
INx  
+
3
2
4
AC  
SOURCE  
1.5M 3.0M 4.5M 6.0M 7.5M 9.0M 10.5M  
Figure 116. Evaluation Setup for AC Signal Processing Application Using the AD8264  
Rev. 0 | Page 33 of 40  
AD8264  
EVALUATION BOARD  
Analog Devices, Inc. provides evaluation boards to customers as  
a support service so that the circuit designer can become  
familiar with the device in the most efficient way possible. The  
AD8264 evaluation board provides a fast, easy, and convenient  
means to assess the performance of the AD8264 before going  
through the hassle and expense of design and layout of a custom  
board. The board is shipped fully assembled and tested, and it  
provides basic functionality as shipped. Standard connectors  
enable the user to attach standard lab test equipment without  
having to wait for the rest of the design to be completed. Figure 117  
shows a digital image of the top view, and Figure 118 shows the  
schematic diagram of the AD8264 evaluation board.  
CONNECTING AND USING THE AD8264-EVALZ  
The AD8264 operates with bipolar power supplies from 2.5 V dc  
to 5 V dc. Make sure the current capacity is ≥400 mA. Connect a  
ground reference from the supplies to any of the black test loops,  
the positive supply to the red test loop (+V), and the negative  
supply to the blue test loop (−V).  
Notice that the board is shipped with jumpers installed on the  
2-pin headers marked GN1_2, GN3_4, OFS_12, OFS_34, and  
VOCM. If these jumpers are missing, the offset and common-  
mode functions float high, substantially increasing the  
quiescent current of the board.  
Apply input signals to any of the preamps at the SMA connectors,  
IN1 through IN4. These connectors are terminated with 50 Ω to  
accommodate typical signal generator analyzer voltage source  
impedances. The gain of the AD8264 preamps is fixed at 6 dB (2×)  
and can be monitored at the SMA connectors, OP1_2 and OP3_4,  
if desired. Note that there are output selector switches for each pair  
of preamps and 453 Ω resistors in series with the preamp outputs.  
The printed circuit board (PCB) artwork for all conductor and silk-  
screen layers is shown in Figure 119 to Figure 124. A description of  
a typical test setup can be found in the Applications Information  
section. The PCB artwork can be used as a guide for circuit  
layout and placement of parts. This is particularly useful for  
multiple function circuits with many pins, requiring multiple  
passive components.  
Figure 117. Digital Image of the AD8264-EVALZ (Top View)  
Rev. 0 | Page 34 of 40  
 
 
 
AD8264  
GN12  
+V  
–V  
OFS12  
+V  
–V  
GND1 GND2 GND3 GND4 GND5 GND6  
+
C33  
10µF  
C34  
10µF  
+
L1  
FB  
L2  
FB  
R9  
DNI  
R10  
DNI  
R32  
DNI  
GN1_2  
OFS_12  
VGA1  
C20  
C19  
GNLO  
0.1µF  
0.1µF  
IN_1  
R51  
0ꢀ  
IN1  
C24  
0.1µF  
R11  
49.9ꢀ  
R1  
R47 R48  
0ꢀ  
VGA1  
R49 R86  
453ꢀ  
0ꢀ  
0ꢀ  
0ꢀ  
37  
OPP12  
R24  
40  
39  
38  
36  
35  
34  
33  
32  
31  
DNI  
OP12  
R7  
R55  
0ꢀ  
453ꢀ  
1
30  
29  
28  
27  
IPN1  
OP1_2  
VOL1  
VOH1  
VOH2  
VOL2  
VGA2  
VGA3  
VOL3  
R31  
DNI  
R56  
0ꢀ  
VOUT_1  
VOUT_2  
2
OPP1  
IN_2  
IN_3  
R58  
0ꢀ  
3
R45  
49.9ꢀ  
R73  
0ꢀ  
OPP2  
R23 R22  
DNI DNI  
R57  
0ꢀ  
IN2  
IN3  
4
IPN2  
R69  
453ꢀ  
VGA2  
VGA2  
26  
25  
5
IPP2  
PIN 0: EXPOSED PADDLE  
R78  
R46  
R67  
453ꢀ  
VGA3  
049.9ꢀ  
6
IPP3  
R25  
DNI  
R66  
0ꢀ  
VGA3  
24  
23  
22  
21  
7
IPN3  
R20  
DNI  
R65  
0ꢀ  
VOUT_3  
8
OPP3  
VOH3  
VOH4  
VOL4  
OP34  
R6  
453ꢀ  
R63  
0ꢀ  
9
OPP4  
OP3_4  
R19  
DNI  
R64  
0ꢀ  
VOUT_4  
VGA4  
10  
IPN4  
11  
R29  
DNI  
OPP34  
R8  
453ꢀ  
12  
13  
14  
15  
16  
17  
18  
19  
20  
IN_4  
R80  
0ꢀ  
R70 R71  
00ꢀ  
R79  
R17  
49.9ꢀ  
R72  
0ꢀ  
0ꢀ  
C23  
0.1µF  
VGA4  
IN4  
R16  
DNI  
C22  
0.1µF  
C21  
0.1µF  
R12  
DNI  
R28  
DNI  
OFS_34  
GN3_4  
VOCM  
L3  
FB  
L4  
FB  
VOCM  
+V  
–V  
OFS34  
GN34  
Figure 118. AD8264-EVALZ Schematic  
The SMA connectors, VGA1 through VGA4, enable signal  
monitoring at these nodes, with 453 Ω resistors for protecting  
the device. These resistors can be shorted at the discretion of  
the user if wide bandwidth is desired. The differential outputs  
are provided with 0.1” spacing 2-pin headers, which fit the low  
capacitance Tektronix differential scope probe P6045 model.  
quiescent gain control voltage at the GNHx pins from floating  
high. The low sides of the gain controls for each channel are  
internally connected in the AD8264, and a 2-pin header with  
jumper is provided to connect this pin (GNLO) to ground as well.  
A similar arrangement of 2-pin headers is provided for the output  
offset voltage. As shipped, the offset pins are connected to ground,  
preventing the pins from floating high.  
Note that the gain control input of the AD8264 is differential.  
Each channel has its own gain control pin (GNHx); however,  
pairs of pins are connected together on the evaluation board  
and connected to a test loop. The 2-pin headers are provided for  
jumpers to connect the gain pins to ground, preventing the  
For connecting to an ADC, remove the jumpers at the OF1_2  
and OF3_4 headers and connect the appropriate offset voltage  
at the test loops, OF12 and OF34. If the VOCM pin is buffered,  
it can be connected to the reference of the ADC.  
Rev. 0 | Page 35 of 40  
 
AD8264  
Figure 121. Component Side Silk Screen  
Figure 119. Component Side Assembly  
Figure 120. Component Side Copper  
Figure 122. Secondary Side Copper  
Rev. 0 | Page 36 of 40  
 
AD8264  
Figure 123. Ground Plane  
Figure 124. Power Plane  
Rev. 0 | Page 37 of 40  
 
AD8264  
OUTLINE DIMENSIONS  
6.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
31  
40  
1
30  
PIN 1  
INDICATOR  
0.50  
BSC  
TOP  
VIEW  
4.25  
4.10 SQ  
3.95  
5.75  
BSC SQ  
EXPOSED  
PAD  
(BOT TOM VIEW)  
0.50  
0.40  
0.30  
21  
10  
20  
11  
0.25 MIN  
4.50  
REF  
12° MAX  
0.80 MAX  
0.65 TYP  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2  
Figure 125. 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
6 mm × 6 mm Body, Very Thin Quad  
(CP-40-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CP-40-1  
CP-40-1  
Branding  
H1V  
H1V  
AD8264ACPZ1  
40-Lead LFCSP_VQ  
AD8264ACPZ-R71  
AD8264ACPZ-RL1  
AD8264-EVALZ1  
40-Lead LFCSP_VQ, 7”Tape and Reel  
40-Lead LFCSP_VQ, 13”Tape and Reel  
Evaluation Board  
CP-40-1  
H1V  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 38 of 40  
 
 
AD8264  
NOTES  
Rev. 0 | Page 39 of 40  
AD8264  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07736-0-5/09(0)  
Rev. 0 | Page 40 of 40  
 

相关型号:

AD8264-EVALZ

Quad, 235 MHz, DC-Coupled VGA and Differential Output Amplifier
ADI

AD8264ACPZ

Quad, 235 MHz, DC-Coupled VGA and Differential Output Amplifier
ADI

AD8264ACPZ

SPECIALTY ANALOG CIRCUIT, QCC40, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD-2, LFCSP-40
ROCHESTER

AD8264ACPZ-R7

Quad, 235 MHz, DC-Coupled VGA and Differential Output Amplifier
ADI

AD8264ACPZ-RL

Quad, 235 MHz, DC-Coupled VGA and Differential Output Amplifier
ADI

AD826AN

High-Speed, Low-Power Dual Operational Amplifier
ADI

AD826ANZ

High-Speed, Low-Power Dual Operational Amplifier
ADI

AD826AR

High-Speed, Low-Power Dual Operational Amplifier
ADI

AD826AR-REEL

High-Speed, Low-Power Dual Operational Amplifier
ADI

AD826AR-REEL7

High-Speed, Low-Power Dual Operational Amplifier
ADI

AD826ARZ

High-Speed, Low-Power Dual Operational Amplifier
ADI

AD826ARZ-REEL

High-Speed, Low-Power Dual Operational Amplifier
ADI