AD8276BRZ [ADI]

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifiers; 低功耗,宽电源电压范围,低成本单位增益差分放大器
AD8276BRZ
型号: AD8276BRZ
厂家: ADI    ADI
描述:

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifiers
低功耗,宽电源电压范围,低成本单位增益差分放大器

仪表放大器 放大器电路 光电二极管 PC
文件: 总20页 (文件大小:537K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power, Wide Supply Range, Low Cost  
Unity-Gain Difference Amplifiers  
AD8276/AD8277  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
+VS  
Wide input range beyond supplies  
Rugged input overvoltage protection  
Low supply current: 200 μA maximum per channel  
Low power dissipation: 0.5 mW at VS = 2.5 V  
Bandwidth: 550 kHz  
CMRR: 86 dB minimum, dc to 10 kHz  
Low offset voltage drift: 2 μV/°C maximum (B Grade)  
Low gain drift: 1 ppm/°C maximum (B Grade)  
Enhanced slew rate: 1.1 V/μs  
7
AD8276  
40k  
40kΩ  
2
5
6
–IN  
+IN  
SENSE  
OUT  
40kΩ  
40kΩ  
3
1
REF  
4
Wide power supply range:  
–VS  
Single supply: 2 V to 36 V  
Dual supplies: 2 V to 18 V  
Figure 1. AD8276  
+VS  
11  
APPLICATIONS  
AD8277  
40k  
40kΩ  
Voltage measurement and monitoring  
Current measurement and monitoring  
Differential output instrumentation amplifier  
Portable, battery-powered equipment  
Test and measurement  
2
12  
13  
–INA  
SENSEA  
OUTA  
40kΩ  
40kΩ  
40kΩ  
40kΩ  
3
6
14  
+INA  
–INB  
REFA  
GENERAL DESCRIPTION  
The AD8276/AD8277 are general-purpose, unity-gain difference  
amplifiers intended for precision signal conditioning in power  
critical applications that require both high performance and low  
power. They provide exceptional common-mode rejection ratio  
(86 dB) and high bandwidth while amplifying signals well beyond  
the supply rails. The on-chip resistors are laser-trimmed for  
excellent gain accuracy and high CMRR. They also have extremely  
low gain drift vs. temperature.  
10  
9
SENSEB  
OUTB  
40kΩ  
40kΩ  
5
8
+INB  
REFB  
4
–VS  
Figure 2. AD8277  
The common-mode range of the amplifiers extends to almost  
double the supply voltage, making these amplifiers ideal for single-  
supply applications that require a high common-mode voltage  
range. The internal resistors and ESD circuitry at the inputs also  
provide overvoltage protection to the op amps.  
Table 1. Difference Amplifiers by Category  
Low  
Distortion  
High  
Voltage  
Current  
Sensing1  
Low Power  
AD8276  
AD8277  
AD8270  
AD8271  
AD8273  
AD8274  
AMP03  
AD628  
AD629  
AD8202 (U)  
AD8203 (U)  
AD8205 (B)  
AD8206 (B)  
AD8216 (B)  
The AD8276/AD8277 are unity-gain stable. While they are  
optimized for use as difference amplifiers, they can also be  
connected in high precision, single-ended configurations with  
G = −1, +1, +2. The AD8276/AD8277 provide an integrated  
precision solution that has smaller size, lower cost, and better  
performance than a discrete alternative.  
AD8278  
1 U = unidirectional, B = bidirectional.  
The AD8276 is available in the space-saving 8-lead MSOP and  
SOIC packages, and the AD8277 is offered in a 14-lead SOIC  
package. Both are specified for performance over the industrial  
temperature range of −40°C to +85°C and are fully RoHS  
compliant.  
The AD8276/AD8277 operate on single supplies (2.0 V to 36 V)  
or dual supplies ( 2 V to 18 V). The maximum quiescent  
supply current is 200 μA per channel, which is ideal for battery-  
operated and portable systems.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
 
 
AD8276/AD8277  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Circuit Information.................................................................... 14  
Driving the AD8276/AD8277 .................................................. 14  
Input Voltage Range................................................................... 14  
Power Supplies............................................................................ 15  
Applications Information.............................................................. 16  
Configurations............................................................................ 16  
Differential Output .................................................................... 16  
Current Source............................................................................ 17  
Voltage and Current Monitoring.............................................. 17  
Instrumentation Amplifier........................................................ 18  
RTD.............................................................................................. 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
Maximum Power Dissipation ..................................................... 5  
Short-Circuit Current .................................................................. 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 14  
REVISION HISTORY  
7/09—Rev. 0 to Rev. A  
Changes to Input Voltage Range Section .................................... 14  
Changes to Power Supplies Section and Added Figure 40........ 15  
Added to Figure 40......................................................................... 15  
Changes to Differential Output Section...................................... 16  
Added Figure 47 and Changes to Current Source Section ....... 17  
Added Voltage and Current Monitoring Section and Figure 49.....17  
Moved Instrumentation Amplifier Section and Added RTD  
Added AD8277 ...................................................................Universal  
Changes to Features Section............................................................ 1  
Changes to General Description Section ...................................... 1  
Added Figure 2; Renumbered Sequentially .................................. 1  
Changes to Specifications Section.................................................. 3  
Changes to Figure 3 and Table 5..................................................... 5  
Added Figure 5 and Table 7; Renumbered Sequentially ............. 7  
Changes to Figure 10........................................................................ 8  
Changes to Figure 34...................................................................... 12  
Added Figure 36.............................................................................. 13  
Section........................................................................................................18  
Changes to Ordering Guide.......................................................... 20  
5/09—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
 
AD8276/AD8277  
SPECIFICATIONS  
VS = 5 V to 15 V, VREF = 0 V, TA = 25°C, RL = 10 kΩ connected to ground, G = 1 difference amplifier configuration, unless  
otherwise noted.  
Table 2.  
G = 1  
Grade B  
Typ  
Grade A  
Typ Max  
Parameter  
Conditions  
Min  
Max  
Min  
Unit  
INPUT CHARACTERISTICS  
System Offset1  
100  
0.5  
200  
200  
100 500  
500  
μV  
μV  
vs. Temperature  
Average Temperature  
Coefficient  
TA = −40°C to +85°C  
TA = −40°C to +85°C  
VS = 5 V to 18 V  
2
5
2
5
μV/°C  
μV/V  
vs. Power Supply  
10  
Common-Mode Rejection  
Ratio (RTI)  
Input Voltage Range2  
Impedance3  
VS = 15 V, VCM = 2ꢀ V,  
RS = 0 Ω  
86  
80  
dB  
V
−2(VS + 0.1)  
+2(VS − 1.5) −2(VS + 0.1)  
+2(VS − 1.5)  
Differential  
80  
40  
80  
40  
kΩ  
kΩ  
Common Mode  
DYNAMIC PERFORMANCE  
Bandwidth  
550  
1.1  
550  
1.1  
kHz  
V/μs  
Slew Rate  
0.9  
0.9  
Settling Time to 0.01%  
10 V step on output,  
CL = 100 pF  
15  
16  
15  
16  
μs  
μs  
dB  
Settling Time to 0.001%  
Channel Separation  
GAIN  
f = 1 kHz  
130  
130  
Gain Error  
0.005 0.02  
0.01 0.05  
%
Gain Drift  
TA = −40°C to +85°C  
VOUT = 20 V p-p  
1
5
5
10  
ppm/°C  
ppm  
Gain Nonlinearity  
OUTPUT CHARACTERISTICS  
Output Voltage Swing4  
VS = 15 V, RL = 10 kΩ,  
TA = −40°C to +85°C  
−VS + 0.2  
+VS − 0.2  
−VS + 0.2  
+VS − 0.2  
V
Short-Circuit Current Limit  
Capacitive Load Drive  
NOISE5  
15  
200  
15  
200  
mA  
pF  
Output Voltage Noise  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
2
65  
2
65  
ꢁV p-p  
nV/√Hz  
ꢀ0  
ꢀ0  
POWER SUPPLY  
Supply Current6  
vs. Temperature  
Operating Voltage Rangeꢀ  
TEMPERATURE RANGE  
Operating Range  
200  
250  
18  
200  
250  
18  
ꢁA  
ꢁA  
V
TA = −40°C to +85°C  
2
2
−40  
+125  
−40  
+125  
°C  
1 Includes input bias and offset current errors, RTO (referred to output).  
2 The input voltage range may also be limited by absolute maximum input voltage or by the output swing. See the Input Voltage Range section in the Theory of  
Operation section for details.  
3 Internal resistors are trimmed to be ratio matched and have 20% absolute accuracy.  
4 Output voltage swing varies with supply voltage and temperature. See Figure 18 through Figure 21 for details.  
5 Includes amplifier voltage and current noise, as well as noise from internal resistors.  
6 Supply current varies with supply voltage and temperature. See Figure 22 and Figure 24 for details.  
Unbalanced dual supplies can be used, such as −VS = −0.5 V and +VS = +2 V. The positive supply rail must be at least 2 V above the negative supply and reference  
voltage.  
Rev. A | Page 3 of 20  
 
 
AD8276/AD8277  
VS = +2.7 V to < 5 V, VREF = midsupply, TA = 25°C, RL = 10 kΩ connected to midsupply, G = 1 difference amplifier configuration, unless  
otherwise noted.  
Table 3.  
G = 1  
Grade B  
Typ  
Grade A  
Typ Max  
Parameter  
Conditions  
Min  
Max  
Min  
Unit  
INPUT CHARACTERISTICS  
System Offset1  
100  
0.5  
200  
200  
100 500  
500  
μV  
μV  
vs. Temperature  
Average Temperature  
Coefficient  
TA = −40°C to +85°C  
TA = −40°C to +85°C  
VS = 5 V to 18 V  
2
5
2
5
μV/°C  
μV/V  
vs. Power Supply  
10  
Common-Mode Rejection VS = 2.ꢀ V, VCM = 0 V  
Ratio (RTI)  
to 2.4 V, RS = 0 Ω  
86  
80  
80  
dB  
VS = 5 V, VCM = −10 V  
to +ꢀ V, RS = 0 Ω  
86  
dB  
V
Input Voltage Range2  
Impedance3  
−2(VS + 0.1)  
+2(VS − 1.5) −2(VS + 0.1)  
+2(VS − 1.5)  
Differential  
80  
40  
80  
40  
kΩ  
kΩ  
Common Mode  
DYNAMIC PERFORMANCE  
Bandwidth  
450  
1.0  
450  
1.0  
kHz  
V/μs  
Slew Rate  
Settling Time to 0.01%  
8 V step on output,  
CL = 100 pF, VS = 10 V  
5
5
μs  
Channel Separation  
GAIN  
f = 1 kHz  
130  
130  
dB  
Gain Error  
Gain Drift  
0.005  
0.02  
1
0.01 0.05  
5
%
TA = −40°C to +85°C  
ppm/°C  
OUTPUT CHARACTERISTICS  
Output Swing4  
RL = 10 kΩ ,  
TA = −40°C to +85°C  
−VS + 0.1  
+VS − 0.15  
−VS + 0.1  
+VS − 0.15  
V
Short-Circuit Current  
Limit  
10  
10  
mA  
Capacitive Load Drive  
NOISE5  
200  
200  
pF  
Output Voltage Noise  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
2
65  
2
65  
ꢁV p-p  
nV/√Hz  
POWER SUPPLY  
Supply Current6  
Operating Voltage  
Range  
TA = −40°C to +85°C  
200  
36  
200  
36  
ꢁA  
V
2.0  
2.0  
TEMPERATURE RANGE  
Operating Range  
−40  
+125  
−40  
+125  
°C  
1 Includes input bias and offset current errors, RTO (referred to output).  
2 The input voltage range may also be limited by absolute maximum input voltage or by the output swing. See the Input Voltage Range section in the Theory of Operation  
section for details.  
3 Internal resistors are trimmed to be ratio matched and have 20% absolute accuracy.  
4 Output voltage swing varies with supply voltage and temperature. See Figure 18 through Figure 21 for details.  
5 Includes amplifier voltage and current noise, as well as noise from internal resistors.  
6 Supply current varies with supply voltage and temperature. See Figure 23 and Figure 24 for details.  
Rev. A | Page 4 of 20  
 
AD8276/AD8277  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
2.0  
1.6  
1.2  
0.8  
0.4  
0
T
MAX = 150°C  
J
Parameter  
Rating  
14-LEAD SOIC  
= 105°C/W  
Supply Voltage  
18 V  
θ
JA  
Maximum Voltage at Any Input Pin  
Minimum Voltage at Any Input Pin  
Storage Temperature Range  
Specified Temperature Range  
Package Glass Transition Temperature (TG)  
−VS + 40 V  
+VS − 40 V  
−65°C to +150°C  
−40°C to +85°C  
150°C  
8-LEAD SOIC  
= 121°C/W  
θ
JA  
8-LEAD MSOP  
= 135°C/W  
θ
JA  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
–50  
–25  
0
25  
50  
75  
100  
125  
AMBIENT TEMERATURE (°C)  
Figure 3. Maximum Power Dissipation vs. Ambient Temperature  
SHORT-CIRCUIT CURRENT  
THERMAL RESISTANCE  
The AD8276/AD8277 have built-in, short-circuit protection  
that limits the output current (see Figure 25 for more information).  
While the short-circuit condition itself does not damage the  
part, the heat generated by the condition can cause the part to  
exceed its maximum junction temperature, with corresponding  
negative effects on reliability. Figure 3 and Figure 25, combined  
with knowledge of the supply voltages and ambient temperature of  
the part, can be used to determine whether a short circuit will  
cause the part to exceed its maximum junction temperature.  
The θJA values in Table 5 assume a 4-layer JEDEC standard  
board with zero airflow.  
Table 5.  
Package Type  
8-Lead MSOP  
8-Lead SOIC  
θJA  
Unit  
°C/W  
°C/W  
°C/W  
135  
121  
105  
14-Lead SOIC  
ESD CAUTION  
MAXIMUM POWER DISSIPATION  
The maximum safe power dissipation for the AD8276/AD8277  
is limited by the associated rise in junction temperature (TJ) on  
the die. At approximately 150°C, which is the glass transition  
temperature, the properties of the plastic change. Even temporarily  
exceeding this temperature limit may change the stresses that the  
package exerts on the die, permanently shifting the parametric  
performance of the amplifiers. Exceeding a temperature of 150°C  
for an extended period may result in a loss of functionality.  
Rev. A | Page 5 of 20  
 
 
 
 
 
AD8276/AD8277  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
REF  
1
2
3
4
8
7
6
5
NC  
REF  
–IN  
1
2
3
4
8
7
6
5
NC  
AD8276  
TOP VIEW  
AD8276  
TOP VIEW  
(Not to Scale)  
–IN  
+VS  
+VS  
+IN  
–VS  
OUT  
SENSE  
+IN  
OUT  
SENSE  
(Not to Scale)  
–VS  
NC = NO CONNECT  
NC = NO CONNECT  
Figure 4. AD8276 8-Lead MSOP Pin Configuration  
Figure 5. AD8276 8-Lead SOIC Pin Configuration  
Table 6. AD8276 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
4
5
6
8
REF  
−IN  
+IN  
−VS  
SENSE  
OUT  
+VS  
NC  
Reference Voltage Input.  
Inverting Input.  
Noninverting Input.  
Negative Supply.  
Sense Terminal.  
Output.  
Positive Supply.  
No Connect.  
Rev. A | Page 6 of 20  
 
AD8276/AD8277  
NC  
–INA  
+INA  
–VS  
1
2
3
4
5
6
7
14 REFA  
13 OUTA  
12 SENSEA  
11 +VS  
AD8277  
TOP VIEW  
(Not to Scale)  
+INB  
–INB  
NC  
10 SENSEB  
9
8
OUTB  
REFB  
NC = NO CONNECT  
Figure 6. AD8277 14-Lead SOIC Pin Configuration  
Table 7. AD8277 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
NC  
No Connect.  
2
3
4
−INA  
+INA  
−VS  
Channel A Inverting Input.  
Channel A Noninverting Input.  
Negative Supply.  
5
6
+INB  
−INB  
NC  
Channel B Noninverting Input.  
Channel B Inverting Input.  
No Connect.  
8
9
REFB  
OUTB  
SENSEB  
+VS  
SENSEA  
OUTA  
REFA  
Channel B Reference Voltage Input.  
Channel B Output.  
Channel B Sense Terminal.  
Positive Supply.  
Channel A Sense Terminal.  
Channel A Output.  
Channel A Reference Voltage Input.  
10  
11  
12  
13  
14  
Rev. A | Page ꢀ of 20  
AD8276/AD8277  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 15 V, TA = 25°C, RL = 10 kꢀ connected to ground, G = 1 difference amplifier configuration, unless otherwise noted.  
80  
N = 2042  
MEAN = –2.28  
600  
500  
400  
300  
200  
100  
0
SD = 32.7  
60  
40  
20  
0
–20  
–40  
–60  
–80  
–100  
–300  
–200  
–100  
0
100  
200  
300  
–50  
–35  
–20  
–5  
10  
25  
40  
55  
70  
85  
SYSTEM OFFSET VOLTAGE (µV)  
TEMPERATURE (°C)  
Figure 7. Distribution of Typical System Offset Voltage  
Figure 10. System Offset vs. Temperature, Normalized at 25°C  
20  
15  
N = 2040  
MEAN = –0.87  
SD = 16.2  
400  
300  
200  
100  
0
10  
5
0
–5  
–10  
–15  
–20  
–25  
REPRESENTATIVE DATA  
–30  
–50  
–90  
–60  
–30  
0
30  
60  
90  
–35  
–20  
–5  
10  
25  
40  
55  
70  
85 90  
CMRR (µV/V)  
TEMPERATURE (°C)  
Figure 11. Gain Error vs. Temperature, Normalized at 25°C  
Figure 8. Distribution of Typical Common-Mode Rejection  
10  
4
0
–10  
–20  
–30  
–40  
–50  
2
0
V
= ±15V  
S
V
= +2.7V  
–2  
S
–4  
–6  
–8  
REPRESENTATIVE DATA  
100  
1k  
10k  
100k  
1M  
10M  
–50  
–35  
–20  
–5  
10  
25  
40  
55  
70  
85 90  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 12. Gain vs. Frequency, VS = 15 V, +2.7 V  
Figure 9. CMRR vs. Temperature, Normalized at 25°C  
Rev. A | Page 8 of 20  
 
AD8276/AD8277  
120  
100  
80  
60  
40  
20  
0
8
6
V
= ±15V  
V
= MIDSUPPLY  
S
REF  
V
= 5V  
S
4
2
0
V
= 2.7V  
S
–2  
–4  
–6  
1
10  
100  
1k  
10k  
100k  
1M  
–0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
FREQUENCY (Hz)  
OUTPUT VOLTAGE (V)  
Figure 13. CMRR vs. Frequency  
Figure 16. Input Common-Mode Voltage vs. Output Voltage,  
5 V and 2.7 V Supplies, VREF = Midsupply  
120  
100  
80  
60  
40  
20  
0
8
V
= 0V  
REF  
V
= 5V  
S
6
4
–PSRR  
2
+PSRR  
V
= 2.7V  
S
0
–2  
–4  
1
10  
100  
1k  
10k  
100k  
1M  
–0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
FREQUENCY (Hz)  
OUTPUT VOLTAGE (V)  
Figure 14. PSRR vs. Frequency  
Figure 17. Input Common-Mode Voltage vs. Output Voltage,  
5 V and 2.7 V Supplies, VREF = 0 V  
+V  
S
30  
20  
–0.1  
–0.2  
–0.3  
–0.4  
V
= ±15V  
S
10  
T
T
T
T
= –40°C  
= +25°C  
= +85°C  
= +125°C  
A
A
A
A
V
= ±5V  
S
0
+0.4  
+0.3  
+0.2  
+0.1  
–10  
–20  
–30  
–V  
S
2
4
6
8
10  
12  
14  
16  
18  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
SUPPLY VOLTAGE (±V )  
OUTPUT VOLTAGE (V)  
S
Figure 15. Input Common-Mode Voltage vs. Output Voltage,  
15 V and 5 V Supplies  
Figure 18. Output Voltage Swing vs. Supply Voltage Per Channel and  
Temperature, RL = 10 kΩ  
Rev. A | Page 9 of 20  
 
 
AD8276/AD8277  
+V  
180  
170  
160  
150  
140  
130  
120  
S
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
T
T
T
T
= –40°C  
= +25°C  
= +85°C  
= +125°C  
A
A
A
A
+1.2  
+1.0  
+0.8  
+0.6  
+0.4  
+0.2  
–V  
S
2
4
6
8
10  
12  
14  
16  
18  
0
2
4
6
8
10  
12  
14  
16  
18  
SUPPLY VOLTAGE (±V )  
SUPPLY VOLTAGE (±V)  
S
Figure 22. Supply Current Per Channel vs. Dual Supply Voltage, VIN = 0 V  
Figure 19. Output Voltage Swing vs. Supply Voltage Per Channel and  
Temperature, RL = 2 kΩ  
180  
170  
160  
150  
140  
130  
120  
+V  
S
–4  
–8  
T
T
T
T
= –40°C  
= +25°C  
= +85°C  
= +125°C  
A
A
A
A
+8  
+4  
–V  
S
1k  
0
5
10  
15  
20  
25  
30  
35  
40  
10k  
100k  
SUPPLY VOLTAGE (V)  
LOAD RESISTANCE ()  
Figure 20. Output Voltage Swing vs. RL and Temperature, VS = 15 V  
Figure 23. Supply Current Per Channel vs. Single-Supply Voltage, VIN = 0 V,  
VREF = 0 V  
+V  
250  
S
V
= MIDSUPPLY  
REF  
–0.5  
–1.0  
–1.5  
–2.0  
200  
150  
100  
50  
T
T
T
T
= –40°C  
= +25°C  
= +85°C  
= +125°C  
A
A
A
A
V
= ±15V  
S
+2.0  
+1.5  
+1.0  
+0.5  
V
= +2.7V  
S
–V  
0
–50  
S
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
0
1
2
3
4
5
6
7
8
9
10  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
Figure 24. Supply Current Per Channel vs. Temperature  
Figure 21. Output Voltage Swing vs. IOUT and Temperature, VS = 15 V  
Rev. A | Page 10 of 20  
 
 
 
 
 
 
AD8276/AD8277  
30  
25  
20  
15  
10  
5
5V/DIV  
I
SHORT+  
11.24 µs TO 0.01%  
13.84µs TO 0.001%  
0
0.002%/DIV  
–5  
–10  
–15  
–20  
I
SHORT–  
50  
40µs/DIV  
TIME (µs)  
–50  
–30  
–10  
10  
30  
70  
90  
110  
130  
TEMPERATURE (°C)  
Figure 25. Short-Circuit Current Per Channel vs. Temperature  
Figure 28. Large-Signal Pulse Response and Settling Time, 10 V Step,  
VS = 15 V  
1.4  
1.2  
–SR  
1.0  
1V/DIV  
+SR  
0.8  
4.34 µs TO 0.01%  
5.12µs TO 0.001%  
0.6  
0.4  
0.2  
0
0.002%/DIV  
40µs/DIV  
TIME (µs)  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
TEMPERATURE (°C)  
Figure 26. Slew Rate vs. Temperature, VIN = 20 V p-p, 1 kHz  
Figure 29. Large-Signal Pulse Response and Settling Time, 2 V Step,  
VS = 2.7 V  
8
6
4
2
0
–2  
–4  
–6  
–8  
10µs/DIV  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
OUTPUT VOLTAGE (V)  
Figure 27. Gain Nonlinearity, VS = 15 V, RL ≥ 2 kΩ  
Figure 30. Large-Signal Step Response  
Rev. A | Page 11 of 20  
 
AD8276/AD8277  
30  
40  
35  
30  
25  
20  
15  
10  
5
V
= ±15V  
S
25  
20  
15  
10  
5
±2V  
±5V  
±18V  
±15V  
V
= ±5V  
S
0
100  
0
100  
1k  
10k  
100k  
1M  
150  
200  
250  
300  
350  
400  
FREQUENCY (Hz)  
CAPACITIVE LOAD (pF)  
Figure 31. Maximum Output Voltage vs. Frequency, VS = 15 V, 5 V  
Figure 34. Small-Signal Overshoot vs. Capacitive Load, RL ≥ 2 kΩ  
5.0  
1k  
V
= 5V  
S
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
100  
V
= 2.7V  
S
10  
0.1  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 32. Maximum Output Voltage vs. Frequency, VS = 5 V, 2.7 V  
Figure 35. Voltage Noise Density vs. Frequency  
C
= 100pF  
L
C
= 200pF  
L
C
= 300pF  
L
C
= 470pF  
L
40µs/DIV  
1s/DIV  
Figure 33. Small-Signal Step Response for Various Capacitive Loads  
Figure 36. 0.1 Hz to 10 Hz Voltage Noise  
Rev. A | Page 12 of 20  
AD8276/AD8277  
160  
140  
120  
100  
80  
NO LOAD  
10kLOAD  
2kLOAD  
1kLOAD  
60  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 37. Channel Separation  
Rev. A | Page 13 of 20  
AD8276/AD8277  
THEORY OF OPERATION  
AC Performance  
CIRCUIT INFORMATION  
Component sizes and trace lengths are much smaller in an IC  
than on a PCB, so the corresponding parasitic elements are also  
smaller. This results in better ac performance of the AD8276/  
AD8277. For example, the positive and negative input terminals  
of the AD8276/AD8277 op amps are intentionally not pinned  
out. By not connecting these nodes to the traces on the PCB, the  
capacitance remains low, resulting in improved loop stability  
and excellent common-mode rejection over frequency.  
Each channel of the AD8276/AD8277 consists of a low power, low  
noise op amp and four laser-trimmed on-chip resistors. These  
resistors can be externally connected to make a variety of amplifier  
configurations, including difference, noninverting, and inverting  
configurations. Taking advantage of the integrated resistors of  
the AD8276/AD8277 provides the designer with several benefits  
over a discrete design, including smaller size, lower cost, and  
better ac and dc performance.  
+VS  
DRIVING THE AD8276/AD8277  
7
AD8276  
40k  
Care should be taken to drive the AD8276/AD8277 with a low  
impedance source: for example, another amplifier. Source  
resistance of even a few kilohms (kꢀ) can unbalance the resistor  
ratios and, therefore, significantly degrade the gain accuracy and  
common-mode rejection of the AD8276/AD8277. Because all  
configurations present several kilohms of input resistance, the  
AD8276/AD8277 do not require a high current drive from the  
source and so are easy to drive.  
40kΩ  
2
5
6
IN–  
IN+  
SENSE  
OUT  
40kΩ  
40kΩ  
3
1
REF  
4
–VS  
INPUT VOLTAGE RANGE  
Figure 38. Functional Block Diagram  
The AD8276/AD8277 are able to measure input voltages beyond  
the supply rails. The internal resistors divide down the voltage  
before it reaches the internal op amp and provide protection to  
the op amp inputs. Figure 39 shows an example of how the  
voltage division works in a difference amplifier configuration.  
For the AD8276/AD8277 to measure correctly, the input  
voltages at the input nodes of the internal op amp must stay  
below 1.5 V of the positive supply rail and can exceed the  
negative supply rail by 0.1 V. Refer to the Power Supplies section  
for more details.  
DC Performance  
Much of the dc performance of op amp circuits depends on the  
accuracy of the surrounding resistors. Using superposition to  
analyze a typical difference amplifier circuit, as is shown in  
Figure 39, the output voltage is found to be  
R2  
R1 + R2  
R4  
R3  
R4  
R3  
VOUT = VIN +  
1 +  
V  
IN −  
This equation demonstrates that the gain accuracy and common-  
mode rejection ratio of the AD8276/AD8277 is determined  
primarily by the matching of resistor ratios. Even a 0.1% mismatch  
in one resistor degrades the CMRR to 66 dB for a G = 1 difference  
amplifier.  
R2  
R1 + R2  
(V  
)
IN+  
R4  
R3  
R1  
V
V
IN–  
IN+  
The difference amplifier output voltage equation can be reduced to  
R2  
R4  
R3  
R2  
R1 + R2  
VOUT  
=
(
VIN + VI  
)
(V  
)
IN+  
N −  
Figure 39. Voltage Division in the Difference Amplifier Configuration  
as long as the following ratio of the resistors is tightly matched:  
The AD8276/AD8277 have integrated ESD diodes at the inputs  
that provide overvoltage protection. This feature simplifies  
system design by eliminating the need for additional external  
protection circuitry, and enables a more robust system.  
R2 R4  
=
R1 R3  
The resistors on the AD8276/AD8277 are laser trimmed to match  
accurately. As a result, the AD8276/AD8277 provide superior  
performance over a discrete solution, enabling better CMRR,  
gain accuracy, and gain drift, even over a wide temperature range.  
The voltages at any of the inputs of the parts can safely range  
from +VS − 40 V up to −VS + 40 V. For example, on 10 V  
supplies, input voltages can go as high as 30 V. Care should be  
taken to not exceed the +VS − 40 V to −VS + 40 V input limits  
to avoid risking damage to the parts.  
Rev. A | Page 14 of 20  
 
 
 
 
 
 
 
AD8276/AD8277  
The AD8276/AD8277 are typically specified at single- and dual-  
supplies, but they can be used with unbalanced supplies, as well;  
for example, −VS = −5 V, +VS = 20 V. The difference between the  
two supplies must be kept below 36 V. The positive supply rail  
must be at least 2 V above the negative supply and reference  
voltage.  
POWER SUPPLIES  
The AD8276/AD8277 operate extremely well over a very wide  
range of supply voltages. They can operate on a single supply as  
low as 2 V and as high as 36 V, under appropriate setup conditions.  
For best performance, the user must exercise care that the setup  
conditions ensure that the internal op amp is biased correctly.  
The internal input terminals of the op amp must have sufficient  
voltage headroom to operate properly. Proper operation of the  
part requires at least 1.5 V between the positive supply rail and  
the op amp input terminals. This relationship is expressed in  
the following equation:  
R1  
R1 + R2  
(V  
)
REF  
R4  
R3  
R1  
R2  
V
R1  
R1 + R2  
REF  
R1  
R1 + R2  
VREF < +VS 1.5 V  
(V  
REF  
)
Figure 40. Ensure Sufficient Voltage Headroom on the Internal Op Amp  
Inputs  
For example, when operating on a +VS = 2 V single supply and  
V
REF = 0 V, it can be seen from Figure 40 that the input terminals  
Use a stable dc voltage to power the AD8276/AD8277. Noise on  
the supply pins can adversely affect performance. Place a bypass  
capacitor of 0.1 μF between each supply pin and ground, as  
close as possible to each supply pin. Use a tantalum capacitor  
of 10 μF between each supply and ground. It can be farther  
away from the supply pins and, typically, it can be shared by  
other precision integrated circuits.  
of the op amp are biased at 0 V, allowing more than the required  
1.5 V headroom. However, if VREF = 1 V under the same conditions,  
the input terminals of the op amp are biased at 0.5 V, barely  
allowing the required 1.5 V headroom. This setup does not allow  
any practical voltage swing on the non inverting input. Therefore,  
the user needs to increase the supply voltage or decrease VREF to  
restore proper operation.  
Rev. A | Page 15 of 20  
 
 
 
AD8276/AD8277  
APPLICATIONS INFORMATION  
CONFIGURATIONS  
40k  
40kΩ  
2
5
6
IN  
The AD8276/AD8277 can be configured in several ways (see  
Figure 42 to Figure 46). All of these configurations have excellent  
gain accuracy and gain drift because they rely on the internal  
matched resistors. Note that Figure 43 shows the AD8276/AD8277  
as difference amplifiers with a midsupply reference voltage at  
the noninverting input. This allows the AD8276/AD8277 to be  
used as a level shifter, which is appropriate in single-supply  
applications that are referenced to midsupply.  
OUT  
40kΩ  
40kΩ  
1
3
V
= –V  
IN  
OUT  
Figure 44. Inverting Amplifier, Gain = −1  
As with the other inputs, the reference must be driven with a  
low impedance source to maintain the internal resistor ratio. An  
example using the low power, low noise OP1177 as a reference  
is shown in Figure 41.  
40kΩ  
40kΩ  
40kΩ  
40kΩ  
2
5
6
OUT  
1
3
INCORRECT  
CORRECT  
IN  
V
= V  
OUT  
IN  
Figure 45. Noninverting Amplifier, Gain = 1  
AD8276  
AD8276  
REF  
REF  
V
V
40kΩ  
40kΩ  
2
5
6
+
OP1177  
OUT  
40kΩ  
40kΩ  
1
3
IN  
Figure 41. Driving the Reference Pin  
V
= 2V  
OUT  
IN  
Figure 46. Noninverting Amplifier, Gain = 2  
40kΩ  
40kΩ  
40kΩ  
40kΩ  
2
5
6
–IN  
DIFFERENTIAL OUTPUT  
OUT  
Certain systems require a differential signal for better perfor-  
mance, such as the inputs to differential analog-to-digital  
converters. Figure 47 shows how the AD8276/AD8277 can  
be used to convert a single-ended output from an AD8226  
instrumentation amplifier into a differential signal. The internal  
matched resistors of the AD8276 at the inverting input maximize  
gain accuracy while generating a differential signal. The resistors at  
the noninverting input can be used as a divider to set and track  
the common-mode voltage accurately to midsupply, especially  
when running on a single supply or in an environment where  
the supply fluctuates. The resistors at the noninverting input  
can also be shorted and set to any appropriate bias voltage. Note  
that the VBIAS = VCM node indicated in Figure 47 is internal to  
the AD8276 because it is not pinned out.  
3
1
+IN  
V
= V  
V  
OUT  
IN+ IN  
Figure 42. Difference Amplifier, Gain = 1  
40kΩ  
40kΩ  
40kΩ  
40kΩ  
2
5
6
–IN  
OUT  
3
1
+IN  
V
= MIDSUPPLY  
REF  
V
= V  
V  
OUT  
IN+ IN  
V
+
AD8226  
S
+IN  
–IN  
Figure 43. Difference Amplifier, Gain = 1, Referenced to Midsupply  
+OUT  
V
REF  
R
R
R
AD8276  
R
V
= V  
CM  
BIAS  
–OUT  
V –  
S
Figure 47. Differential Output With Supply Tracking on Common-Mode  
Voltage Reference  
Rev. A | Page 16 of 20  
 
 
 
 
 
 
 
AD8276/AD8277  
V+  
The differential output voltage and common-mode voltage of  
the AD8226 is shown in the following equations:  
V+  
–2.5V  
7
1
2
3
4
5
10  
9
40k  
5
VDIFF_OUT = V+OUT V−OUT = GainAD8226 × (V+IN V−IN  
VCM = (VS+ VS−)/2 = VBIAS  
)
40kΩ  
40kΩ  
2
8
R2  
6
2N3904  
3
7
REF  
ADR821  
Refer to the AD8226 data sheet for additional information.  
R1  
6
40kΩ  
1
+VS  
V–  
R
AD8276  
LOAD  
11  
4
AD8277  
I
= 2.5V(1/40k+ 1/R1)  
O
40k  
40kΩ  
R1 = R2  
2
–IN  
+IN  
12  
13  
Figure 49. Constant Current Source  
+OUT  
VOLTAGE AND CURRENT MONITORING  
Voltage and current monitoring is critical in the following  
40kΩ  
40kΩ  
40kΩ  
40kΩ  
3
6
14  
applications: power line metering, power line protection, motor  
control applications, and battery monitoring. The AD8276/  
AD8277 can be used to monitor voltages and currents in a  
system, as shown in Figure 50. As the signals monitored by the  
AD8276/AD8277 rise above or drop below critical levels, a  
circuit event can be triggered to correct the situation or raise  
a warning.  
10  
9
–OUT  
40kΩ  
40kΩ  
5
8
AD8276  
4
I
1
R
–VS  
Figure 48. AD8277 Differential Output Configuration  
AD8276  
AD8276  
The two difference amplifiers of the AD8277 can be configured  
to provide a differential output, as shown in Figure 48. This  
differential output configuration is suitable for various applications,  
such as strain gage excitation and single-ended-to-differential  
conversion. The differential output voltage has a gain of 2 as  
shown in the following equation:  
I
3
R
I
C
ADC  
OP1177  
8:1  
V
1
R
VDIFF_OUT = V+OUT V−OUT = 2 × (V+IN V−IN  
)
AD8276  
AD8276  
CURRENT SOURCE  
V
3
R
R
The AD8276 difference amplifier can be implemented as part  
of a voltage-to-current converter or a precision constant current  
source as shown in Figure 49. Using an integrated precision  
solution such as the AD8276 provides several advantages over  
a discrete solution, including space-saving, improved gain accuracy,  
and temperature drift. The internal resistors are tightly matched  
to minimize error and temperature drift. If the external resistors,  
R1 and R2, are not well-matched, they become a significant  
source of error in the system, so precision resistors are recom-  
mended to maintain performance. The ADR821 provides a  
precision voltage reference and integrated op amp that also  
reduces error in the signal chain.  
V
C
Figure 50.Voltage and Current Monitoring in 3-Phase Power Line Protection  
Using the AD8276  
Figure 50 shows an example of how the AD8276 can be used to  
monitor voltage and current on a 3-phase power supply. I1  
through I3 are the currents to be monitored, and V1 through V3  
are the voltages to be monitored on each phase. IC and VC are  
the common or zero lines. Couplers or transformers interface  
the power lines to the front-end circuitry and provide  
attenuation, isolation, and protection.  
The AD8276 has rail-to-rail output capability that allows higher  
current outputs.  
On the current monitoring side, current transformers (CTs)  
step down the power-line current and isolate the front-end  
circuitry from the high voltage and high current lines. Across  
the inputs of each difference amplifier is a shunt resistor that  
converts the coupled current into a voltage. The value of the  
Rev. A | Page 1ꢀ of 20  
 
 
 
 
 
AD8276/AD8277  
resistor is determined by the characteristics of the coupler or  
transformer and desired input voltage ranges to the AD8276.  
Table 8. Low Power Op Amps  
Op Amp (A1, A2) Features  
AD8506  
AD860ꢀ  
AD861ꢀ  
AD866ꢀ  
Dual micropower op amp  
On the voltage monitoring side, potential transformers (PTs)  
are used to provide coupling and galvanic isolation. The PTs  
present a load to the power line and also step down the voltage  
to a measureable level. The AD8276 helps to build a robust  
system because it allows input voltages that are almost double  
its supply voltage, while providing additional input protection  
in the form of the integrated ESD diodes.  
Precision dual micropower op amp  
Low cost CMOS micropower op amp  
Dual precision CMOS micropower op amp  
It is preferable to use dual op amps for the high impedance inputs  
because they have better matched performance and track each  
other over temperature. The AD8276 difference amplifiers  
cancel out common-mode errors from the input op amps, if  
they track each other. The differential gain accuracy of the in-  
amp is proportional to how well the input feedback resistors  
(RF) match each other. The CMRR of the in-amp increases as  
the differential gain is increased (1 + 2RF/RG), but a higher gain  
also reduces the common-mode voltage range. Note that dual  
supplies must be used for proper operation of this configuration.  
Not only does the AD8276 monitor the voltage and currents on  
the power lines, it is able to reject very high common-mode  
voltages that may appear at the inputs. The AD8276 also  
performs the differential-to-single-ended conversion on the  
input voltages. The 80 kΩ differential input impedance that the  
AD8276 presents is high enough that it should not load the  
input signals.  
Refer to A Designer’s Guide to Instrumentation Amplifiers for  
more design ideas and considerations.  
I
SH  
AD8276  
R
RTD  
SH  
V
= I × R  
SH SH  
OUT  
Resistive temperature detectors (RTDs) are often measured  
remotely in industrial control systems. The wire lengths  
needed to connect the RTD to a controller add significant  
cost and resistance errors to the measurement. The AD8276  
difference amplifier is effective in measuring errors caused by  
wire resistance in remote 3-wire RTD systems, allowing the  
user to cancel out the errors introduced by the wires. Its  
excellent gain drift provides accurate measurements and stable  
performance over a wide temperature range.  
Figure 51. AD8276 Monitoring Current Through a Shunt Resistor  
Figure 51 shows how the AD8276 can be used to monitor the  
current through a small shunt resistor. This is useful in power  
critical applications such as motor control (current sense) and  
battery monitoring.  
INSTRUMENTATION AMPLIFIER  
I
EX  
The AD8276/AD8277 can be used as building blocks for a low  
power, low cost instrumentation amplifier. An instrumentation  
amplifier provides high impedance inputs and delivers high  
common-mode rejection. Combining the AD8276 with an  
Analog Devices, Inc. low power amplifier (see Table 8) creates a  
precise, power efficient voltage measurement solution suitable  
for power critical systems.  
R
L1  
V
R
OUT  
T
Σ-Δ  
ADC  
R
R
L2  
L3  
AD8276  
REF  
–IN  
A1  
40kΩ  
Figure 53. 3-Wire RTD Cable Resistance Error Measurement  
R
F
40kΩ  
40kΩ  
R
G
V
OUT  
40kΩ  
AD8276  
R
F
REF  
= (1 + 2R /R ) (V  
IN+  
A2  
+IN  
V
– V )  
IN–  
OUT  
F
G
Figure 52. Low Power Precision Instrumentation Amplifier  
Rev. A | Page 18 of 20  
 
 
 
 
AD8276/AD8277  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 54. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 55. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
Rev. A | Page 19 of 20  
 
AD8276/AD8277  
Figure 56. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-14)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
AD82ꢀ6ARZ1  
Temperature Range  
Package Description  
Package Option  
R-8  
Branding  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
8-Lead SOIC_N  
AD82ꢀ6ARZ-Rꢀ1  
AD82ꢀ6ARZ-RL1  
AD82ꢀ6BRZ1  
8-Lead SOIC_N, ꢀ" Tape and Reel  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, ꢀ" Tape and Reel  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, " Tape and Reel  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, " Tape and Reel  
8-Lead MSOP, 13" Tape and Reel  
14-Lead SOIC_N  
14-Lead SOIC_N, ꢀ" Tape and Reel  
14-Lead SOIC_N, 13" Tape and Reel  
14-Lead SOIC_N  
14-Lead SOIC_N, ꢀ" Tape and Reel  
14-Lead SOIC_N, ꢀ" Tape and Reel  
R-8  
R-8  
R-8  
R-8  
AD82ꢀ6BRZ-Rꢀ1  
AD82ꢀ6BRZ-RL1  
AD82ꢀ6ARMZ1  
AD82ꢀ6ARMZ-Rꢀ1  
AD82ꢀ6ARMZ-RL1  
AD82ꢀ6BRMZ1  
AD82ꢀ6BRMZ-Rꢀ1  
AD82ꢀ6BRMZ-RL1  
AD82ꢀꢀARZ1  
AD82ꢀꢀARZ-Rꢀ1  
AD82ꢀꢀARZ-RL1  
AD82ꢀꢀBRZ1  
AD82ꢀꢀBRZ-Rꢀ1  
AD82ꢀꢀBRZ-RL1  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
R-14  
R-14  
R-14  
R-14  
R-14  
H1P  
H1P  
H1P  
H1Q  
H1Q  
H1Q  
R-14  
1 Z = RoHS Compliant Part.  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07692-0-7/09(A)  
Rev. A | Page 20 of 20  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY