AD8284_17 [ADI]

Radar Receive Path AFE: 4-Channel Mux;
AD8284_17
型号: AD8284_17
厂家: ADI    ADI
描述:

Radar Receive Path AFE: 4-Channel Mux

文件: 总29页 (文件大小:670K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Radar Receive Path AFE: 4-Channel Mux  
with LNA, PGA, AAF, and ADC  
Data Sheet  
AD8284  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
4-channel mux to LNA, PGA, AAF  
1 direct-to-ADC channel  
Programmable gain amplifier (PGA)  
Includes low noise preamplifier (LNA)  
SPI-programmable gain = 17 dB to 35 dB in 6 dB steps  
Antialiasing filter (AAF)  
Programmable third-order low-pass elliptic filter (LPF) from  
9 MHz to 15 MHz  
Analog-to-digital converter (ADC)  
12 bits of accuracy of up to 60 MSPS  
SNR = 67 dB  
REFERENCE  
INA+  
INA–  
AD8284  
SATURATION  
DETECTION  
INB+  
INB–  
MUX  
LNA  
PGA  
AAF  
INC+  
INC–  
SFDR = 68 dBc  
D0  
TO  
D11  
12-BIT  
ADC  
MUX  
Low power, 345 mW at 12 bits per 60 MSPS  
Low noise, 3.5 nV/√Hz maximum of input referred  
voltage noise  
IND+  
IND–  
INADC+  
INADC–  
Power-down mode  
64-lead, 10 mm × 10 mm TQFP package  
Specified from −40°C to +105°C  
Qualified for automotive applications  
SPI  
APPLICATIONS  
Automotive radar  
Adaptive cruise control  
Collision avoidance  
Blind spot detection  
Self parking  
Figure 1.  
Electronic bumper  
GENERAL DESCRIPTION  
The AD8284 is an integrated analog front end designed for low  
cost, compact size, flexibility, and ease of use. It contains a  
4-channel differential multiplexer (mux), a 1-channel low noise  
preamplifier (LNA) with a programmable gain amplifier (PGA)  
and an antialiasing filter (AAF), as well as one direct-to-ADC  
channel, all integrated with a single, 12-bit analog-to-digital  
converter (ADC). The AD8284 also incorporates a saturation  
detection circuit for high frequency overvoltage conditions that  
would otherwise be filtered by the AAF.  
for dynamic performance and low power in applications where  
a small package size is critical.  
Fabricated in an advanced CMOS process, the AD8284 is available  
in a 10 mm × 10 mm, RoHS compliant, 64-lead TQFP. It is speci-  
fied over the automotive temperature range of −40°C to +105°C.  
Table 1. Related Devices  
Part No.  
Description  
AD8285  
4-Channel LNA/PGA/AAF, pseudosimultaneous  
channel sampling with ADC  
The analog channel features a gain range of 17 dB to 35 dB in  
6 dB increments, and an ADC with a conversion rate of up to  
60 MSPS. The combined input referred voltage noise of the entire  
channel is 3.5 nV/√Hz at maximum gain. The channel is optimized  
AD8283  
6-Channel LNA/PGA/AAF, pseudosimultaneous  
channel sampling with ADC  
ADA8282 4-Channel LNA/PGA  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2012–2015 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD8284* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DISCUSSIONS  
View all AD8284 EngineerZone Discussions.  
DOCUMENTATION  
Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
AD8284: Radar Receive Path AFE: 4-Channel Mux with  
LNA, PGA, AAF, and ADC Data Sheet  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
DESIGN RESOURCES  
AD8284 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD8284  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Clock Jitter Considerations....................................................... 16  
SDI and SDO Pins ...................................................................... 16  
SCLK Pin ..................................................................................... 16  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Specifications.......................................................................... 3  
Digital Specifications ................................................................... 5  
Switching Specifications .............................................................. 6  
Absolute Maximum Ratings ....................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 12  
Radar Receive Path AFE............................................................ 12  
Channel Overview...................................................................... 13  
ADC ............................................................................................. 15  
AUX Channel.............................................................................. 15  
Clock Input Considerations ...................................................... 15  
Clock Duty Cycle Considerations............................................ 16  
CS  
Pin........................................................................................... 16  
RBIAS Pin.................................................................................... 16  
Voltage Reference ....................................................................... 16  
Power and Ground Recommendations................................... 16  
Exposed Pad Thermal Heat Slug Recommendations............ 17  
Serial Port Interface (SPI).............................................................. 18  
Hardware Interface..................................................................... 18  
Memory Map .................................................................................. 20  
Reading the Memory Map Table.............................................. 20  
Logic Levels................................................................................. 20  
Reserved Locations .................................................................... 20  
Default Values............................................................................. 20  
Application Circuits ....................................................................... 24  
Packaging and Ordering Information ......................................... 26  
Outline Dimensions................................................................... 26  
Ordering Guide .......................................................................... 26  
Automotive Products................................................................. 26  
REVISION HISTORY  
8/15—Rev. C to Rev. D  
Changed AD951x/AD952x to AD9515/AD9520-0.... Throughout  
Added Table 1; Renumbered Sequentially .................................... 1  
6/14—Rev. B to Rev. C  
Changed 80 MSPS to 60 MSPS .................................... Throughout  
Changes to Table 1............................................................................ 3  
Changed 6.25 to 8.33, Clock Pulse Width High Parameter,  
Clock Pulse Width Low Parameter, and Data Setup Time  
Parameter, Table 3............................................................................. 6  
7/13—Rev. A to Rev. B  
Changes to Input Resistance and Power-Down Dissipation  
Parameters; Table 1........................................................................... 3  
Updated Outline Dimensions....................................................... 26  
Changes to Ordering Guide .......................................................... 26  
1/13—Rev. 0 to Rev. A  
Changes to Figure 16...................................................................... 14  
10/12—Revision 0: Initial Version  
Rev. D | Page 2 of 28  
 
Data Sheet  
AD8284  
SPECIFICATIONS  
AC SPECIFICATIONS  
AVDD18x = 1.8 V, AVDD33x = 3.3 V, DVDD18x = 1.8 V, DVDD33x = 3.3 V, 1.0 V internal ADC reference, fIN = 2.5 MHz, fS = 60 MSPS,  
RS = 50 Ω, LNA + PGA gain = 35 dB, LPF cutoff = fSAMPLECH/4, 12-bit operation, temperature = −40°C to +105°C, all specifications  
guaranteed by testing, unless otherwise noted.  
Table 2.  
Parameter1  
Test Conditions/Comments  
LNA, PGA, and AAF channel  
Programmable  
Min  
Typ  
Max  
Unit  
ANALOG CHANNEL CHARACTERISTICS  
Gain  
Gain Range  
Gain Error  
Input Voltage Range2  
17/23/29/35  
18  
dB  
dB  
−1.25  
+1.25 dB  
V p-p  
Channel gain = 17 dB  
Channel gain = 23 dB  
Channel gain = 29 dB  
Channel gain = 35 dB  
200 Ω input impedance  
200 kΩ input impedance  
0.283  
0.142  
0.071  
0.036  
V p-p  
V p-p  
V p-p  
Input Resistance  
0.200 0.265  
160  
0.300 kΩ  
240  
200  
7
kΩ  
pF  
nV/√Hz  
nV/√Hz  
dB  
Input Capacitance2  
Input Referred Voltage Noise2  
Maximum gain at 1 MHz  
Minimum gain at 1 MHz  
Maximum gain, RS = 50 Ω, not terminated  
Maximum gain, RS = RIN = 50 Ω  
Gain = 17 dB  
1.85  
6.03  
Noise Figure2  
Output Offset  
7.1  
12.7  
dB  
LSB  
−60  
+60  
Gain = 35 dB  
−250  
+250 LSB  
MHz  
AAF Low-Pass Filter Cutoff  
Tolerance  
AAF Attenuation in Stop Band2  
−3 dB, programmable  
After filter autotune  
Third-order elliptic filter  
2× cutoff  
3× cutoff  
Filter set at 9 MHz  
Relative to output  
Time between saturation event and saturation flag  
going high (1 dB overdrive)  
9.0 to 15.0  
5
−10  
+10  
%
30  
40  
400  
11.9  
30  
dB  
dB  
ns  
Group Delay Variation2  
1 dB Compression2  
Saturation Flag Response Time  
dBm  
ns  
100  
Time between end of saturation event and saturation  
flag going low  
25  
40  
ns  
Saturation Flag Accuracy  
Off  
On  
Mux2  
Gain = 29 dB  
For PGA voltages below 2 V p-p  
For PGA voltages above 2.25 V p-p  
2
2.25  
V p-p  
V p-p  
On Resistance  
Switching Time  
POWER SUPPLY  
AVDD18x2  
AVDD33x2  
DVDD18x2  
DVDD33x2  
IAVDD18  
IAVDD33  
IDVDD18  
IDVDD33  
Total Power Dissipation  
50  
200  
Ω
ns  
1.7  
3.1  
1.7  
3.1  
1.8  
3.3  
1.8  
3.3  
1.9  
3.5  
1.9  
3.5  
54  
65  
15  
2
V
V
V
V
mA  
mA  
mA  
mA  
mW  
fS = 60 MSPS  
fS = 60 MSPS  
fS = 60 MSPS  
fS = 60 MSPS  
No signal, typical supply voltage × maximum supply  
current; excludes output current  
345  
Rev. D | Page 3 of 28  
 
 
AD8284  
Data Sheet  
Parameter1  
Test Conditions/Comments  
TA = −25°C to +105°C  
TA = −40°C to +25°C  
Min  
Typ  
2.5  
2.5  
1.6  
Max  
4.0  
8.0  
Unit  
mW  
mW  
Power-Down Dissipation  
Power Supply Rejection Ratio (PSRR)2  
ADC  
Resolution2  
Maximum Sample Rate  
Signal-to-Noise Ratio (SNR)  
Relative to input  
mV/V  
12  
60  
67  
66  
Bits  
MSPS  
dB  
fIN = 1 MHz  
Signal-to-Noise-and-Distortion Ratio  
dB  
(SINAD) 2  
SNRFS2  
68  
dB  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
Effective Number of Bits (ENOB)2  
ADC Output Characteristics2  
Maximum Capacitor Load  
Guaranteed no missing codes  
fS = 60 MSPS  
1
10  
LSB  
LSB  
LSB  
4
10.67  
Per bit  
20  
pF  
IDVDD33 Peak Current with Capacitor  
Load2  
Peak current per bit when driving a 20 pF load; can be  
programmed via the SPI port, if required  
40  
mA  
ADC REFERENCE  
Output Voltage Error  
Load Regulation  
VREF = 1.000 V  
At 1.0 mA, VREF = 1.000 V  
20  
+1  
mV  
mV  
mA  
kΩ  
2
6
Current Output  
−1  
Input Resistance  
FULL CHANNEL CHARACTERISTICS  
SNRFS  
LNA, PGA, AAF, and ADC  
fIN = 1 MHz, −10 dBFS output  
Gain = 17 dB, fS = 60 MSPS  
Gain = 23 dB, fS = 60 MSPS  
Gain = 29 dB, fS = 60 MSPS  
Gain = 35 dB, fS = 60 MSPS  
fIN = 1 MHz  
60  
60  
60  
60  
64  
64  
64  
64  
dBFS  
dBFS  
dBFS  
dBFS  
SINAD2  
Gain = 17 dB  
Gain = 23 dB  
Gain = 29 dB  
Gain = 35 dB  
62  
63  
64  
63  
dB  
dB  
dB  
dB  
Spurious-Free Dynamic Range (SFDR)  
fIN = 1 MHz, −10 dBFS output  
Gain = 17 dB, fS = 60 MSPS  
Gain = 23 dB, fS = 60 MSPS  
Gain = 29 dB, fS = 60 MSPS  
Gain = 35 dB, fS = 60 MSPS  
fIN = 1 MHz at −10 dBFS output  
Gain = 17 dB  
62  
62  
62  
62  
68  
68  
68  
71  
dBc  
dBc  
dBc  
dBc  
Harmonic Distortion2  
Second Harmonic  
−70  
−70  
−66  
−75  
−69  
600  
200  
dBc  
dBc  
dBc  
dBc  
dBc  
ns  
Gain = 35 dB  
Gain = 17 dB  
Gain = 35 dB  
fIN1 = 1 MHz, fIN2 = 1.1 MHz, −1 dBFS, gain = 35 dB  
Third Harmonic  
IM3 Distortion  
Gain Response Time  
Overdrive Recovery Time  
ns  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and testing methodology.  
2 Guaranteed by design only.  
Rev. D | Page 4 of 28  
 
Data Sheet  
AD8284  
DIGITAL SPECIFICATIONS  
AVDD18x = 1.8 V, AVDD33x = 3.3 V, DVDD18x = 1.8 V, DVDD33x = 3.3 V, 1.00 V internal ADC reference, fIN = 2.5 MHz, fS = 60 MSPS,  
RS = 50 Ω, LNA + PGA gain = 35 dB, LPF cutoff = fSAMPLECH/4, 12-bit operation, temperature = −40°C to +105°C, all specifications  
guaranteed by testing, unless otherwise noted.  
Table 3.  
Parameter1  
CLOCK INPUTS (CLK+, CLK−)2  
Temperature  
Min  
Typ  
Max  
Unit  
Logic Compliance  
CMOS/LVDS/LVPECL  
Differential Input Voltage3  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance  
Full  
Full  
25°C  
25°C  
250  
mV p-p  
V
kΩ  
1.2  
20  
1.5  
pF  
LOGIC INPUTS (PDWN, SCLK, AUX, MUX[0], MUX[1], ZSEL)2  
Logic 1 Voltage  
Logic 0 Voltage  
Input Resistance  
Input Capacitance  
Full  
Full  
25°C  
25°C  
1.2  
1.2  
3.6  
0.3  
V
V
kΩ  
pF  
30  
0.5  
LOGIC INPUT (CS)2  
Logic 1 Voltage  
Full  
3.6  
V
Logic 0 Voltage  
Full  
0.3  
V
Input Resistance  
Input Capacitance  
25°C  
25°C  
70  
0.5  
kΩ  
pF  
LOGIC INPUT (SDI)2  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
1.2  
0
DVDD33x + 0.3  
0.3  
V
V
Input Resistance  
Input Capacitance  
25°C  
25°C  
30  
2
kΩ  
pF  
LOGIC OUTPUT (SDO)  
Logic 1 Voltage (IOH = 800 μA)  
Logic 0 Voltage (IOL = 50 μA)  
LOGIC OUTPUTS (D11 to D0, SFLAG)  
Logic 1 Voltage (IOH = 2 mA)  
Logic 0 Voltage (IOL = 2 mA)  
Full  
Full  
3.0  
3.0  
V
V
0.3  
0.3  
Full  
Full  
V
V
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and testing methodology.  
2 Guaranteed by design only.  
3 Specified for LVDS and LVPECL only.  
Rev. D | Page 5 of 28  
 
AD8284  
Data Sheet  
SWITCHING SPECIFICATIONS  
AVDD18x = 1.8 V, AVDD33x = 3.3 V, DVDD18x = 1.8 V, DVDD33x = 3.3 V, 1.00 V internal ADC reference, fIN = 2.5 MHz, fS = 60 MSPS,  
RS = 50 Ω, LNA + PGA gain = 35 dB, LPF cutoff = fSAMPLECH/4, 12-bit operation, temperature = −40°C to +105°C, unless otherwise noted. All  
specifications guaranteed by design only.  
Table 4.  
Parameter1  
Symbol  
Temperature  
Min  
Typ  
Max  
Unit  
CLOCK  
Clock Rate  
Full  
Full  
Full  
Full  
Full  
10  
60  
MSPS  
ns  
ns  
ns  
ns  
Clock Pulse Width High at 60 MSPS  
Clock Pulse Width Low at 60 MSPS  
Clock Pulse Width High at 40 MSPS  
Clock Pulse Width Low at 40 MSPS  
OUTPUT PARAMETERS  
Propagation Delay at 60 MSPS  
Rise Time  
tEH  
tEL  
tEH  
tEL  
8.33  
8.33  
12.5  
12.5  
tPD  
tR  
tF  
tDS  
tDH  
tDS  
tDH  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.9  
1.2  
8.33  
6.0  
18  
6
Fall Time  
Data Setup Time at 60 MSPS  
Data Hold Time at 60 MSPS  
Data Setup Time at 40 MSPS  
Data Hold Time at 40 MSPS  
Pipeline Latency  
7
Clock cycles  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and testing methodology.  
Timing and Switching Diagram  
N
N –1  
INAx  
tEH  
tEL  
CLK–  
CLK+  
tDH  
tDS  
tPD  
N – 7  
N – 6  
N – 5  
N – 4  
N – 3  
N – 2  
N – 1  
N
D11 to D0  
Figure 2. Timing Definitions for Switching Specifications  
Rev. D | Page 6 of 28  
 
Data Sheet  
AD8284  
ABSOLUTE MAXIMUM RATINGS  
Stresses at or above those listed under Absolute Maximum  
Table 5.  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
Electrical  
AVDD18, AVDD18 ADC to AGND  
AVDD33, AVDD33REF to AGND  
DVDD18, DVDD18CLK to AGND  
DVDD33CLK, DVDD33DRV, and  
DVDD33SPI to AGND  
−0.3 V to +2.0 V  
−0.3 V to +3.9 V  
−0.3 V to +2.0 V  
−0.3 V to +3.9 V  
Analog Inputs  
INx+, INx− to AGND  
Auxiliary Inputs  
ESD CAUTION  
−0.3 V to +3.9 V  
INADC+, INADC− to AGND  
Digital Outputs (D11 to D0, SDO) and  
SDI to AGND  
−0.3 V to +2.0 V  
−0.3 V to +3.9 V  
CLK+, CLK− to AGND  
PDWN, SCLK, CS, AUX, ZSEL to AGND  
RBIAS, VREF to AGND  
−0.3 V to +3.9 V  
−0.3 V to +3.9 V  
−0.3 V to +2.0 V  
Environmental  
Operating Temperature Range (Ambient)  
Storage Temperature Range (Ambient)  
Maximum Junction Temperature  
Lead Temperature (Soldering, 10 sec)  
−40°C to +105°C  
−65°C to +150°C  
150°C  
300°C  
Rev. D | Page 7 of 28  
 
 
AD8284  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
48 NC  
1
2
3
4
5
6
7
8
9
NC  
SFLAG  
PDWN  
DVDD18  
SCLK  
CS  
PIN 1  
47 TEST4  
DVDD18CLK  
46  
45  
CLK+  
44 CLK–  
43  
DVDD33CLK  
AD8284  
TOP VIEW  
(Not to Scale)  
SDI  
42 AVDD33REF  
SDO  
41  
BAND  
AUX  
40 VREF  
39 RBIAS  
38 APOUT  
MUX[0] 10  
11  
12  
13  
14  
15  
16  
MUX[1]  
ZSEL  
37  
36  
35  
34  
33  
ANOUT  
TEST3  
AVDD18ADC  
AGND  
TEST1  
TEST2  
DVDD33SPI  
NC  
NC  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
NOTES  
1. TIE THE EXPOSED PAD ON THE BOTTOM SIDE TO THE ANALOG GROUND PLANE.  
2. NC = NO CONNECTION. TIE NC TO ANY POTENTIAL.  
Figure 3. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
NC  
SFLAG  
PDWN  
No Connection. Tie NC to any potential.  
Saturation Flag.  
Full Power-Down. A logic high on PDWN overrides the SPI and powers down the part; a logic low allows  
selection through the SPI.  
4
5
6
DVDD18  
SCLK  
CS  
1.8 V Digital Supply.  
Serial Clock.  
Chip Select.  
7
SDI  
Serial Data Input.  
8
SDO  
Serial Data Output.  
9
AUX  
Auxiliary Channel. A logic high on AUX switches the AUX channel to ADC (INADC+/INADC−).  
Digital Control for Mux Channel Selection.  
Digital Control for Mux Channel Selection.  
Input Impedance Select. A logic high on ZSEL overrides the SPI and sets the input impedance to 200 kΩ; a  
logic low allows selection through the SPI.  
10  
11  
12  
MUX[0]  
MUX[1]  
ZSEL  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
TEST1  
TEST2  
DVDD33SPI  
NC  
Test. Do not use the TEST1 pin; tie TEST1 to ground.  
Test. Do not use the TEST2 pin; tie TEST2 to ground.  
3.3 V Digital Supply, SPI Port.  
No Connection. Tie NC to any potential.  
No Connection. Tie NC to any potential.  
1.8 V Analog Supply.  
NC  
AVDD18  
AVDD33  
INA+  
INA−  
INB+  
3.3 V Analog Supply.  
Positive Mux Analog Input for Channel A.  
Negative Mux Analog Input for Channel A.  
Positive Mux Analog Input for Channel B.  
Negative Mux Analog Input for Channel B.  
INB−  
Rev. D | Page 8 of 28  
 
Data Sheet  
AD8284  
Pin No.  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
Mnemonic  
Description  
INC+  
INC−  
IND+  
IND−  
AVDD33  
INADC+  
INADC−  
AVDD18  
NC  
Positive Mux Analog Input for Channel C.  
Negative Mux Analog Input for Channel C.  
Positive Mux Analog Input for Channel D.  
Negative Mux Analog Input for Channel D.  
3.3 V Analog Supply.  
Positive Analog Input for Alternate Channel (ADC Only).  
Negative Analog Input for Alternate Channel (ADC Only).  
1.8 V Analog Supply.  
No Connection. Tie NC to any potential.  
No Connection. Tie NC to any potential.  
Ground.  
NC  
AGND  
AVDD18ADC  
TEST3  
ANOUT  
APOUT  
RBIAS  
VREF  
BAND  
AVDD33REF  
DVDD33CLK  
CLK−  
CLK+  
DVDD18CLK  
TEST4  
NC  
1.8 V Analog Supply.  
Test. Do not use the TEST3 pin; tie TEST3 to ground.  
Analog Output. ANOUT is for debug purposes only. Leave ANOUT floating.  
Analog Output. APOUT is for debug purposes only. Leave APOUT floating.  
External Resistor. The RBIAS pin sets the internal ADC core bias current.  
Voltage Reference Input/Output.  
Band Gap Voltage. BAND is for debug purposes only. Leave BAND floating.  
3.3 V Analog Supply.  
3.3 V Digital Supply.  
Clock Input Complement.  
Clock Input True.  
1.8 V Digital Supply.  
Test. Do not use the TEST4 pin; tie TEST4 to ground.  
No Connection. Tie NC to any potential.  
No Connection. Tie NC to any potential.  
3.3 V Digital Supply.  
ADC Data Output (MSB).  
ADC Data Output.  
ADC Data Output.  
ADC Data Output.  
ADC Data Output.  
ADC Data Output.  
NC  
DVDD33DRV  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ADC Data Output.  
ADC Data Output.  
ADC Data Output.  
ADC Data Output.  
ADC Data Output.  
ADC Data Output (LSB).  
3.3 V Digital Supply.  
DVDD33DRV  
NC  
EP  
No Connection. Tie NC to any potential.  
Exposed Pad. Tie the exposed pad on the bottom side to the analog ground plane.  
Rev. D | Page 9 of 28  
AD8284  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD18x = 1.8 V, AVDD33x = 3.3 V, TA = 25°C, fS = 60 MSPS, RIN = 200 kΩ, VREF = 1.0 V.  
60  
10  
9
35dB  
29dB  
40  
8
7
6
5
4
3
2
1
0
20  
23dB  
17dB  
17dB  
23dB  
0
–20  
–40  
–60  
29dB  
35dB  
0.1  
1
10  
0.1  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
Figure 4. Channel Gain vs. Frequency  
Figure 7. Short-Circuit Input Referred Noise vs. Frequency  
30  
210  
180  
150  
120  
90  
20  
10  
0
–10  
–20  
60  
–30  
–40  
30  
00  
80  
08  
88  
10  
90  
18  
98  
20  
A0  
28  
A8  
30  
B0  
38  
B8  
40  
C0  
0
16.8  
1
10  
FREQUENCY (MHz)  
50  
17.0  
17.2  
CODE  
17.4  
17.6  
Figure 8. Filter Frequency Response  
Figure 5. Gain Histogram (Gain = 17 dB)  
200  
180  
350  
160  
140  
120  
100  
80  
300  
250  
200  
150  
100  
50  
35dB  
29dB  
60  
40  
23dB  
17dB  
20  
0
0.1  
0
1
10  
28.5  
28.8  
29.1  
29.4  
29.7  
30.0  
FREQUENCY (MHz)  
CODE  
Figure 9. Short-Circuit Output Referred Noise vs. Frequency  
Figure 6. Gain Histogram (Gain = 29 dB)  
Rev. D | Page 10 of 28  
 
Data Sheet  
AD8284  
1,000,000  
100,000  
80  
60  
40  
20  
0
10,000  
1,000  
100  
10  
1
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
–60  
–40  
–20  
0
20  
40  
60  
CODE  
Figure 10. RIN vs. Frequency  
Figure 12. Channel Offset Distribution (Gain = 17 dB)  
30  
25  
20  
15  
10  
5
80  
60  
40  
20  
0
17dB  
23dB  
29dB  
35dB  
0
0.1  
1
10  
–200  
–100  
0
100  
200  
FREQUENCY (MHz)  
CODE  
Figure 13. Channel Offset Distribution (Gain = 35 dB)  
Figure 11. Noise Figure vs. Frequency  
Rev. D | Page 11 of 28  
AD8284  
Data Sheet  
THEORY OF OPERATION  
these performance metrics include the LNA noise, PGA gain  
range, AAF cutoff characteristics, and ADC sample rate and  
resolution.  
RADAR RECEIVE PATH AFE  
The primary application for the AD8284 is high speed ramp,  
frequency modulated, continuous wave (HSR-FMCW) radar  
requiring baseband signal bandwidths of up to 15 MHz. Figure 14  
shows a simplified block diagram of an HSR-FMCW radar system.  
The AD8284 includes a multiplexer (mux) in front of the analog  
signal chain as a cost-saving alternative to having an AFE for  
each channel. The mux can be switched between active inputs  
using the mux pins or through the SPI port.  
The signal chain requires multiple channels, each of which is  
routed into a low noise amplifier (LNA), a programmable gain  
amplifier (PGA), an antialiasing filter (AAF), and an analog-to-  
digital converter (ADC). The AD8284 provides all of these key  
components in a single 10 mm × 10 mm TQFP package.  
The AD8284 also includes a saturation detection circuit that  
indicates when the LNA or PGA signals are no longer in the  
linear region. This feature helps detect fault conditions that  
might otherwise be filtered out by the AAF.  
The performance of each component is designed to meet the  
demands of an HSR-FMCW radar system. Some examples of  
REF.  
OSCILLATOR  
PA  
VCO  
CHIRP RAMP  
GENERATOR  
AD8284  
SATURATION  
DETECTION  
DSP  
12-BIT  
ADC  
LNA  
PGA  
MUX  
AAF  
ANTENNA  
Figure 14. Simplified Block Diagram, HSR-FMCW Radar System  
Rev. D | Page 12 of 28  
 
 
 
Data Sheet  
AD8284  
REFERENCE  
INA+  
INA–  
AD8284  
SATURATION  
DETECTION  
INB+  
INB–  
MUX  
LNA  
PGA  
AAF  
INC+  
INC–  
D0  
TO  
D11  
12-BIT  
ADC  
MUX  
IND+  
IND–  
INADC+  
INADC–  
SPI  
Figure 15. Simplified Block Diagram  
CHANNEL OVERVIEW  
The external pins are the default method for selecting the active  
mux channel but the SPI Register 0x0C can also control the  
mux. Bit 3 of Register 0x0C specifies whether the SPI or the  
external pins control the mux.  
The AD8284 contains a four-input mux, an LNA, a PGA, and  
an AAF in the signal path, as shown in Figure 15. The signal  
chain input impedance can be either 200 Ω or 200 kΩ. The  
PGA has selectable gains that result in channel gains ranging  
from 17 dB to 35 dB. The AAF has a three-pole elliptical  
response with a selectable cutoff frequency from 9 MHz to  
15 MHz. The signal path is fully differential throughout to  
maximize signal swing and reduce even-order distortion. The  
LNA is designed to be driven from either a differential or  
single-ended signal source.  
Low Noise Amplifier  
Good noise performance relies on a proprietary ultralow noise  
LNA at the beginning of the signal chain; the LNA minimizes the  
noise contributions from the PGA and AAF that are next in the  
signal chain. The input impedance can be either 200 Ω or  
200 kΩ, the value of which is selected through the SPI port or by  
the ZSEL pin.  
Multiplexer  
The LNA supports differential output voltages as high as 5.0 V p-p  
with positive and negative excursions of 1.25 V from a common-  
mode voltage of 1.5 V. Because the output saturation level is  
fixed, the channel gain sets the maximum input signal before  
saturation.  
The AD8284 has a multiplexer (mux) at the input to switch as  
many as four differential channels into the signal chain. The  
active mux channel is controlled by the SPI port or by using the  
external pins, MUX[0] and MUX[1]. The relationship between  
the input code and the selected mux channel is listed in Table 7.  
Low value feedback resistors and the current driving capability  
of the output stage allow the LNA to achieve a low input referred  
noise voltage of 3.5 nV/√Hz at a channel gain of 35 dB. The use  
of a fully differential topology and negative feedback minimizes  
second-order distortion. Differential signaling enables smaller  
swings at each output, further reducing third-order distortion.  
Table 7. Digital Input Values to Select the Active ADC  
Channel  
AUX  
MUX[1]  
MUX[0]  
Active Channel  
1
0
0
0
0
X
0
0
1
1
X
0
1
0
1
AUX  
A
B
C
D
Recommendation  
To achieve the best possible noise performance, it is important  
to match the impedances seen by the positive and negative  
inputs. Matching the impedances ensures that the signal path  
rejects any common-mode noise.  
Rev. D | Page 13 of 28  
 
 
 
AD8284  
Data Sheet  
Antialiasing Filter  
reprogramming the filter cutoff scaling via the SPI, or after  
changing the ADC sample rate. Occasional retuning during an  
idle time is recommended to compensate for temperature drift.  
The AAF uses a combination of poles and zeros to create a  
third-order elliptic filter. An elliptic filter is used to achieve  
a sharp roll-off after the cutoff frequency. This architecture  
achieves a −30 dB per octave roll-off in the first octave after  
the cutoff frequency.  
A cutoff frequency range of 9 MHz to 15 MHz is possible, for  
example  
ADC clock: 40 MHz  
Default tuned cutoff frequency = (40 MHz ÷ 3) × 1.125 =  
15 MHz  
The filter uses on-chip tuning to trim the internal resistors and  
capacitors to set the desired cutoff frequency. The tuning method  
reduces variations in the cutoff frequency due to standard IC  
process tolerances of resistors and capacitors.  
The autotune cycle takes several clock cycles to complete. During  
this time, the mux channels, A to D, are not operational; however,  
the AUX input can be used during the autotuning cycle.  
The default tuning settings for a −3 dB low-pass filter cutoff is  
1/3 × 1.125 × the ADC sample clock frequency. This setting can  
be changed to 1/4 the ADC sample clock frequency. The cutoff  
can also be scaled from 0.75 to 1.25 (in 0.0625 increments)  
times these frequencies through the SPI.  
Saturation Flag  
The saturation flag function detects overvoltage conditions that  
may push the LNA or PGA out of their linear regions. The flag  
is set when the PGA output voltage exceeds 2.0 V p-p or the  
LNA output voltage exceeds 4.0 V p-p. This function is particularly  
useful for detecting saturation events that may be filtered out by  
the AAF and are, therefore, undetectable by monitoring the  
ADC output.  
Tuning is normally off and is initiated by the user via the SPI  
port. After the filter is tuned to a specific frequency, it remains  
at that frequency until another tuning sequence is initiated. The  
tuning process can take up to 2048 clock cycles.  
The filter defaults to its highest frequency setting before it is  
tuned. To maintain the expected ratio of clock frequency to  
cutoff frequency, tune the filter after initial power-up, after  
When the saturation flag trips, it remains on for a minimum of  
25 ns after the saturation event has ended.  
SATURATION DETECTION  
+REF  
VX  
–REF  
+REF  
VMID  
VMID  
VX  
–REF  
MUX  
2pF  
20kΩ  
200Ω  
200Ω  
200kΩ  
200kΩ  
50Ω  
50Ω  
INx+  
INx–  
LNA  
ADC  
PGA  
AAF  
2pF  
20kΩ  
VMID  
VMID  
AD8284  
Figure 16. Simplified Block Diagram of the Analog Channel  
Rev. D | Page 14 of 28  
Data Sheet  
AD8284  
ADC  
3.3V  
*
AD9515/AD9520-0  
CLK  
50Ω  
The AD8284 uses a pipelined ADC architecture. The quantized  
output from each stage is combined into a 12-bit result in the  
digital correction logic. The pipelined architecture permits the  
first stage to operate on a new input sample while the remaining  
stages operate on preceding samples. Sampling occurs on the  
rising edge of the clock. The output staging block aligns the  
data and passes the data to the output buffers.  
VFAC3  
OUT  
0.1µF  
0.1µF  
0.1µF  
CLK+  
ADC  
AD8284  
100Ω  
PECL DRIVER  
0.1µF  
CLK–  
CLK  
240Ω  
240Ω  
*
50Ω RESISTOR IS OPTIONAL.  
Figure 18. Differential PECL Sample Clock  
AUX CHANNEL  
The AD8284 allows direct access to the ADC when the mux  
settings are used to select the AUX channel. When this channel  
is selected, the inputs of the ADC can be accessed using the  
INADC+ and INADC− pins. To ensure enough headroom for  
full-scale, differential, 2.0 V p-p input signals, bias the INADC  
pins with a 0.9 V common-mode voltage.  
3.3V  
*
AD9515/AD9520-0  
50Ω  
VFAC3  
OUT  
0.1µF  
0.1µF  
0.1µF  
CLK  
CLK+  
ADC  
AD8284  
100Ω  
LVDS DRIVER  
CLK  
0.1µF  
CLK–  
CLOCK INPUT CONSIDERATIONS  
*
50Ω RESISTOR IS OPTIONAL.  
For optimum performance, clock the AD8284 sample clock  
inputs (CLK+ and CLK−) with a differential signal. This signal  
is typically ac-coupled into the CLK+ and CLK− pins via a trans-  
former or by using capacitors; these pins are biased internally  
and require no additional bias.  
Figure 19. Differential LVDS Sample Clock  
In some applications, it is acceptable to drive the sample clock  
inputs with a single-ended CMOS signal. In such applications,  
drive CLK+ directly from a CMOS gate, and bypass the CLK−  
pin to ground with a 0.1 μF capacitor in parallel with a 39 kΩ  
resistor (see Figure 20). Although the CLK+ input circuit supply  
is via Pin 46, DVDD18CLK, this input is designed to withstand  
input voltages of up to 3.3 V, making the selection of the logic  
voltage of the driver very flexible. The AD9515/AD9520-0  
family of parts can be used to provide 3.3 V inputs (see Figure 21).  
In this case, the 39 kΩ resistor is not needed.  
Figure 17 shows the preferred method for clocking the AD8284.  
A low jitter clock source, such as the Valpey Fisher oscillator,  
VFAC3-BHL (50 MHz), is converted from single-ended to differ-  
ential using an RF transformer. The back-to-back Schottky  
diodes across the secondary transformer limit clock excursions  
into the AD8284 to approximately 0.8 V p-p differential. This  
helps prevent the large voltage swings of the clock from feeding  
through to other portions of the AD8284 and preserves the fast  
rise and fall times of the signal, which are critical to low jitter  
performance.  
3.3V  
AD9515/AD9520-0  
0.1µF  
VFAC3  
CLK  
OUT  
OPTIONAL  
100Ω  
0.1µF  
*
1.8V  
50Ω  
CMOS DRIVER  
CLK+  
3.3V  
®
MINI-CIRCUITS  
ADC  
AD8284  
CLK  
ADT1-1WT, 1:1Z  
0.1µF  
0.1µF  
0.1µF  
XFMR  
CLK–  
OUT  
CLK+  
0.1µF  
39kΩ  
100Ω  
ADC  
AD8284  
50Ω  
0.1µF  
VFAC3  
*
CLK–  
50Ω RESISTOR IS OPTIONAL.  
SCHOTTKY  
DIODES:  
0.1µF  
Figure 20. Single-Ended 1.8 V CMOS Sample Clock  
HSM2812  
3.3V  
Figure 17. Transformer-Coupled Differential Clock  
AD9515/AD9520-0  
0.1µF  
VFAC3  
OUT  
CLK  
If a low jitter clock is available, another option is to ac-couple a  
differential PECL or LVDS signal to the sample clock input pins  
as shown in Figure 18 and Figure 19. The AD9515/AD9520-0  
family of clock drivers offers excellent jitter performance.  
OPTIONAL  
100Ω  
0.1µF  
0.1µF  
*
3.3V  
50Ω  
CLK+  
CMOS DRIVER  
ADC  
AD8284  
CLK  
0.1µF  
CLK–  
*
50Ω RESISTOR IS OPTIONAL.  
Figure 21. Single-Ended 3.3 V CMOS Sample Clock  
Rev. D | Page 15 of 28  
 
 
 
 
 
 
 
 
AD8284  
Data Sheet  
CLOCK DUTY CYCLE CONSIDERATIONS  
CS PIN  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals. As a result, these ADCs may  
be sensitive to the clock duty cycle. Commonly, a 5% tolerance is  
required on the clock duty cycle to maintain dynamic performance  
characteristics. The AD8284 contains a duty cycle stabilizer (DCS)  
that retimes the nonsampling edge, providing an internal clock  
signal with a nominal 50% duty cycle. This allows a wide range  
of clock input duty cycles without affecting the performance of  
the AD8284.  
CS  
The  
pin is required to operate the SPI. It has an internal 70 kΩ  
pull-up resistor that pulls this pin high and is both 1.8 V and  
3.3 V tolerant.  
RBIAS PIN  
To set the internal core bias current of the ADC, place a resistor  
nominally equal to 10.0 kΩ to ground at the RBIAS pin. Using a  
resistor other than the recommended 10.0 kΩ resistor for RBIAS  
degrades the performance of the device. Therefore, it is imperative  
that at least a 1.0% tolerance on this resistor be used to achieve  
consistent performance.  
When the DCS is on, noise and distortion performance are  
nearly flat for a wide range of duty cycles. However, some appli-  
cations may require the DCS function to be off. If so, note that  
the dynamic range performance can be affected when operating in  
this mode. See Table 10 for more details on using this feature.  
VOLTAGE REFERENCE  
A stable and accurate 0.5 V voltage reference is built into the  
AD8284. This is gained up internally by a factor of 2, setting  
V
REF to 1.0 V, which results in a full-scale differential input span  
The duty cycle stabilizer uses a delay locked loop (DLL) to  
create the nonsampling edge. As a result, any changes to the  
sampling frequency require approximately eight clock cycles  
to allow the DLL to acquire and lock to the new rate.  
of 2.0 V p-p for the ADC. VREF is set internally by default, but  
the VREF pin can be driven externally with a 1.0 V reference to  
achieve more accuracy. However, the AD8284 is not specified  
for ADC full-scale ranges below 2.0 V p-p.  
CLOCK JITTER CONSIDERATIONS  
When applying decoupling capacitors to the VREF pin, use  
ceramic, low ESR capacitors. Place these capacitors close to the  
reference pin and on the same layer of the PCB as the AD8284.  
The VREF pin should have both a 0.1 μF capacitor and a 1 μF  
capacitor connected in parallel to the analog ground. These  
capacitor values are recommended for the ADC to properly  
settle and acquire the next valid sample.  
High speed, high resolution ADCs are sensitive to the quality of the  
clock input. The degradation in SNR at a given input frequency (fA)  
due only to aperture jitter (tJ) can be calculated by  
SNR Degradation = 20 × log 10[1/2 × π × fA × tJ]  
In this equation, the rms aperture jitter represents the root mean  
square of all jitter sources, including the clock input, analog input  
signal, and ADC aperture jitter. IF undersampling applications  
are particularly sensitive to jitter.  
POWER AND GROUND RECOMMENDATIONS  
When connecting power to the AD8284, it is recommended  
that two separate 1.8 V supplies and two separate 3.3 V supplies  
be used: one supply each for analog 1.8 V (AVDD18x), digital  
1.8 V (DVDD18x), analog 3.3 V (AVDD33x), and digital 3.3 V  
(DVDD33x). If only one supply is available for both analog and  
digital, for example, AVDD18x and DVDD18x, route the supply  
to AVDD18x first and then tap the supply off and isolate it with  
a ferrite bead or a filter choke preceded by decoupling  
capacitors for the DVDD18x. The same method is used for the  
analog and digital 3.3 V supplies. Use several decoupling  
capacitors on all supplies to cover both high and low  
In cases where aperture jitter may affect the dynamic range of the  
AD8284, treat the clock input as an analog signal. Separate  
power supplies for clock drivers from the ADC output driver  
supplies to avoid modulating the clock signal with digital noise.  
Low jitter, crystal controlled oscillators make the best clock  
sources, such as the Valpey Fisher VFAC3 series. If the clock is  
generated from another type of source by using the sequential  
steps of gating, dividing, or other methods, it should be retimed  
by the original clock during the last step in that sequence.  
See the AN-501 Application Note and the AN-756 Application  
Note for more information about how jitter performance relates  
to ADCs.  
frequencies. Locate these capacitors close to the point of entry  
at the printed circuit board (PCB) level and close to the AD8284  
using minimal trace lengths.  
SDI AND SDO PINS  
The 12 power supply pins are separated into four power supply  
domains, AVDD18, AVDD33, DVDD18, and DVDD33. Each  
pin within a domain must be powered simultaneously, but each  
domain can be turned on independently of the other domains.  
The SDI and SDO pins are required to operate the SPI. The SDI pin  
has an internal 30 kΩ pull-down resistor that pulls this pin low and  
is 1.8 V and 3.3 V tolerant. The SDO output pin is 3.3 V logic.  
SCLK PIN  
A single PCB ground plane should be sufficient when using the  
AD8284. With proper decoupling and smart partitioning of the  
analog, digital, and clock sections of the PCB, optimum perfor-  
mance can be easily achieved.  
The SCLK pin is required to operate the SPI. It has an internal  
30 kΩ pull-down resistor that pulls this pin low and is both 1.8 V  
and 3.3 V tolerant.  
Rev. D | Page 16 of 28  
 
 
 
 
 
 
 
 
Data Sheet  
AD8284  
To maximize the coverage and adhesion between the device and  
the PCB, it is recommended that the continuous copper pad be  
partitioned by overlaying a silkscreen or solder mask to divide the  
copper pad into uniform sections. This partitioning helps to ensure  
several tie points between the PCB and the device during the reflow  
process. Using one continuous plane with no partitions guarantees  
only one tie point between the AD8284 and the PCB. For more  
information about packaging and for additional PCB layout  
examples, see the AN-772 Application Note.  
EXPOSED PAD THERMAL HEAT SLUG  
RECOMMENDATIONS  
It is required that the exposed pad on the underside of the  
device be connected to a quiet analog ground to achieve the  
best electrical and thermal performance of the AD8284. Mate  
an exposed continuous copper plane on the PCB to the AD8284  
exposed pad, Pin 0. The copper plane should have several vias  
to achieve the lowest possible resistive thermal path for heat  
dissipation to flow through the bottom of the PCB.  
Rev. D | Page 17 of 28  
 
AD8284  
Data Sheet  
SERIAL PORT INTERFACE (SPI)  
The AD8284 serial port interface allows the user to configure  
the signal chain for specific functions or operations through a  
structured register space provided inside the chip. The SPI  
offers the user added flexibility and customization depending  
on the application. Addresses are accessed via the serial port  
and can be written to or read from via the port. Memory is  
organized into bytes that can be further divided into fields, as  
documented in the Memory Map section. Detailed operational  
information can be found in the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
When W0 and W1 are set to 11, the device enters streaming mode  
and continues to process data, either reading or writing,  
CS  
until  
allows complete memory transfers without the need to provide  
CS  
is taken high to end the communication cycle. This  
additional instructions. Regardless of the mode, if  
is taken  
high in the middle of any byte transfer, the SPI state machine is  
reset and the device waits for a new instruction.  
In addition to the operation modes, the SPI port can be  
configured to operate in different manners. For applications  
CS  
that do not require a control port, the  
line can be tied and  
Four pins define the serial port interface, or SPI: the SCLK, SDI,  
held high. This places the remainder of the SPI pins in their  
secondary mode as defined in the AN-877 Application Note,  
CS  
SDO, and pins. The serial clock pin (SCLK) synchronizes the  
read and write data presented to the device. The serial data  
input and output pins, SDI and SDO, allow data to be sent to  
and read from the internal memory map registers of the device.  
CS  
Interfacing to High Speed ADCs via SPI.  
can also be tied low  
CS  
to enable 3-wire mode. When  
is tied low, SCLK, SDO, and  
SDI are the only pins required for communication. Although  
the device is synchronized during power-up, caution must be  
exercised when using this mode to ensure that the serial port  
CS  
The chip select pin ( ) is an active low control that enables or  
disables the read and write cycles (see Table 8).  
CS  
remains synchronized with the  
line. When operating in  
Table 8. Serial Port Interface Pins  
3-wire mode, it is recommended that a 1-, 2-, or 3-byte transfer  
be used exclusively. Without an active  
can be entered but not exited.  
Pin  
Function  
CS  
line, streaming mode  
SCLK  
Serial clock. The serial shift clock input. SCLK is used to  
synchronize serial interface reads and writes.  
SDI  
SDO  
CS  
Serial data input.  
Serial data output.  
Chip select (active low). This control gates the read and  
write cycles.  
Data can be sent in MSB-first or LSB-first mode. MSB-first  
mode is the default at power-up and can be changed by adjusting  
the configuration register. For more information about this and  
other features, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
CS  
The falling edge of , in conjunction with the rising edge of  
SCLK, determines the start of the framing sequence. During an  
instruction phase, a 16-bit instruction is transmitted, followed by  
one or more data bytes, which is determined by Bit Field W0 and  
Bit Field W1. See Figure 22 and Table 9 for an example of the  
serial timing and its definitions.  
HARDWARE INTERFACE  
The pins described in Table 8 constitute the physical interface  
between the users programming device and the serial port of  
CS  
the AD8284. The SCLK, SDI, and  
pins function as inputs  
when using the SPI interface. The SDO pin is an output during  
readback.  
CS  
In normal operation,  
are about to be received and processed. When  
the device processes SCLK and SDI to process instructions.  
CS  
signals to the device that SPI commands  
CS  
is brought low,  
This interface is flexible enough to be controlled by either serial-  
programmable read-only memory (PROM) or PIC micro-  
controllers. This provides the user with alternative means, other  
than a full SPI controller, for programming the device (see the  
AN-812 Application Note).  
Normally,  
complete. However, if the AD8284 is connected to a slow  
CS  
remains low until the communication cycle is  
device,  
microcontrollers enough time to transfer data into the shift  
CS  
can be brought high between bytes, allowing older  
registers.  
can be stalled when transferring one, two, or three  
bytes of data.  
Rev. D | Page 18 of 28  
 
 
 
Data Sheet  
AD8284  
tH  
tDS  
tHI  
tCLK  
tS  
tDH  
tLO  
CS  
SCLK DON’T CARE  
DON’T CARE  
DON’T CARE  
DON’T CARE  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
R/W  
SDI DON’T CARE  
SDO DON’T CARE  
D5  
D4  
D3  
D2  
D1  
SCLK  
OUTPUT DRIVER ON  
OUTPUT DRIVER OFF  
tDIS_SDO  
Figure 22. Serial Timing Details  
Table 9. Serial Timing Definitions  
Parameter  
Minimum Timing (ns)  
Description  
tDS  
5
2
40  
5
Setup time between the data and the rising edge of SCLK.  
Hold time between the data and the rising edge of SCLK.  
Period of the clock.  
tDH  
tCLK  
tS  
Setup time between CS and SCLK.  
tH  
2
Hold time between CS and SCLK.  
tHI  
tLO  
tDIS_SDO  
16  
16  
10  
Minimum period that SCLK should be in a logic high state.  
Minimum period that SCLK should be in a logic low state.  
Minimum time it takes the SDO pin to switch between an output and a high impedance  
node, relative to the rising edge of SCLK.  
Rev. D | Page 19 of 28  
 
 
AD8284  
Data Sheet  
MEMORY MAP  
READING THE MEMORY MAP TABLE  
Caution  
All registers except for Register 0x00 and Register 0xFF are  
buffered with a master slave latch and require writing to the  
transfer bit. For more information about this and other  
functions, see the AN-877 Application Note, Interfacing to High  
Speed ADCs via SPI.  
Each row in the memory map table has eight address locations.  
The memory map is roughly divided into three sections: the  
chip configuration registers map (Address 0x00 and Address 0x01),  
the device index and transfer registers map (Address 0x04 to  
Address 0xFF), and the ADC channel functions registers map  
(Address 0x08 to Address 0x2C).  
LOGIC LEVELS  
The leftmost column of the memory map indicates the register  
address number, and the default value is shown in the second  
rightmost column.  
An explanation of various registers follows: “bit is set” is  
synonymous with “bit is set to Logic 1” or “writing Logic 1 for  
the bit.” Similarly, “bit is cleared” is synonymous with “bit is set  
to Logic 0” or “writing Logic 0 for the bit.  
The Bit 7 (MSB) column is the start of the default hexadecimal  
value that is given. For example, Address 0x09, the GLOBAL_  
CLOCK register, has a default value of 0x01, meaning that Bit 7 = 0,  
Bit 6 = 0, Bit 5 = 0, Bit 4 = 0, Bit 3 = 0, Bit 2 = 0, Bit 1 = 0, and  
Bit 0 = 1, or 0000 0001 in binary. This setting is the default for  
the duty cycle stabilizer in the on condition. By writing a 0 to  
Bit 0 of this address followed by writing 0x01 to the SW transfer  
bit in Register 0xFF, the duty cycle stabilizer is turned off. It is  
important to follow each writing sequence with a write to the  
SW transfer bit to update the SPI registers.  
RESERVED LOCATIONS  
Do not write to undefined memory except when writing the  
default values suggested in this data sheet. Addresses that have  
values marked as 0 should be considered reserved and have a 0  
written into their registers during power-up.  
DEFAULT VALUES  
After a reset, critical registers are automatically loaded with  
default values. These values are indicated in Table 10, where an  
X refers to an undefined feature.  
Rev. D | Page 20 of 28  
 
 
 
 
 
Data Sheet  
AD8284  
Table 10. Memory Map Registers1  
Addr.  
(Hex)  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Default Default Notes/  
Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Value  
Comments  
Chip Configuration Registers  
0x00  
CHIP_PORT_CONFIG  
0
LSB first  
1 = on  
0 = off  
Soft reset  
1 = on  
0 = off  
1
1
Soft reset LSB first  
0
0x18  
Mirror the  
nibbles to  
correctly set  
LSB-first or  
MSB-first mode,  
regardless of  
shift mode.  
1 = on  
0 = off  
(default)  
1 = on  
0 = off  
(default)  
(default)  
(default)  
0x01  
CHIP_ID  
Chip ID Bits[7:0]  
(AD8284 = 0xAA, default)  
Read  
only  
The default is a  
unique chip ID,  
specific to the  
AD8284. This is  
a read-only  
register.  
Device Index and Transfer Registers  
0xFF DEVICE_UPDATE  
X
X
X
X
X
X
X
X
SW  
0x00  
0xF0  
Synchronously  
transfers data  
from the  
master shift  
register to the  
slave.  
transfer  
1 = on  
0 = off  
(default)  
Channel Functions Registers  
Channel A Channel B Channel C Channel D  
Channel  
power-  
down  
Internal power-  
down mode  
00 = chip run  
(default)  
01 = full power-  
down  
11 = reset  
Determines the  
power-down  
mode (global).  
0x08  
GLOBAL_MODES  
buffer  
power  
0 = power 0 =  
off  
1 = power 1 =  
on  
buffer  
power  
buffer  
power  
buffer  
power  
0 = power 0 = power 0 =  
power off off  
off  
1 = power 1 = power  
power on on on  
power  
on  
(default)  
(default)  
(default)  
(default)  
(default)  
1 =  
power  
off  
0x09  
0x0C  
GLOBAL_CLOCK  
X
X
X
X
X
X
X
X
Duty  
cycle  
stabilizer  
1 = on  
(default)  
0 = off  
0x01  
0x04  
Turns the  
internal duty  
cycle stabilizer  
on and off  
(global).  
Power  
down  
X
0 = signal  
channel  
(A, B, C, D) pins  
0 = use  
external  
0 = all  
00 = Channel A  
(default)  
01 = Channel B  
10 = Channel C  
11 = Channel D  
Sets which mux  
input channel is  
in use and  
whether to  
power down  
unused  
FLEX_MUX_CONTROL  
channels  
are off  
1=  
selected  
channel  
unused  
channels  
0 = PD  
power-  
down  
on  
(default)  
1 = use  
internal  
(default)  
1 = AUX  
channel  
on  
channels.  
registers is on  
(default)  
(default)  
1 =  
power on  
When this  
0x0D  
FLEX_TEST_IO  
User test mode  
00 = off (default)  
01 = on, single  
alternate  
10 = on, single once  
11 = on, alternate once  
Reset PN  
long gen  
1 = on  
0 = off  
(default)  
Reset PN  
short gen  
1 = on  
0 = off  
(default)  
0x00  
Output test mode—see Table 11  
0000 = off (default)  
register is set,  
the test data is  
placed on the  
output pins in  
place of normal  
data. (Local,  
0001 = midscale short  
0010 = +FS short  
0011 = −FS short  
0100 = checkerboard output  
0101 = PN sequence long  
0110 = PN sequence short  
0111 = one-/zero-word toggle  
1000 = user input  
except for PN  
sequence.)  
1001 = 1-bit/0-bit toggle  
1010 = 1× sync  
1011 = one bit high  
1100 = mixed bit frequency (format  
determined by the OUTPUT_MODE register)  
Rev. D | Page 21 of 28  
 
AD8284  
Data Sheet  
Addr.  
Bit 7  
Bit 0  
Default Default Notes/  
(Hex)  
Register Name  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
(LSB)  
Value  
Comments  
0x0E  
TEST_REGISTER  
Enable analog outputs (APOUT, ANOUT)  
0x01 = analog output enabled  
0x00  
Routes the  
differential  
output of the  
AAF to APOUT  
and ANOUT.  
0x0F  
FLEX_CHANNEL_INPUT  
Filter cutoff frequency control  
00000 = 1.25 × 1/4 × fSAMPLECH  
X
X
X
0x90  
Low-pass filter  
cutoff (global).  
fSAMPLECH = ADC  
sample rate.  
Note that the  
absolute range  
is limited to  
9 MHz to  
00001 = 1.1875 × 1/4 × fSAMPLECH  
00010 = 1.125 × 1/4 × fSAMPLECH  
00011 = 1.0625 × 1/4 × fSAMPLECH  
00100 = 1.0 × 1/4 × fSAMPLECH  
00101 = 0.9375 × 1/4 × fSAMPLECH  
00110 = 0.875 × 1/4 × fSAMPLECH  
00111 = 0.8125 × 1/4 × fSAMPLECH  
01000 = 0.75 × 1/4 × fSAMPLECH  
01001 to 01111 = reserved  
15 MHz.  
10000 = 1.25 × 1/3 × fSAMPLECH  
10001 = 1.1875 × 1/3 × fSAMPLECH  
10010 = 1.125 × 1/3 × fSAMPLECH (default)  
10011 = 1.0625 × 1/3 × fSAMPLECH  
10100 = 1.0 × 1/3 × fSAMPLECH  
10101 = 0.9375 × 1/3 × fSAMPLECH  
10110 = 0.875 × 1/3 × fSAMPLECH  
10111 = 0.8125 × 1/3 × fSAMPLECH  
11000 = 0.75 × 1/3 × fSAMPLECH  
11001 to 11111 = reserved  
0x10  
0x11  
FLEX_OFFSET  
FLEX_GAIN_1  
X
X
X
X
6-bit LNA offset adjustment  
00 0000 for LNA offset low  
10 0000 for LNA offset mid (default)  
0x20  
0x04  
LNA force  
offset  
correction.  
11 1111 for LNA offset high  
X
X
X
X
X
000 = 17 dB  
Total LNA +  
PGA gain  
adjustment  
(local).  
001 = 17 dB  
010 = 17 dB  
011 = 23 dB  
100 = 29 dB (default)  
101 = 35 dB  
0x12  
FLEX_BIAS_CURRENT  
FLEX_OUTPUT_MODE  
X
X
X
X
X
X
LNA bias  
00 = high (default)  
01 = mid to high  
10 = mid to low  
11 = low  
0x00  
LNA bias  
current  
adjustment  
(global).  
0x14  
0x15  
X
X
X
X
X
X
1 =  
0 = offset binary  
1 = twos comple-  
ment (default)  
0x01  
0x0F  
Configures the  
outputs and  
the format of  
the data.  
output  
invert  
(local)  
FLEX_OUTPUT_ADJUST 0 = enable  
Output drive current  
0000 = low  
Selects output  
drive strength  
to limit the  
noise added to  
the channels  
by output  
Data  
Bits[11:0]  
1 =  
disable  
Data  
1111 = high (default)  
Bits[11:0]  
switching.  
0 =  
X
X
X
X
Internal reference  
0x03  
Select internal  
reference  
0x18  
FLEX_VREF  
X
internal  
reference  
(default)  
1 =  
external  
reference  
adjust  
00 = 0.625 V  
01 = 0.750 V  
10 = 0.875 V  
11 = 1.000 V  
(default)  
(recommended  
default) or exter-  
nal reference  
(global); adjust  
internal refer-  
ence.  
0x19  
0x1A  
FLEX_USER_PATT1_LSB B7  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B0  
B8  
0x00  
0x00  
User defined  
Pattern 1, LSB.  
FLEX_USER_PATT1_  
MSB  
B15  
B14  
B13  
B12  
B11  
B10  
User defined  
Pattern 1, MSB.  
Rev. D | Page 22 of 28  
Data Sheet  
AD8284  
Addr.  
Bit 7  
Bit 0  
Default Default Notes/  
(Hex)  
Register Name  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
(LSB)  
Value  
Comments  
0x1B  
FLEX_USER_PATT2_LSB B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
B8  
X
0x00  
User defined  
Pattern 2, LSB.  
0x1C  
0x2B  
FLEX_USER_PATT2_  
MSB  
B15  
B14  
B13  
X
B12  
X
B11  
X
B10  
X
B9  
X
0x00  
0x00  
User defined  
Pattern 2, MSB.  
FLEX_FILTER  
CH_IN_IMP  
X
Enable  
Enables low-  
pass filter  
tuning  
automatic  
low-pass  
tuning  
1 = on  
(self  
clearing)  
Saturation detector limit adjust  
000 = 1.90 V p-p at PGA output  
011 = 2.00 V p-p at PGA output  
(default)  
Satura-  
tion  
detect  
hysteresis  
0 = low  
hysteresis  
(25 mV  
nominal at  
PGA  
X
X
X
Input  
imped-  
ance  
0 = 200 Ω  
1 =  
200 kΩ  
0x61  
Saturation  
detector  
adjustment  
and input  
impedance  
adjustment  
(global).  
0x2C  
111 = 2.15 V p-p at PGA output  
Other values reserved (001, 010,  
100, 101, 110)  
(default)  
output)  
(default)  
1 = high  
hysteresis  
(nominally  
60 mV at  
PGA  
output)  
1 X = undefined feature.  
Table 11. Flexible Output Test Modes1  
Output Test Mode  
Bit Sequence  
Subject to Data  
Format Select  
Pattern Name  
Off (default)  
Digital Output Word 1  
N/A  
Digital Output Word 2  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
N/A  
Same  
Same  
Same  
0101 0101 0101  
N/A  
N/A  
N/A  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
Midscale short  
+Full-scale short  
−Full-scale short  
Checkerboard output  
PN sequence long  
PN sequence short  
One-/zero-word toggle  
User input  
1000 0000 0000  
1111 1111 1111  
0000 0000 0000  
1010 1010 1010  
N/A  
N/A  
1111 1111 1111  
0000 0000 0000  
1000  
Register 0x19 and Register 0x1A Register 0x1B and Register 0x1C No  
1001  
1010  
1011  
1100  
1-bit/0-bit toggle  
1× sync  
One bit high  
1010 1010 1010  
0000 0011 1111  
1000 0000 0000  
1010 0011 0011  
N/A  
N/A  
N/A  
N/A  
No  
No  
No  
No  
Mixed bit frequency  
1 N/A means not applicable.  
Rev. D | Page 23 of 28  
 
AD8284  
Data Sheet  
APPLICATION CIRCUITS  
AVDD33REF  
0.1µF  
DVDD33SPI  
0.1µF  
DVDD18  
0.1µF  
AVDD18  
0.1µF  
3.3V  
3.3V  
1.8V  
1.8V  
AVDD33  
0.1µF  
DVDD33CLK  
0.1µF  
AVDD18  
0.1µF  
DVDD18CLK  
0.1µF  
AVDD33  
0.1µF  
DVDD33DRV  
0.1µF  
AVDD18ADC  
0.1µF  
DVDD33DRV  
0.1µF  
D0  
NC  
NC  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
D11  
1
48  
NC  
NC  
TEST4  
NC  
NC  
2
3
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
SFLAG  
PDWN  
DVDD18  
SCLK  
CS  
DVDD18CLK  
CLK+  
SFLAG  
4
5
CLK+  
CLK–  
PDWN  
SCLK  
CLK–  
6
CS  
DVDD33CLK  
AVDD33REF  
BAND  
AD8284  
TOP VIEW  
(Not to Scale)  
7
SDI  
SDI  
8
SDO  
AUX  
SDO  
NC  
9
AUX  
VREF  
10  
11  
12  
0.1µF  
1µF  
10kΩ  
1%  
MUX[0]  
MUX[1]  
ZSEL  
MUX[0]  
MUX[1]  
ZSEL  
RBIAS  
APOUT  
ANOUT  
TEST3  
NC  
NC  
13  
14  
TEST1  
TEST2  
DVDD33SPI  
NC  
AVDD18  
INADC–  
AVDD18ADC  
AGND  
15  
16  
NC  
NC  
NC  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
NC  
AVDD18  
INADC+  
NC  
INA+  
0.1µF  
0.1µF  
IND–  
0.1µF  
INA–  
0.1µF  
IND+  
INB+  
INC–  
0.1µF  
0.1µF  
INB–  
INC+  
0.1µF  
0.1µF  
NOTES  
1. ALL CAPACITORS FOR SUPPLIES AND REFERENCES SHOULD BE PLACED CLOSE TO THE PART.  
2. TIE THE EXPOSED PAD ON THE BOTTOM SIDE TO THE ANALOG GROUND PLANE.  
Figure 23. Differential Inputs  
Rev. D | Page 24 of 28  
 
Data Sheet  
AD8284  
AVDD33REF  
0.1µF  
DVDD33SPI  
0.1µF  
DVDD18  
0.1µF  
AVDD18  
0.1µF  
3.3V  
3.3V  
1.8V  
1.8V  
AVDD33  
0.1µF  
DVDD33CLK  
0.1µF  
AVDD18  
0.1µF  
DVDD18CLK  
0.1µF  
AVDD33  
0.1µF  
DVDD33DRV  
0.1µF  
AVDD18ADC  
0.1µF  
DVDD33DRV  
0.1µF  
D0  
NC  
NC  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
D11  
1
48  
NC  
TEST4  
NC  
NC  
NC  
2
3
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
SFLAG  
PDWN  
DVDD18  
SCLK  
CS  
DVDD18CLK  
CLK+  
SFLAG  
4
5
CLK+  
CLK–  
PDWN  
SCLK  
CLK–  
6
CS  
DVDD33CLK  
AVDD33REF  
BAND  
AD8284  
TOP VIEW  
(Not to Scale)  
7
SDI  
SDI  
8
SDO  
AUX  
SDO  
NC  
9
AUX  
VREF  
10  
11  
12  
0.1µF  
1µF  
10kΩ  
1%  
MUX[0]  
MUX[1]  
ZSEL  
MUX[0]  
MUX[1]  
ZSEL  
RBIAS  
APOUT  
ANOUT  
TEST3  
NC  
NC  
13  
14  
TEST1  
TEST2  
DVDD33SPI  
NC  
AVDD18  
AVDD18ADC  
AGND  
15  
16  
INADC–  
NC  
NC  
NC  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
NC  
AVDD18  
INADC+  
NC  
INA+  
0.1µF  
0.1µF  
IND+  
INC+  
0.1µF  
INB+  
0.1µF  
NOTES  
1. RESISTOR R (INX– INPUTS) SHOULD MATCH THE OUTPUT IMPEDANCE OF THE INPUT DRIVER.  
2. ALL CAPACITORS FOR SUPPLIES AND REFERENCES SHOULD BE PLACED CLOSE TO THE PART.  
3. TIE THE EXPOSED PAD ON THE BOTTOM SIDE TO THE ANALOG GROUND PLANE.  
Figure 24. Single-Ended Inputs  
Rev. D | Page 25 of 28  
AD8284  
Data Sheet  
PACKAGING AND ORDERING INFORMATION  
OUTLINE DIMENSIONS  
12.20  
1.20  
MAX  
12.00 SQ  
0.75  
0.60  
0.45  
11.80  
64  
49  
49  
64  
1
1
48  
48  
1.00 REF  
PIN 1  
SEATING  
PLANE  
10.20  
10.00 SQ  
9.80  
EXPOSED  
PAD  
6.64  
BSC SQ  
BOTTOM VIEW  
(PINS UP)  
TOP VIEW  
(PINS DOWN)  
1.05  
1.00  
0.95  
16  
16  
33  
33  
0.20  
0.09  
17  
32  
32  
17  
0.27  
0.22  
0.17  
7°  
3.5°  
0°  
VIEW A  
0.15  
0.05  
0.50  
BSC  
LEAD PITCH  
0.08  
COPLANARITY  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
SECTION OF THIS DATA SHEET.  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-ACD-HD  
Figure 25. 64-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]  
(SV-64-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2, 3  
AD8284WCSVZ  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
Package Option  
64-Lead TQFP_EP, Waffle Pack  
64-Lead TQFP_EP, 13”Tape and Reel  
SV-64-5  
SV-64-5  
AD8284WCSVZ-RL  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
3 Compliant to JEDEC Standard MS-026-ACD-HD.  
AUTOMOTIVE PRODUCTS  
The AD8284WCSVZ models are available with controlled manufacturing to support the quality and reliability requirements of  
automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore,  
designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for  
use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and  
to obtain the specific Automotive Reliability reports for these models.  
Rev. D | Page 26 of 28  
 
 
 
 
Data Sheet  
NOTES  
AD8284  
Rev. D | Page 27 of 28  
AD8284  
NOTES  
Data Sheet  
©2012–2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10992-0-8/15(D)  
Rev. D | Page 28 of 28  

相关型号:

AD8285

6-Channel LNA/PGA/AAF with ADC
ADI

AD8285CP-EBZ

Radar Receive Path AFE: 4-Channel LNA/PGA/AAF
ADI

AD8285WBCPZ

Radar Receive Path AFE: 4-Channel LNA/PGA/AAF with ADC
ADI

AD8285WBCPZ-RL

Radar Receive Path AFE: 4-Channel LNA/PGA/AAF with ADC
ADI

AD8285_17

Radar Receive Path AFE: 4-Channel LNA/PGA/AAF
ADI

AD828AN

Dual, Low Power Video Op Amp
ADI

AD828ANZ

Dual, Low Power Video Op Amp
ADI

AD828AR

Dual, Low Power Video Op Amp
ADI

AD828AR-REEL

Dual, Low Power Video Op Amp
ADI

AD828AR-REEL7

Dual, Low Power Video Op Amp
ADI

AD828ARZ

Dual, Low Power Video Op Amp
ADI

AD828ARZ-REEL

2 CHANNEL, VIDEO AMPLIFIER, PDSO8, PLASTIC, SOIC-8
ADI