AD8285WBCPZ-RL [ADI]

Radar Receive Path AFE: 4-Channel LNA/PGA/AAF with ADC;
AD8285WBCPZ-RL
型号: AD8285WBCPZ-RL
厂家: ADI    ADI
描述:

Radar Receive Path AFE: 4-Channel LNA/PGA/AAF with ADC

电信 电信集成电路
文件: 总28页 (文件大小:573K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Radar Receive Path AFE: 4-Channel  
LNA/PGA/AAF with ADC  
Data Sheet  
AD8285  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
4-channel LNA, PGA, and AAF  
1 direct to ADC channel  
Programmable gain amplifier (PGA)  
Includes low noise preamplifier (LNA)  
Serial peripheral interface (SPI) programmable gain  
16 dB to 34 dB in 6 dB steps  
Antialiasing filter (AAF)  
Programmable third order, low-pass elliptic filter (LPF)  
from 1.0 MHz to 12.0 MHz  
INA+  
INA–  
REFERENCE  
LNA  
LNA  
LNA  
LNA  
PGA  
PGA  
PGA  
PGA  
AAF  
AAF  
AAF  
INB+  
INB–  
DSYNC  
D[0:11]  
MUX  
INC+  
INC–  
12-BIT  
ADC  
DRV  
IND+  
IND–  
AAF  
Analog-to-digital converter (ADC)  
INADC+  
INADC–  
12 bits of accuracy up to 72 MSPS  
Signal-to-noise ratio (SNR): 68.5 dB  
Spurious-free dynamic range (SFDR): 68 dB at gain = 16 dB  
Low power: 185 mW per channel at 12 bits and 72 MSPS  
Low noise: 3.5 nV/√Hz maximum of input referred voltage noise  
Power-down mode  
72-lead, 10 mm × 10 mm LFCSP package  
Specified from −40°C to +105°C  
Qualified for automotive applications  
SPI  
AD8285  
NOTES  
1. AVDD18x = AVDD18, AVDD18ADC.  
AVDD33x = AVDD33, AVDD33A, AVDD33B, AVDD33C, AVDD33D, AVDD33REF.  
DVDD18x = DVDD18, DVDD18CLK. DVDD33x = DVDD33, DVDD33SPI, DVDD33CLK, DVDD33DRV.  
Figure 1.  
APPLICATIONS  
Automotive radar  
Adaptive cruise control  
Collision avoidance  
Blind spot detection  
Self parking  
Electronic bumper  
GENERAL DESCRIPTION  
The AD8285 is designed for low cost, low power, compact size,  
flexibility, and ease of use. It contains four channels of a low noise  
preamplifier (LNA) with a programmable gain amplifier (PGA)  
and an antialiasing filter (AAF) plus one direct to ADC channel, all  
integrated with a single 12-bit analog-to-digital converter (ADC).  
Fabricated in an advanced complementary metal oxide  
semiconductor (CMOS) process, the AD8285 is available in a  
10 mm × 10 mm, RoHS compliant, 72-lead LFCSP that is specified  
over the automotive temperature range of −40°C to +105°C.  
Table 1. Related Devices  
Each channel features a gain range of 16 dB to 34 dB in 6 dB  
increments and an ADC with a conversion rate of up to 72 MSPS.  
The combined input referred noise voltage of the entire channel  
is 3.5 nV/√Hz at maximum gain. The channel is optimized for  
dynamic performance and low power in applications where a  
small package size is critical.  
Part No.  
Description  
AD8283  
6-channel LNA/PGA/AAF, pseudo simultaneous  
channel sampling with ADC  
AD8284  
4-channel LNA/PGA/AAF, sequential channel  
sampling with ADC  
ADA8282 4-channel LNA/PGA  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibilityisassumedbyAnalogDevicesforitsuse,norforanyinfringementsofpatentsorother  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices.Trademarks and registered trademarks are theproperty of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2015 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD8285* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DISCUSSIONS  
View all ad8285 EngineerZone Discussions.  
EVALUATION KITS  
AD8283 and AD8285 Evaluation Board  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
DOCUMENTATION  
TECHNICAL SUPPORT  
Data Sheet  
Submit a technical question or find your regional support  
number.  
AD8285: Radar Receive Path AFE: 4-Channel LNA/PGA/  
AAF with ADC Data Sheet  
DOCUMENT FEEDBACK  
DESIGN RESOURCES  
ad8285 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD8285  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
SDIO Pin...................................................................................... 17  
SCLK Pin ..................................................................................... 17  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Specifications.......................................................................... 3  
Digital Specifications ................................................................... 5  
Switching Specifications .............................................................. 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 14  
Radar Receive Path AFE............................................................ 14  
Channel Overview...................................................................... 15  
ADC ............................................................................................. 16  
Clock Input Considerations...................................................... 16  
Clock Duty Cycle Considerations............................................ 17  
Clock Jitter Considerations....................................................... 17  
CS  
Pin .......................................................................................... 17  
RBIAS Pin.................................................................................... 17  
Voltage Reference ....................................................................... 18  
Power and Ground Recommendations................................... 18  
Exposed Paddle Thermal Heat Slug Recommendations ...... 18  
Serial Peripheral Interface (SPI)................................................... 19  
Hardware Interface..................................................................... 19  
Memory Map .................................................................................. 21  
Reading the Memory Map Table.............................................. 21  
Logic Levels................................................................................. 21  
Reserved Locations .................................................................... 21  
Default Values............................................................................. 21  
Application Diagrams.................................................................... 25  
Outline Dimensions....................................................................... 27  
Ordering Guide .......................................................................... 27  
Automotive Products................................................................. 27  
REVISION HISTORY  
9/15—Rev. A to Rev. B  
Added Table 1; Renumbered Sequentially .................................... 1  
10/14—Rev. 0 to Rev. A  
Changes to Addr. (Hex) 0x15, Table 8 ......................................... 23  
Changes to Ordering Guide .......................................................... 27  
5/14—Revision 0: Initial Version  
Rev. B | Page 2 of 27  
 
Data Sheet  
AD8285  
SPECIFICATIONS  
AC SPECIFICATIONS  
AVDD18 = AVDD18ADC = 1.8 V, AVDD33 = AVDD33x1 = AVDD33REF = 3.3 V, DVDD18 = DVDD18CLK = 1.8 V, DVDD33SPI =  
DVDD33CLK = DVDD33DRV = 3.3 V, 1.024 V internal ADC reference, fIN = 2.5 MHz, fSAMPLE = 72 MSPS, RS = 50 Ω, LNA + PGA gain =  
34 dB, LPF cutoff = fSAMPLECH/4, full channel mode, 12-bit operation, temperature = −40°C to +105°C, unless otherwise noted.  
Table 2.  
Parameter2  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ANALOG CHANNEL CHARACTERISTICS  
LNA, PGA, and AAF channels  
Gain  
Gain Range  
Gain Error  
16/22/28/34  
18  
dB  
dB  
dB  
−1.25  
+1.25  
Input Voltage Range  
Channel gain = 16 dB  
Channel gain = 22 dB  
Channel gain = 28 dB  
Channel gain = 34 dB  
200 Ω input impedance selected  
200 kΩ input impedance selected  
0.25  
V p-p  
V p-p  
V p-p  
V p-p  
kΩ  
0.125  
0.0625  
0.03125  
0.230  
200  
Input Resistance  
0.180  
160  
0.280  
240  
kΩ  
Input Capacitance  
22  
pF  
Input Referred Voltage Noise  
Maximum gain at 1 MHz  
Minimum gain at 1 MHz  
Maximum gain, RS = 50 Ω, unterminated  
Maximum gain, RS = RIN = 50 Ω  
Gain = 16 dB  
1.85  
6.03  
7.1  
12.7  
nV/√Hz  
nV/√Hz  
dB  
Noise Figure  
dB  
Output Offset  
−60  
−250  
+60  
+250  
LSB  
LSB  
MHz  
%
Gain = 34 dB  
AAF Low-Pass Filter Cutoff  
Tolerance  
AAF Attenuation in Stop Band  
−3 dB, programmable  
After filter autotune  
Third-order elliptic filter  
2× cutoff  
1.0 to 12.0  
5
−10  
+10  
30  
dB  
3× cutoff  
40  
dB  
Group Delay Variation  
Channel-to-Channel Phase Variation  
Filter set at 2 MHz  
400  
0.5  
ns  
Frequencies up to −3 dB  
¼ of −3 dB frequency  
Frequencies up to −3 dB  
¼ of −3 dB frequency  
Relative to output  
−5  
−1  
−0.5  
−0.25  
+5  
+1  
+0.5  
+0.25  
Degrees  
Degrees  
dB  
dB  
dBm  
dBc  
Channel-to-Channel Gain Matching  
0.1  
1 dB Compression  
Crosstalk  
9.8  
−70  
−55  
POWER SUPPLY  
AVDD18, AVDD18ADC  
AVDD33, AVDD33x1, AVDD33REF  
DVDD18, DVDD18CLK  
DVDD33SPI, DVDD33CLK,  
DVDD33DRV  
1.7  
3.1  
1.7  
3.1  
1.8  
3.3  
1.8  
3.3  
1.9  
3.5  
1.9  
3.5  
V
V
V
V
IAVDD18  
IAVDD33  
IDVDD18  
IDVDD33  
Full channel mode  
Full channel mode  
130  
130  
22  
2
185  
mA  
mA  
mA  
mA  
mW  
Total Power Dissipation Per Channel  
Full channel mode, no signal, typical supply  
voltage × maximum supply current; excludes  
output current  
Power-Down Dissipation  
5
mW  
Power Supply Rejection Ratio (PSRR)  
1.6  
mV/V  
Rev. B | Page 3 of 27  
 
 
AD8285  
Data Sheet  
Parameter2  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ADC  
Resolution  
Maximum Sample Rate  
Signal-to-Noise Ratio (SNR)  
Signal-to-Noise and Distortion  
(SINAD)  
12  
72  
68.5  
66  
Bits  
MSPS  
dB  
fIN = 1 MHz  
dB  
Signal-to-Noise Ratio Full Scale  
(SNRFS)  
68  
dB  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
Effective Number of Bits (ENOB)  
ADC OUTPUT CHARACTERISTICS  
Maximum Capacitor Load  
Guaranteed no missing codes  
1
10  
LSB  
LSB  
LSB  
10.67  
20  
Per bit  
pF  
IDVDD33 Peak Current with Capacitor  
Load  
Peak current per bit when driving 20 pF load;  
can be programmed via the SPI port, if required  
40  
25  
mA  
ADC REFERENCE  
Output Voltage Error  
Load Regulation  
VREF = 1.024 V  
At 1.0 mA, VREF = 1.024 V  
mV  
mV  
kΩ  
2
6
Input Resistance  
FULL CHANNEL CHARACTERISTICS  
SNRFS  
LNA, PGA, AAF, and ADC channels  
fIN = 1 MHz  
Gain = 16 dB  
Gain = 22 dB  
Gain = 28 dB  
Gain = 34 dB  
68  
68  
68  
66  
dB  
dB  
dB  
dB  
SINAD  
fIN = 1 MHz  
Gain = 16 dB  
Gain = 22 dB  
Gain = 28 dB  
Gain = 34 dB  
67  
68  
67  
66  
dB  
dB  
dB  
dB  
Spurious-Free Dynamic Range  
(SFDR)  
fIN = 1 MHz  
Gain = 16 dB  
Gain = 22 dB  
Gain = 28 dB  
Gain = 34 dB  
68  
74  
74  
73  
dB  
dB  
dB  
dB  
Harmonic Distortion  
Second Harmonic  
fIN = 1 MHz at −10 dBFS, gain = 16 dB  
fIN = 1 MHz at −10 dBFS, gain = 34 dB  
fIN = 1 MHz at −10 dBFS, gain = 16 dB  
fIN = 1 MHz at −10 dBFS, gain = 34 dB  
fIN1 = 1 MHz, fIN2 = 1.1 MHz, −1 dBFS, gain = 34 dB  
−70  
−70  
−66  
−75  
−69  
600  
200  
dBc  
dBc  
dBc  
dBc  
dBc  
ns  
Third Harmonic  
IM3 Distortion  
Gain Response Time  
Overdrive Recovery Time  
ns  
1 x stands for A, B, C, or D.  
2 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions, and how these tests were completed.  
Rev. B | Page 4 of 27  
Data Sheet  
AD8285  
DIGITAL SPECIFICATIONS  
AVDD18 = AVDD18ADC = 1.8 V, AVDD33 = AVDD33x1 = AVDD33REF = 3.3 V, DVDD18 = DVDD18CLK = 1.8 V, DVDD33SPI =  
DVDD33CLK = DVDD33DRV = 3.3 V, 1.024 V internal ADC reference, fIN = 2.5 MHz, fSAMPLE = 72 MSPS, RS = 50 Ω, LNA + PGA gain =  
34 dB, LPF cutoff = fSAMPLECH/4, full channel mode, 12-bit operation, temperature = −40°C to +105°C, unless otherwise noted.  
Table 3.  
Parameter2  
Temperature  
Min  
Typ  
Max  
Unit  
CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
CMOS/LVDS/LVPECL  
Differential Input Voltage3  
Input Common-Mode Voltage  
Differential Input Resistance  
Input Capacitance  
Full  
Full  
25°C  
25°C  
250  
mV p-p  
V
kΩ  
pF  
1.2  
20  
1.5  
LOGIC INPUTS (PDWN, SCLK, AUX, MUXA, ZSEL)  
Logic 1 Voltage  
Logic 0 Voltage  
Input Resistance  
Input Capacitance  
Full  
Full  
25°C  
25°C  
1.2  
1.2  
3.6  
0.3  
V
V
kΩ  
pF  
30  
0.5  
LOGIC INPUT (CS)  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
3.6  
0.3  
V
V
Input Resistance  
Input Capacitance  
25°C  
25°C  
70  
0.5  
kΩ  
pF  
LOGIC INPUT (SDIO)  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
1.2  
0
DVDD33x + 0.3  
0.3  
V
V
Input Resistance  
Input Capacitance  
25°C  
25°C  
30  
2
kΩ  
pF  
LOGIC OUTPUT (SDIO)4  
Logic 1 Voltage (IOH = 800 μA)  
Logic 0 Voltage (IOL = 50 μA)  
LOGIC OUTPUT (Dx, DSYNC)  
Logic 1 Voltage (IOH = 2 mA)  
Logic 0 Voltage (IOL = 2 mA)  
Full  
Full  
3.0  
3.0  
V
V
0.3  
Full  
Full  
V
V
0.05  
1 x stands for A, B, C, or D.  
2 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions, and how these tests were completed.  
3 Specified for LVDS and LVPECL only.  
4 Specified for 13 SDIO pins sharing the same connection.  
Rev. B | Page 5 of 27  
 
AD8285  
Data Sheet  
SWITCHING SPECIFICATIONS  
AVDD18 = AVDD18ADC = 1.8 V, AVDD33 = AVDD33x1 = AVDD33REF = 3.3 V, DVDD18 = DVDD18CLK = 1.8 V, DVDD33SPI =  
DVDD33CLK = DVDD33DRV = 3.3 V, 1.024 V internal ADC reference, fIN = 2.5 MHz, fSAMPLE = 72 MSPS, RS = 50 Ω, LNA + PGA gain =  
34 dB, LPF cutoff = fSAMPLECH/4, full channel mode, 12-bit operation, temperature = −40°C to +105°C, unless otherwise noted.  
Table 4.  
Parameter2  
CLOCK  
Temperature  
Min  
Typ  
Max  
Unit  
Clock Rate  
Full  
10  
72  
MSPS  
ns  
ns  
ns  
ns  
Clock Pulse Width High (tEH) at 72 MSPS Full  
Clock Pulse Width Low (tEL) at 72 MSPS Full  
Clock Pulse Width High (tEH) at 40 MSPS Full  
Clock Pulse Width Low (tEL) at 40 MSPS  
OUTPUT PARAMETERS  
6.94  
6.94  
12.5  
12.5  
Full  
Propagation Delay (tPD) at 72 MSPS  
Rise Time (tR)3  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
1.5  
2.5  
1.9  
1.2  
10.0  
4.0  
22.5  
4.0  
7
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Fall Time (tF)3  
Data Set-Up Time (tDS) at 72 MSPS  
Data Hold Time (tDH) at 72 MSPS  
Data Set-Up Time (tDS) at 40 MSPS  
Data Hold Time (tDH) at 40 MSPS  
Pipeline Latency  
9.0  
1.5  
21.5  
1.5  
11.0  
5.0  
23.5  
5.0  
Clock cycles  
1 x stands for A, B, C, or D.  
2 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions, and how these tests were completed.  
3 Not shown in Figure 2.  
N
N –1  
INAx  
tEH  
tEL  
CLK–  
CLK+  
tDH  
tDS  
tPD  
N – 7  
N – 6  
N – 5  
N – 4  
N – 3  
N – 2  
N – 1  
N
D[11:0]  
Figure 2. Timing Definitions for Switching Specifications  
Rev. B | Page 6 of 27  
 
 
Data Sheet  
AD8285  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
Electrical  
AVDD18x1 to GND  
AVDD33x2 to GND  
DVDD18x3 to GND  
DVDD33x4 to GND  
−0.3 V to +2.0 V  
−0.3 V to +3.5 V  
−0.3 V to +2.0 V  
−0.3 V to +3.5 V  
−0.3 V to +3.5 V  
Analog Inputs  
INx+, INx− to GND  
ESD CAUTION  
Auxiliary Inputs  
INADC+, INADC− to GND  
Digital Outputs  
−0.3 V to +2.0 V  
−0.3 V to +3.5 V  
D[11:0], DSYNC, SDIO to GND  
CLK+, CLK− to GND  
PDWN, SCLK, CS, AUX, MUXA,  
ZSEL to GND  
−0.3 V to +3.9 V  
−0.3 V to +3.9 V  
RBIAS, VREF to GND  
Environmental  
−0.3 V to +2.0 V  
Operating Temperature  
Range (Ambient)  
Storage Temperature  
Range (Ambient)  
Maximum Junction  
Temperature  
−40°C to +105°C  
−65°C to +150°C  
150°C  
Lead Temperature  
(Soldering, 10 sec)  
300°C  
1 AVDD18x = AVDD18 and AVDD18ADC.  
2 AVDD33x = AVDD33A, AVDD33B, AVDD33C, AVDD33D, and AVDD33REF.  
3 DVDD18x = DVDD18, DVDD18CLK.  
4 DVDD33x = DVDD33, DVDD33SPI, DVDD33CLK, DVDD33DRV.  
Rev. B | Page 7 of 27  
 
 
AD8285  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
NC  
DSYNC  
PDWN  
DVDD18  
SCLK  
SDIO  
CS  
AUX  
MUXA  
ZSEL 10  
TEST1 11  
TEST2 12  
DVDD33SPI 13  
AVDD18 14  
AVDD33A 15  
INA– 16  
1
2
3
4
5
6
7
8
9
54 NC  
PIN 1  
INDICATOR  
53 TEST4  
52 DVDD18CLK  
51 CLK+  
50 CLK–  
49 DVDD33CLK  
48 AVDD33REF  
47 VREF  
46 RBIAS  
45 BAND  
44 APOUT  
43 ANOUT  
42 TEST3  
41 AVDD18ADC  
40 AVDD18  
39 INADC+  
38 INADC–  
37 NC  
AD8285  
TOP VIEW  
(Not to Scale)  
INA+ 17  
NC 18  
NOTES  
1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.  
2. TIE THE EXPOSED PAD ON THE BOTTOM OF THE PACKAGE TO THE ANALOG/DIGITAL GROUND PLANE.  
Figure 3. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
0
1
2
3
EPAD  
NC  
DSYNC  
PDWN  
Exposed Pad. Tie the exposed pad on the bottom of the package to the analog/digital ground plane.  
No Connect. Do not connect to this pin.  
Data Output Synchronization.  
Full Power Down. Logic high overrides the SPI and powers down the device. Logic low allows selection of  
the power down option through the SPI.  
4
5
6
7
8
DVDD18  
SCLK  
SDIO  
CS  
1.8 V Digital Supply.  
Serial Clock.  
Serial Data Input/Output.  
Chip Select Bar.  
AUX  
Auxiliary. A logic high on AUX switches the AUX channel (INADC+/INADC−) to the ADC. The AUX pin has a  
higher priority than the MUXA pin.  
9
10  
MUXA  
ZSEL  
Channel A Select. Logic high forces to Channel A unless AUX is asserted.  
Input Impedance Select. Logic high overrides the SPI and sets the input impedance to 200 kΩ. Logic low  
allows selection of the input impedance through the SPI.  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
TEST1  
TEST2  
DVDD33SPI  
AVDD18  
AVDD33A  
INA−  
INA+  
NC  
NC  
NC  
Test. Do not use the TEST1 pin; tie it to ground.  
Test. Do not use the TEST2 pin; tie it to ground.  
3.3 V Digital Supply for SPI Port.  
1.8 V Analog Supply.  
3.3 V Analog Supply for Channel A.  
Negative LNA Analog Input for Channel A.  
Positive LNA Analog Input for Channel A.  
No Connect. Do not connect to this pin.  
No Connect. Do not connect to this pin.  
No Connect. Do not connect to this pin.  
3.3 V Analog Supply for Channel B.  
AVDD33B  
INB−  
INB+  
Negative LNA Analog Input for Channel B.  
Positive LNA Analog Input for Channel B.  
Rev. B | Page 8 of 27  
 
Data Sheet  
AD8285  
Pin No.  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
Mnemonic  
AVDD33C  
INC−  
INC+  
AVDD33D  
IND−  
IND+  
AVDD33  
NC  
NC  
AVDD33  
NC  
Description  
3.3 V Analog Supply for Channel C.  
Negative LNA Analog Input for Channel C.  
Positive LNA Analog Input for Channel C.  
3.3 V Analog Supply for Channel D.  
Negative LNA Analog Input for Channel D.  
Positive LNA Analog Input for Channel D.  
3.3 V Analog Supply.  
No Connect. Do not connect to this pin.  
No Connect. Do not connect to this pin.  
3.3 V Analog Supply.  
No Connect. Do not connect to this pin.  
No Connect. Do not connect to this pin.  
No Connect. Do not connect to this pin.  
No Connect. Do not connect to this pin.  
Negative Analog Input for Alternate Channel D (ADC Only).  
Positive Analog Input for Alternate Channel D (ADC Only).  
1.8 V Analog Supply.  
NC  
NC  
NC  
INADC−  
INADC+  
AVDD18  
AVDD18ADC  
TEST3  
ANOUT  
APOUT  
BAND  
RBIAS  
1.8 V Analog Supply for ADC.  
Test. Do not use the TEST3 pin; tie it to ground.  
Analog Outputs. The ANOUT pin is for debug purposes only. Leave this pin floating.  
Analog Outputs. The APOUT pin is for debug purposes only. Leave this pin floating.  
Band Gap Voltage. The BAND pin is for debug purposes only. Leave this pin floating.  
External Resistor. The RBIAS pin sets the internal ADC core bias current.  
Voltage Reference Input/Output.  
3.3 V Analog Supply for References.  
3.3 V Digital Supply for Clock.  
Clock Input Complement.  
Clock Input True.  
VREF  
AVDD33REF  
DVDD33CLK  
CLK−  
CLK+  
DVDD18CLK  
TEST4  
NC  
1.8 V Digital Supply for Clock.  
Test. Do not use the TEST4 pin; tie it to ground.  
No Connect. Do not connect to this pin.  
No Connect. Do not connect to this pin.  
NC  
DVDD33DRV 3.3 V Digital Supply for Output Driver.  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NC  
NC  
ADC Data Output 11 (MSB).  
ADC Data Output 10.  
ADC Data Output 9.  
ADC Data Output 8.  
ADC Data Output 7.  
ADC Data Output 6.  
ADC Data Output 5.  
ADC Data Output 4.  
ADC Data Output 3.  
ADC Data Output 2.  
ADC Data Output 1.  
ADC Data Output 0 (LSB).  
No Connect. Do not connect to this pin.  
No Connect. Do not connect to this pin.  
DVDD33DRV 3.3 V Supply for Output Driver.  
NC No Connect. Do not connect to this pin.  
Rev. B | Page 9 of 27  
AD8285  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD18 = AVDD18ADC = 1.8 V, AVDD33A = AVDD33B = AVDD33C = AVDD33D = AVDD33 = AVDD33REF = AVDD33CLK =  
3.3 V, TA = 25°C, fS = 72 MSPS, RIN = 200 kꢀ, VREF = 1.024 V.  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
50  
40  
34dB  
28dB  
22dB  
16dB  
30  
20  
10  
0
–10  
–20  
–30  
–40  
6
4
2
0
33.50  
33.66  
33.82  
33.98  
34.14  
34.30  
34.46  
0.1  
1
10  
FREQUENCY (MHz)  
100  
33.58  
33.74  
33.90  
34.06  
34.22  
34.38  
GAIN ERROR (dB)  
Figure 7. Gain Error Histogram (Gain = 34 dB)  
Figure 4. Channel Gain vs. Frequency  
20  
1.0  
0.8  
34dB  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
28dB  
22dB  
16dB  
0.6  
0.4  
0.2  
0
8
7
6
5
4
3
2
1
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
0
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24  
0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23 0.25  
–40  
–15  
10  
35  
60  
85  
GAIN MATCHING (dB)  
TEMPERATURE (°C)  
Figure 5. Gain Error vs. Temperature at All Gains  
Figure 8. Channel-to-Channel Gain Matching (Gain = 16 dB)  
40  
10  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
9
8
7
6
5
4
3
2
1
0
6
4
2
0
16.00  
16.16  
16.32  
16.48  
16.64  
16.8  
16.96  
0
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24  
0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23 0.25  
16.08  
16.24  
16.4  
16.56  
16.72  
16.88  
GAIN ERROR (dB)  
GAIN MATCHING (dB)  
Figure 6. Gain Error Histogram (Gain = 16 dB)  
Figure 9. Channel-to-Channel Gain Matching (Gain = 34 dB)  
Rev. B | Page 10 of 27  
 
Data Sheet  
AD8285  
12000  
10000  
8000  
6000  
4000  
2000  
0
70  
65  
60  
55  
50  
45  
40  
SNR  
SINAD  
–7 –6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
7
16  
22  
28  
34  
CODE  
GAIN (dB)  
Figure 10. Output Referred Noise Histogram (Gain = 16 dB)  
Figure 13. SNR/SINAD vs. Gain  
7000  
20  
10  
6000  
5000  
4000  
3000  
2000  
1000  
0
0
–10  
–20  
–30  
–40  
–50  
12MHz  
8MHz  
4MHz  
2MHz  
1MHz  
–7 –6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
7
0.1  
1
10  
100  
CODE  
FREQUENCY (Hz)  
Figure 11. Output Referred Noise Histogram (Gain = 34 dB)  
Figure 14. Filter Response  
15  
200  
180  
160  
140  
120  
100  
80  
34dB  
28dB  
10  
16dB  
22dB  
16dB  
5
60  
22dB  
28dB  
40  
20  
34dB  
0
0.1  
0
1
10  
0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. Short-Circuit Input Referred Noise vs. Frequency  
Figure 15. Short-Circuit Output Referred Noise vs. Frequency  
Rev. B | Page 11 of 27  
AD8285  
Data Sheet  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
1.5  
1.0  
1MHz  
2MHz  
4MHz  
8MHz  
12MHz  
0.5  
0
–0.5  
–1.0  
–1.5  
0
0.1  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
1
10  
FREQUENCY (MHz)  
100  
TIME (µs)  
Figure 16. Group Delay vs. Frequency  
Figure 19. Overdrive Recovery  
–40  
SECOND HARMONIC, –1dBFS  
SECOND HARMONIC, –10dBFS  
THIRD HARMONIC, –1dBFS  
THIRD HARMONIC, –10dBFS  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
SDO  
3
2
ANALOG  
OUTPUT  
CH2 500mV  
M1µs 1.25GS/s  
A CH2 560mV  
800ps/pt  
0
1
2
3
4
5
6
7
CH3 1V  
INPUT FREQUENCY (MHz)  
Figure 20. Gain Step Response  
Figure 17. Harmonic Distortion vs. Input Frequency  
30  
500  
200k  
180k  
160k  
140k  
120k  
100k  
80k  
450  
400  
350  
300  
250  
200  
150  
100  
50  
25  
20  
15  
10  
5
34dB, 50TERMINATED  
IMPEDANCE = 200  
34dB, UNTERMINATED  
60k  
40k  
IMPEDANCE = 200kꢀ  
20k  
0
0.1  
0
100  
0
0.01  
1
FREQUENCY (MHz)  
10  
0.1  
1
10  
FREQUENCY (MHz)  
Figure 21. Noise Figure vs. Frequency  
Figure 18. RIN vs. Frequency  
Rev. B | Page 12 of 27  
Data Sheet  
AD8285  
10  
9
8
7
6
5
4
3
2
1
0
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
–200  
–60  
–44  
–28  
–12  
4
20  
36  
52 60  
–150  
–100  
–50  
0
50  
100  
150  
200  
OUTPUT OFFSET (LSB)  
OUTPUT OFFSET (LSB)  
Figure 22. Channel Offset Distribution (Gain = 16 dB)  
Figure 23. Channel Offset Distribution (Gain = 34 dB)  
Rev. B | Page 13 of 27  
AD8285  
Data Sheet  
THEORY OF OPERATION  
The AD8285 includes a multiplexer (mux) in front of the ADC  
as a cost saving alternative to having an ADC for each channel.  
The mux automatically switches between each active channel  
after each ADC sample. The DSYNC output indicates when  
Channel A data is at the ADC output and when data for each  
active channel follows sequentially with each clock cycle.  
RADAR RECEIVE PATH AFE  
The primary application for the AD8285 is a high speed ramp,  
frequency modulated, continuous wave radar (HSR-FMCW radar).  
Figure 24 shows a simplified block diagram of an HSR-FMCW  
radar system. The signal chain requires multiple channels, each  
including a LNA, a PGA, an AAF, and an ADC with a 12-bit  
parallel output. The AD8285 provides all of these key components  
in a single 10 × 10 LFCSP package.  
The effective sample rate for each channel is reduced by a factor  
equal to the number of active channels. The ADC resolution of  
12 bits with up to 72 MSPS sampling satisfies the requirements  
for most HSR-FMCW approaches.  
The performance of each component is designed to meet the  
demands of an HSR-FMCW radar system. Some examples of  
these performance metrics are the LNA noise, PGA gain range,  
AAF cutoff characteristics, and ADC sample rate and resolution.  
SDIO  
SCLK  
AD8285  
SPI  
INTERFACE  
MUX  
CONTROLLER  
DSYNC  
200/  
200kꢀ  
INx+  
INx–  
PIPELINE  
ADC  
PARALLEL  
3.3V CMOS  
MUX  
D11 TO D0  
LNA  
22dB  
PGA  
AAF  
–6dB,  
0dB,  
6dB,  
12dB  
THIRD-ORDER  
ELLIPTICAL FILTER  
12-BIT  
72MSPS  
Figure 24. Simplified Block Diagram of a Single Channel  
REF.  
OSCILLATOR  
PA  
VCO  
CHIRP RAMP  
GENERATOR  
LNA  
LNA  
PGA  
PGA  
AAF  
AAF  
12-BIT  
ADC  
DSP  
MUX  
LNA  
PGA  
AAF  
AD8285  
ANTENNA  
Figure 25. Radar System Overview  
Rev. B | Page 14 of 27  
 
 
 
Data Sheet  
AD8285  
Antialiasing Filter (AAF)  
CHANNEL OVERVIEW  
The filter that the signal reaches prior to the ADC is used to  
band limit the signal for antialiasing.  
Each channel contains an LNA, a PGA, and an AAF in the  
signal path. The LNA input impedance can be either 200 Ω or  
200 kΩ. The PGA has selectable gains that result in channel  
gains ranging from 16 dB to 34 dB. The AAF has a three-pole  
elliptical response with a selectable cutoff frequency. The mux is  
synchronized with the ADC and automatically selects the next  
active channel after the ADC acquires a sample.  
The antialiasing filter uses a combination of poles and zeros to  
create a third order elliptical filter. An elliptical filter is used to  
achieve a sharp roll-off after the cutoff frequency. The filter uses  
on-chip tuning to trim the capacitors to set the desired cutoff  
frequency. This tuning method reduces variations in the cutoff  
frequency due to standard IC process tolerances of resistors and  
capacitors. The default −3 dB low-pass filter cutoff is 1/3 or 1/4  
the ADC sample clock rate. The cutoff can be scaled to 0.7, 0.8,  
0.9, 1, 1.1, 1.2, or 1.3 times this frequency through the SPI.  
The signal path is fully differential throughout to maximize signal  
swing and reduce even-order distortion including the LNA, which  
is designed to be driven from a differential signal source.  
Low Noise Amplifier (LNA)  
Tuning is normally off to avoid changing the capacitor settings  
during critical times. The tuning circuit is enabled and disabled  
through the SPI. Initializing the tuning of the filter must be  
performed after initial power-up and after reprogramming the  
filter cutoff scaling or ADC sample rate. Occasional retuning  
during an idle time is recommended to compensate for  
temperature drift.  
Good noise performance relies on a proprietary ultralow noise  
LNA at the beginning of the signal chain, which minimizes the  
noise contributions on the following PGA and AAF. The input  
impedance can be either 200 Ω or 200 kΩ and is selected through  
the SPI port or using the ZSEL pin.  
The LNA supports differential output voltages as high as 4.0 V p-p  
with positive and negative excursions of 1.0 V from a common-  
mode voltage of 1.5 V. With the output saturation level fixed, the  
channel gain sets the maximum input signal before saturation.  
A cutoff range of 1.0 MHz to 12.0 MHz is possible. An example  
follows:  
Four channels selected: A, B, C, and AUX  
ADC clock: 30 MHz  
Per channel sample rate: 30/4 = 7.5 MSPS  
Default tuned cutoff frequency = 7.5/4 = 1.88 MHz  
Low value feedback resistors and the current driving capability of  
the output stage allow the LNA to achieve a low input referred  
noise voltage of 3.5 nV/√Hz at a channel gain of 34 dB. The use  
of a fully differential topology and negative feedback minimizes  
second-order distortion. Differential signaling enables smaller  
swings at each output, further reducing third order distortion.  
Mux and Mux Controller  
The mux is designed to scan through each active channel  
automatically. The mux remains on each channel for one clock  
cycle, then switches to the next active channel. The mux switching  
is synchronized to the ADC sampling so that the mux switching  
and channel settling time do not interfere with ADC sampling.  
Recommendation  
To achieve the best possible noise performance, it is important  
to match the impedances seen by the positive and negative inputs.  
Matching the impedances ensures that any common-mode noise is  
rejected by the signal path.  
As shown in Table 9, Address 0x0C (FLEX_MUX_ CONTROL),  
Channel A is usually the first converted input; the only exception  
occurs when Channel AUX is the sole input (see Figure 26 for  
the timing). Channel AUX is always the last converted input.  
Unselected codes place the respective channels (LNA, PGA,  
and filter) in power-down mode unless Address 0x0C, Bit 6 is  
set to 1. Figure 26 shows the timing of the clock input and  
data/DSYNC outputs.  
Rev. B | Page 15 of 27  
 
 
AD8285  
Data Sheet  
N
N + 1  
INAx  
CLK–  
CLK+  
XXXX  
OUTA  
tPD  
OUTB  
OUTC  
OUTD  
OUTA  
OUTB  
OUTC  
OUTD  
D[11:0]  
N – 1  
N
DSYNC  
NOTES  
tDS  
tDH  
1. FOR THIS CONFIGURATION, ADDRESS 0x0C, BITS [3:0] IS SET TO 0110 (CHANNEL A, B, C, AND D ENABLED).  
2. DSYNC IS ALWAYS ALIGNED WITH CHANNEL A UNLESS CHANNEL A OR CHANNEL AUX IS THE ONLY CHANNEL SELECTED, IN WHICH CASE DSYNC IS NOT ACTIVE.  
3. THERE IS A SEVEN-CLOCK CYCLE LATENCY FROM SAMPLING A CHANNEL TO ITS DIGITAL DATA BEING PRESENT ON THE PARALLEL BUS PINS.  
Figure 26. Data and DSYNC Timing  
If a low jitter clock is available, another option is to ac-couple a  
differential PECL or LVDS signal to the sample clock input pins  
as shown in Figure 28 and Figure 29. The AD9515/AD9520-0  
device family of clock drivers offers excellent jitter performance.  
ADC  
The AD8285 uses a pipelined ADC architecture. The quantized  
output from each stage is combined into a 12-bit result in the  
digital correction logic. The pipelined architecture permits the  
first stage to operate on a new input sample and the remaining  
stages to operate on preceding samples. Sampling occurs on the  
rising edge of the clock. The output staging block aligns the data,  
corrects errors, and passes the data to the output buffers.  
3.3V  
AD951x/AD952x  
50*  
FAMILY  
VFAC3  
OUT  
0.1µF  
0.1µF  
0.1µF  
CLK  
PECL DRIVER  
CLK  
CLK+  
ADC  
AD8285  
100ꢀ  
0.1µF  
CLOCK INPUT CONSIDERATIONS  
CLK–  
240ꢀ  
240ꢀ  
For optimum performance, clock the AD8285 sample clock  
inputs (CLK+ and CLK−) with a differential signal. This signal  
is typically ac-coupled into the CLK+ and CLK− pins via a  
transformer or by using capacitors. These pins are biased  
internally and require no additional bias.  
*50RESISTOR IS OPTIONAL.  
Figure 28. Differential PECL Sample Clock  
3.3V  
AD951x/AD952x  
FAMILY  
50*  
Figure 27 shows the preferred method for clocking the AD8285.  
A low jitter clock source, such as the Valpey Fisher oscillator  
VFAC3-BHL-50MHz, is converted from single ended to  
differential using an RF transformer. The back to back Schottky  
diodes across the secondary transformer limit clock excursions  
into the AD8285 to approximately 0.8 V p-p differential. This  
helps prevent the large voltage swings of the clock from feeding  
through to other portions of the AD8285, and it preserves the  
fast rise and fall times of the signal, which are critical to low  
jitter performance.  
VFAC3  
OUT  
0.1µF  
0.1µF  
0.1µF  
CLK  
CLK+  
ADC  
AD8285  
100ꢀ  
LVDS DRIVER  
CLK  
0.1µF  
CLK–  
*50RESISTOR IS OPTIONAL.  
Figure 29. Differential LVDS Sample Clock  
In some applications, it is acceptable to drive the sample clock  
inputs with a single-ended CMOS signal. In such applications,  
drive CLK+ directly from a CMOS gate and bypass the CLK−  
pin to ground with a 0.1 μF capacitor in parallel with a 39 kΩ  
resistor (see Figure 30). Although the CLK+ input circuit supply  
is AVDD18, this input is designed to withstand input voltages of  
up to 3.3 V, making the selection of the drive logic voltage very  
flexible. The AD9515/AD9520-0 device family can provide 3.3 V  
inputs (see Figure 31). In this case, 39 kΩ resistor is not needed.  
3.3V  
®
MINI-CIRCUITS  
ADT1-1WT, 1:1Z  
0.1µF  
0.1µF  
XFMR  
OUT  
CLK+  
100  
ADC  
AD8285  
50ꢀ  
0.1µF  
VFAC3  
CLK–  
SCHOTTKY  
DIODES:  
0.1µF  
HSM2812  
Figure 27. Transformer Coupled Differential Clock  
Rev. B | Page 16 of 27  
 
 
 
 
 
 
Data Sheet  
AD8285  
3.3V  
In this equation, the rms aperture jitter represents the root  
AD951x/AD952x  
FAMILY  
0.1µF  
mean square of all jitter sources, including the clock input, analog  
input signal, and ADC aperture jitter. Intermediate frequency  
undersampling applications are particularly sensitive to jitter.  
VFAC3  
CLK  
OUT  
OPTIONAL  
100  
0.1µF  
1.8V  
50*  
CMOS DRIVER  
CLK+  
ADC  
AD8285  
Treat the clock input as an analog signal in cases where aperture  
jitter may affect the dynamic range of the AD8285. Separate power  
supplies for clock drivers from the ADC output driver supplies  
to avoid modulating the clock signal with digital noise. Low jitter,  
crystal-controlled oscillators make the best clock sources, such  
as the Valpey Fisher VFAC3 series. If the clock is generated from  
another type of source (by gating, dividing, or other methods),  
retime it by the original clock during the last step.  
CLK  
0.1µF  
CLK–  
0.1µF  
39kꢀ  
*50RESISTOR IS OPTIONAL.  
Figure 30. Single-Ended 1.8 V CMOS Sample Clock  
3.3V  
AD951x/AD952x  
FAMILY  
0.1µF  
VFAC3  
OUT  
CLK  
OPTIONAL  
0.1µF  
Refer to the AN-501 Application Note and the AN-756 Application  
Note for more in-depth information about how jitter performance  
relates to ADCs.  
3.3V  
50*  
100ꢀ  
CLK+  
CMOS DRIVER  
ADC  
AD8285  
CLK  
0.1µF  
0.1µF  
CLK–  
SDIO PIN  
The SDIO pin is required to operate the SPI. It has an internal  
30 kΩ pull-down resistor that pulls this pin low and is only 1.8 V  
tolerant. If applications require that this pin be driven from a  
3.3 V logic level, insert a 1 kΩ resistor in series with this pin to  
limit the current.  
*50RESISTOR IS OPTIONAL.  
Figure 31. Single-Ended 3.3 V CMOS Sample Clock  
CLOCK DUTY CYCLE CONSIDERATIONS  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals. As a result, these ADCs may  
be sensitive to the clock duty cycle. Commonly, a 5% tolerance is  
required on the clock duty cycle to maintain dynamic performance  
characteristics. The AD8285 contains a duty cycle stabilizer (DCS)  
that retimes the nonsampling edge, providing an internal clock  
signal with a nominal 50% duty cycle. The DCS allows a wide  
range of clock input duty cycles without affecting the performance  
of the AD8285.  
SCLK PIN  
The SCLK pin is required to operate the SPI port interface. It  
has an internal 30 kΩ pull-down resistor that pulls this pin low  
and is both 1.8 V and 3.3 V tolerant.  
CS PIN  
CS  
The  
pin is required to operate the SPI port interface. It has  
an internal 70 kΩ pull-up resistor that pulls this pin high and is  
both 1.8 V and 3.3 V tolerant.  
When the DCS is on, noise and distortion performance are nearly  
flat for a wide range of duty cycles. However, some applications  
may require the DCS function to be off. If so, keep in mind that the  
dynamic range performance can be affected when operating in this  
mode. See Table 9 for more information about using this feature.  
RBIAS PIN  
To set the internal core bias current of the ADC, place a resistor  
nominally equal to 10.0 kΩ to ground at the RBIAS pin. Using  
anything other than the recommended 10.0 kΩ resistor for RBIAS  
degrades the performance of the device. Therefore, it is imperative  
that at least a 1.0% tolerance on this resistor be used to achieve  
consistent performance.  
The duty cycle stabilizer uses a delay-locked loop (DLL) to create  
the nonsampling edge. As a result, any changes to the sampling  
frequency require approximately eight clock cycles to allow the  
DLL to acquire and lock to the new rate.  
CLOCK JITTER CONSIDERATIONS  
High speed, high resolution ADCs are sensitive to the quality of the  
clock input. The degradation in SNR at a given input frequency (fA)  
due only to aperture jitter (tJ) can be calculated by  
SNR Degradation = 20 × log 10[1/2 × π × fA × tJ]  
Rev. B | Page 17 of 27  
 
 
 
 
 
 
 
 
AD8285  
Data Sheet  
Use several decoupling capacitors on all supplies to cover both  
high and low frequencies. Locate these capacitors close to the  
point of entry at the PCB level and close to the device, with  
minimal trace lengths.  
VOLTAGE REFERENCE  
A stable and accurate 0.5 V voltage reference is built into the  
AD8285. This is gained up internally by a factor of 2, setting  
VREF to 1.024 V, which results in a full-scale differential input  
span of 2.0 V p-p for the ADC. VREF is set internally by default,  
but the VREF pin can be driven externally with a 1.0 V reference to  
achieve more accuracy. However, this device does not support  
ADC full-scale ranges below 2.0 V p-p.  
When using the AD8285, a single PCB ground plane is sufficient.  
With proper decoupling and smart partitioning of the analog,  
digital, and clock sections of the PCB, optimum performance  
can be achieved easily.  
When applying the decoupling capacitors to the VREF pin, use  
ceramic low ESR capacitors. These capacitors must be close to  
the reference pin and on the same layer of the printed circuit board  
(PCB) as the AD8285. The VREF pin must have both a 0.1 μF  
capacitor and a 1 μF capacitor connected in parallel to the analog  
ground. These capacitor values are recommended for the ADC  
to properly settle and acquire the next valid sample.  
EXPOSED PADDLE THERMAL HEAT SLUG  
RECOMMENDATIONS  
It is required that the exposed paddle on the underside of the  
device be connected to a quiet analog ground to achieve the  
best electrical and thermal performance of the AD8285. Mate  
an exposed continuous copper plane on the PCB to the AD8285  
exposed paddle, Pin 0. The copper plane must have several vias  
to achieve the lowest possible resistive thermal path for heat  
dissipation to flow through the bottom of the PCB. Fill or plug  
these vias with nonconductive epoxy.  
POWER AND GROUND RECOMMENDATIONS  
When connecting power to the AD8285, it is recommended  
that two separate 1.8 V supplies and two separate 3.3 V supplies  
be used: one supply each for analog 1.8 V (AVDD18x), digital  
1.8 V (DVDD18x), analog 3.3 V (AVDD33x), and digital 3.3 V  
(DVDD33x). If only one supply is available for both analog and  
digital, for example, AVDD18x and DVDD18x, route the supply  
to the AVDD18x first and then tap off and isolate it with a ferrite  
bead or a filter choke preceded by decoupling capacitors for the  
DVDD18x. The same is true for the analog and digital 3.3 V  
supplies.  
To maximize the coverage and adhesion between the device and  
the PCB, partition the continuous copper pad by overlaying a  
silkscreen or solder mask to divide the copper pad into several  
uniform sections. Dividing the copper pad ensures several tie  
points between the PCB and the EPAD during the reflow process.  
Using one continuous plane with no partitions only guarantees  
one tie point between the AD8285 and the PCB. For more detailed  
information on packaging, and for more PCB layout examples,  
see the AN-772 Application Note.  
Rev. B | Page 18 of 27  
 
 
 
Data Sheet  
AD8285  
SERIAL PERIPHERAL INTERFACE (SPI)  
The AD8285 serial peripheral interface allows the user to configure  
the signal chain for specific functions or operations through a  
structured register space provided inside the chip. The SPI offers  
added flexibility and customization depending on the application.  
Addresses are accessed via the serial port and can be written to  
or read from via the port. Memory is organized into bytes that  
can be further divided into fields, as documented in the Memory  
Map section. Detailed operational information can be found in  
the AN-877 Application Note, Interfacing to High Speed ADCs  
via SPI.  
CS  
Regardless of the mode, if  
is taken high in the middle of any  
byte transfer, the SPI state machine is reset, and the device waits  
for a new instruction.  
In addition to the operation modes, the SPI port can be  
configured to operate in different modes. For applications that  
do not require a control port, the  
high. This places the remainder of the SPI pins in their secondary  
mode, as is defined in the SDIO Pin section and the SCLK Pin  
pin can also be tied low to enable 2-wire mode.  
is tied low, SCLK and SDIO are the only pins required  
for communication. Although the device is synchronized during  
power-up, caution must be exercised when using this mode to  
ensure that the serial port remains synchronized with the line.  
CS  
line can be tied and held  
CS  
section. The  
CS  
When  
Three pins define the serial peripheral interface (SPI): SCLK,  
CS  
SDIO, and . The SCLK (serial clock) pin is used to synchronize  
the read and write data presented to the device. The SDIO (serial  
data input/output) pin is a dual purpose pin that allows data to  
be sent to and read from the internal memory map registers of  
CS  
When operating in 2-wire mode, it is recommended to use a 1-,  
2-, or 3-byte transfer exclusively. Without an active  
streaming mode can be entered but not exited.  
CS  
line,  
CS  
the device. The  
(chip select bar) pin is an active low control  
that enables or disables the read and write cycles (see Table 7).  
In addition to word length, the instruction phase determines if  
the serial frame is a read or write operation, allowing the serial  
port to be used to both program the chip and read the contents  
of the on-chip memory. If the instruction is a readback operation,  
performing a readback causes the serial data input/output (SDIO)  
pin to change direction from an input to an output at the  
appropriate point in the serial frame.  
Table 7. Serial Port Pins  
Pin  
Function  
SCLK  
Serial clock. The serial shift clock input. SCLK is used  
to synchronize serial interface reads and writes.  
SDIO  
Serial data input/output. A dual-purpose pin. The  
typical role for this pin is as an input or output,  
depending on the instruction sent and the relative  
position in the timing frame.  
Data can be sent in MSB- or LSB-first mode. MSB-first mode is  
the default at power-up and can be changed by adjusting the  
configuration register. For more information about this and  
other features, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
CS  
Chip select bar (active low). This control gates the  
read and write cycles.  
CS  
The falling edge of the  
in conjunction with the rising edge of  
the SCLK determines the start of the framing sequence. During  
an instruction phase, a 16-bit instruction is transmitted, followed  
by one or more data bytes, which is determined by Bit Field W0  
and Bit Field W1. An example of the serial timing and its  
definitions can be found in Figure 32 and Table 8.  
HARDWARE INTERFACE  
The pins described in Table 7 constitute the physical interface  
between the programming device of the user and the serial port  
CS  
of the AD8285. The SCLK and  
pins function as inputs when  
CS  
using the SPI interface. The SDIO pin is bidirectional, functioning  
as an input during write phases and as an output during readback.  
In normal operation,  
signals to the device that SPI  
CS  
commands are to be received and processed. When is brought  
low, the device processes SCLK and SDIO to process instructions.  
This interface is flexible enough to be controlled by either serial  
PROMs or PIC microcontrollers. This flexibility provides the user  
with an alternative method, other than a full SPI controller, for  
programming the device (see the AN-812 Application Note).  
CS  
Normally,  
complete. However, if connected to a slow device,  
brought high between bytes, allowing older microcontrollers  
CS  
remains low until the communication cycle is  
CS  
can be  
enough time to transfer data into shift registers.  
can be  
If the user chooses not to use the SPI interface, these pins serve  
a dual function and are associated with secondary functions  
stalled when transferring one, two, or three bytes of data. When  
W0 and W1 are set to 11, the device enters streaming mode and  
continues to process data, either reading or writing, until  
taken high to end the communication cycle. This allows  
complete memory transfers without having to provide  
additional instructions.  
CS  
when the  
is strapped to AVDD33 during device power-up.  
CS  
is  
See the SDIO Pin section and SCLK Pin section for details on  
which pin strappable functions are supported on the SPI pins.  
Rev. B | Page 19 of 27  
 
 
 
AD8285  
Data Sheet  
tDS  
tHI  
tCLK  
tH  
tS  
tDH  
tLO  
CS  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 32. Serial Timing Details  
Table 8. Serial Timing Definitions  
Parameter  
Minimum Timing (ns)  
Description  
tDS  
5
2
40  
5
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the clock  
tDH  
tCLK  
tS  
Setup time between CS and SCLK  
tH  
2
Hold time between CS and SCLK  
tHI  
tLO  
tEN_SDIO  
16  
16  
10  
Minimum period that SCLK should be in a logic high state  
Minimum period that SCLK should be in a logic low state  
Minimum time for the SDIO pin to switch from an input to an output relative to the  
SCLK falling edge (not shown in Figure 32)  
tDIS_SDIO  
10  
Minimum time for the SDIO pin to switch from an output to an input relative to the  
SCLK rising edge (not shown in Figure 32)  
Rev. B | Page 20 of 27  
 
 
Data Sheet  
AD8285  
MEMORY MAP  
Note that all registers except Register 0x00, Register 0x04,  
READING THE MEMORY MAP TABLE  
Register 0x05, and Register 0xFF are buffered with a master  
slave latch and require writing to the transfer bit. For more  
information on this and other functions, consult the AN-877  
Application Note, Interfacing to High Speed ADCs via SPI.  
Each row in the memory map table has eight address locations.  
The memory map is roughly divided into three sections: the chip  
configuration registers map (Address 0x00 and Address 0x01), the  
device index and transfer registers map (Address 0x05 and  
Address 0xFF), and the ADC channel functions registers map  
(Address 0x04 and Address 0x08 to Address 0x2C).  
LOGIC LEVELS  
An explanation of various registers follows: “bit is set” is  
synonymous with “bit is set to Logic 1” or “writing Logic 1 for  
the bit.” Similarly, “clear a bit” is synonymous with “bit is set to  
Logic 0” or “writing Logic 0 for the bit.”  
The leftmost column of the memory map indicates the address  
(hex) number, and the default value is shown in the second  
rightmost column. The Bit 7 (MSB) column is the start of the  
default hexadecimal value given. For example, Address 0x09,  
the GLOBAL_CLOCK register, has a default value of 0x01,  
meaning that Bit 7 = 0, Bit 6 = 0, Bit 5 = 0, Bit 4 = 0, Bit 3 = 0,  
Bit 2 = 0, Bit 1 = 0, and Bit 0 = 1, or 0000 0001 in binary. This  
setting is the default for the duty cycle stabilizer in the on condition.  
By writing a 0 to Bit 0 of this address followed by a 0x01 to the  
SW transfer bit in Register 0xFF, the duty cycle stabilizer turns  
off. It is important to follow each writing sequence with a write  
to the SW transfer bit to update the SPI registers.  
RESERVED LOCATIONS  
Do not write to undefined memory locations except when writing  
the default values suggested in this data sheet. Consider addresses  
marked as 0 as reserved, and these addresses must have a 0 written  
into their registers during power-up.  
DEFAULT VALUES  
After a reset, critical registers are automatically loaded with default  
values. These values are indicated in Table 9, where an X refers  
to an undefined feature.  
Rev. B | Page 21 of 27  
 
 
 
 
 
AD8285  
Data Sheet  
Table 9. Memory Map Register  
Default  
Addr.  
Bit 7  
Bit 0  
Default Notes/  
(Hex) Register Name  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
(LSB)  
Value  
Comments  
Chip Configuration Registers  
0x00  
CHIP_PORT_CONFIG  
0
LSB first,  
1 = on,  
0 = off,  
Soft  
reset,  
1 = on,  
0 = off  
(default)  
1
1
Soft  
reset,  
1 = on,  
0 = off  
(default)  
LSB first,  
1 = on,  
0 = off  
0
0x18  
Mirror the  
nibbles so  
that LSB- or  
MSB-first  
mode is set  
correct  
(default)  
(default)  
regardless of  
shift mode.  
0x01  
CHIP_ID  
Chip ID, Bits[7:0]  
(AD8285 = 0xA2, default)  
Read  
only  
The default  
value is the  
chip ID  
assigned to  
the AD8285.  
This is a read-  
only register.  
Device Index and Transfer Registers  
0x05  
0xFF  
DEVICE_INDEX  
X
X
X
X
X
X
Data  
Data  
Data  
Channel  
B,  
1 = on  
(default), (default),  
Data  
Channel  
A,  
0x0F  
0x00  
Bits are set to  
determine  
which on-  
chip device  
receives the  
next write  
Chan-  
nel D,  
1 = on  
(def-  
ault),  
0 = off  
Chan-  
nel C,  
1 = on  
(def-  
ault),  
0 = off  
1 = on  
0 = off  
0 = off  
command.  
DEVICE_UPDATE  
X
X
X
X
X
SW  
Synchronously  
transfers data  
from the  
master shift  
register to the  
slave.  
transfer,  
1 = on,  
0 = off  
(default)  
Channel Functions Registers  
0x04  
0x08  
FLEX_RES  
X
X
X
X
X
X
X
X
X
X
Reserved Reserved 0x0F  
Reserved. Bits  
must be set  
to 0x00.  
GLOBAL_MODES  
X
X
Internal power-  
down mode,  
00 = chip run  
(default),  
0x00  
Determines  
the power-  
down mode  
(global).  
01 = full power-  
down,  
11 = reset  
0x09  
0x0C  
GLOBAL_CLOCK  
X
X
X
X
X
X
X
X
X
X
Duty  
cycle  
stabilizer,  
1 = on  
(default),  
0 = off  
0x01  
0x00  
Turns the  
internal duty  
cycle stabilizer  
on and off  
(global).  
FLEX_MUX_CONTROL  
Power-  
down of  
unused  
channels,  
0 = PD  
(power-  
down;  
Mux input active channels,  
0000 = A,  
Selects the  
mux input  
channels to  
use and  
0001 = AUX,  
0010 = A and B,  
0011 = A and AUX,  
0100 = A, B, and C,  
0101 = A, B, and AUX,  
0110 = A, B, C, and D,  
0111 = A, B, C, and AUX  
specifies  
whether to  
power down  
unused  
default),  
1 =  
channels.  
power-on  
Rev. B | Page 22 of 27  
 
Data Sheet  
AD8285  
Default  
Addr.  
Bit 7  
Bit 0  
Default Notes/  
(Hex) Register Name  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
(LSB)  
Value  
Comments  
0x0D  
FLEX_TEST_IO  
User test mode,  
00 = off (default),  
01 = on, single  
alternate,  
10 = on, single once,  
11 = on, alternate  
once  
Reset  
PN long  
gen,  
1 = on,  
0 = off  
(default) 0 = off  
(default)  
Reset  
PN  
short  
gen,  
Output test mode—see Table 10,  
0000 = off (default,)  
0x00  
When this  
register is set,  
the test data  
is placed on  
the output  
pins in place  
of normal  
data (local,  
except for PN  
sequence).  
0001 = midscale short,  
0010 = +full-scale short,  
0011 = −full-scale short,  
0100 = checkerboard output,  
0101 = PN sequence long,  
0110 = PN sequence short,  
0111 = one-/zero-word toggle,  
1000 = user input,  
1 = on,  
1001 = 1-bit/0-bit toggle,  
1010 = 1× sync,  
1011 = one bit high,  
1100 = mixed bit frequency (format  
determined by the OUTPUT_MODE register)  
0x0F  
FLEX_CHANNEL_INPU  
T
Filter cutoff frequency control,  
X
X
X
X
0x30  
Low-pass  
filter cutoff  
(global).  
0000 = 1.3 × 1/4 × fSAMPLECH  
,
,
,
0001 = 1.2 × 1/4 × fSAMPLECH  
0010 = 1.1 × 1/4 × fSAMPLECH  
fSAMPLECH  
=
0011 = 1.0 × 1/4 × fSAMPLECH (default),  
ADC sample  
rate/ number  
of active  
channels.  
Note that the  
absolute  
0100 = 0.9 × 1/4 × fSAMPLECH  
0101 = 0.8 × 1/4 × fSAMPLECH  
0110 = 0.7 × 1/4 × fSAMPLECH  
0111 = not applicable,  
,
,
,
1000 = 1.3 × 1/3 × fSAMPLECH  
1001 = 1.2 × 1/3 × fSAMPLECH  
1010 = 1.1 × 1/3 × fSAMPLECH  
1011 = 1.0 × 1/3 × fSAMPLECH  
1100 = 0.9 × 1/3 × fSAMPLECH  
1101 = 0.8 × 1/3 × fSAMPLECH  
1110 = 0.7 × 1/3 × fSAMPLECH  
1111 = not applicable  
,
,
,
,
,
,
,
range is  
limited to  
1.0 MHz to  
12.0 MHz.  
0x10  
FLEX_OFFSET  
X
X
6-bit LNA offset adjustment,  
00 0000 for LNA bias high,  
0x20  
LNA force  
offset  
01 1111 for LNA mid to high,  
10 0000 for LNA mid to low (default),  
10 0001 for LNA bias low  
correction  
(local).  
0x11  
0x12  
FLEX_GAIN_1  
X
X
X
X
X
X
X
X
X
X
010 = 16 dB (default),  
011 = 22 dB,  
0x02  
0x09  
Total LNA +  
PGA gain  
adjustment  
(local)  
100 = 28 dB,  
101 = 34 dB  
FLEX_BIAS_CURRENT  
X
LNA bias,  
00 = high,  
LNA bias  
current  
01 = mid to high  
(default),  
adjustment  
(global).  
10 = mid to low,  
11 = low  
0x14  
0x15  
FLEX_OUTPUT_MODE  
X
X
X
X
X
X
X
X
1 =  
0 = offset binary  
0x00  
0x0F  
Configures the  
outputs and  
the format of  
the data.  
output  
invert  
(local)  
(default),  
1 = twos  
complement  
(global)  
FLEX_OUTPUT_  
ADJUST  
0 =  
enable  
Data  
Bits[11:0],  
1 =  
disable  
Data  
Typical output rise  
time and fall time,  
respectively  
00 = 2.6 ns, 3.4 ns  
01 = 1.1 ns, 1.6 ns  
10 = 0.7 ns, 0.9 ns  
11 = 0.7 ns, 0.7 ns  
(default)  
Typical output drive  
strength  
Used to adjust  
output rise  
and fall times  
and select  
output drive  
strength,  
limiting the  
noise added to  
the channels  
by output  
00 = 45 mA  
01 = 30 mA  
10 = 60 mA  
11 = 60 mA (default)  
Bits[11:0]  
switching.  
Rev. B | Page 23 of 27  
AD8285  
Data Sheet  
Default  
Addr.  
Bit 7  
Bit 0  
Default Notes/  
(Hex) Register Name  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
(LSB)  
Value  
Comments  
0x18  
FLEX_VREF  
X
0 =  
X
X
X
X
00 = 0.625 V,  
01 = 0.750 V,  
10 = 0.875 V,  
11 = 1.024 V  
(default)  
0x03  
Select internal  
reference  
(recom-  
mended  
default) or  
external  
internal  
reference,  
1 =  
external  
reference  
reference  
(global); adjust  
internal  
reference.  
0x19  
0x1A  
0x1B  
0x1C  
0x2B  
FLEX_USER_PATT1_  
LSB  
B7  
B15  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B1  
B9  
X
B0  
B8  
B0  
B8  
X
0x00  
0x00  
0x00  
0x00  
0x00  
User-defined  
Pattern 1, LSB  
FLEX_USER_PATT1_  
MSB  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
User-defined  
Pattern 1, MSB  
FLEX_USER_PATT2_  
LSB  
User-defined  
Pattern 2, LSB  
FLEX_USER_PATT2_  
MSB  
B15  
X
B14  
B13  
X
B12  
X
B11  
X
B10  
X
User-defined  
Pattern 2, MSB  
FLEX_FILTER  
Enable  
Refer to the  
Antialiasing  
Filter (AAF)  
section.  
automatic  
low-pass  
tuning,  
1 = on  
(self-  
clearing)  
0x2C  
CH_IN_IMP  
X
X
X
X
X
X
X
0 =  
200 Ω  
(default),  
1 =  
0x00  
Input  
impedance  
adjustment  
(global).  
200 kΩ  
Table 10. Flexible Output Test Modes  
Output Test Mode  
Bit Sequence  
Subject to Data  
Format Select  
Pattern Name  
Digital Output Word 1  
Not applicable  
Digital Output Word 2  
Not applicable  
Same  
Same  
Same  
0101 0101 0101  
Not applicable  
Not applicable  
0000 0000 0000  
Register 0x1B to Register 0x1C  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
Off (default)  
Midscale short  
Not applicable  
1000 0000 0000  
1111 1111 1111  
0000 0000 0000  
1010 1010 1010  
Not applicable  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
+Full-scale short  
−Full-scale short  
Checkerboard output  
PN sequence long  
PN sequence short  
One-/zero-word toggle 1111 1111 1111  
User input  
1-bit/0-bit toggle  
1× sync  
One bit high  
Mixed bit frequency  
Not applicable  
Register 0x19 to Register 0x1A  
1010 1010 1010  
0000 0011 1111  
1000 0000 0000  
1010 0011 0011  
1100  
Rev. B | Page 24 of 27  
 
Data Sheet  
AD8285  
APPLICATION DIAGRAMS  
The typical application diagrams for the AD8285 are shown in Figure 33 and Figure 34. As discussed in the Channel Overview section,  
the maximum signal swing and the minimum third-order distortion can be achieved when the AD8285 is driven with a fully differential  
source. The typical connections for this configuration are shown in Figure 33.  
AVDD33REF  
0.1µF  
DVDD33SPI  
0.1µF  
DVDD18  
0.1µF  
AVDD18  
0.1µF  
3.3V  
3.3V  
1.8V  
1.8V  
AVDD33A  
0.1µF  
DVDD33CLK  
0.1µF  
AVDD18  
0.1µF  
DVDD18CLK  
0.1µF  
AVDD33B  
0.1µF  
DVDD33DRV  
0.1µF  
AVDD18ADC  
0.1µF  
AVDD33C  
0.1µF  
DVDD33DRV  
0.1µF  
AVDD33D  
0.1µF  
AVDD33  
0.1µF  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
54  
NC  
NC  
NC  
TEST4  
DVDD18CLK  
CLK+  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
DSYNC  
PDWN  
DVDD18  
SCLK  
SDIO  
CS  
AUX  
MUXA  
ZSEL  
TEST1  
TEST2  
DVDD33SPI  
AVDD18  
AVDD33A  
INA–  
DSYNC  
PDWN  
CLK+  
CLK–  
SCLK  
CLK–  
10k  
SDIO  
DVDD33CLK  
AVDD33REF  
VREF  
CS  
AUX  
MUXA  
ZSEL  
0.1µF  
0.1µF  
0.1µF  
10kꢀ  
AD8285  
TOP VIEW  
(Not to Scale)  
RBIAS  
BAND  
APOUT  
ANOUT  
TEST3  
1%  
INADC+  
AVDD18ADC  
AVDD18  
INADC+  
INADC–  
NC  
INA–  
0.1µF  
0.1µF  
INA+  
NC  
INADC–  
0.1µF  
INA+  
INB–  
0.1µF  
IND+  
0.1µF  
INB+  
0.1µF  
INC–  
0.1µF  
INC+  
0.1µF  
IND–  
0.1µF  
NOTES  
1. ALL CAPACITORS FOR SUPPLIES AND REFERENCES MUST BE PLACED CLOSE TO THE DEVICE.  
Figure 33. Differential Inputs Application Diagram  
Rev. B | Page 25 of 27  
 
 
AD8285  
Data Sheet  
The AD8285 can also be driven with a single-ended source, as shown in Figure 34. In this configuration, the negative analog input of each  
channel is grounded through a resistor and a 0.1 μF capacitor. For optimal operation, this resistor must match the output impedance of  
the input driver.  
AVDD33REF  
0.1µF  
DVDD33SPI  
0.1µF  
DVDD18  
0.1µF  
AVDD18  
0.1µF  
3.3V  
3.3V  
1.8V  
1.8V  
AVDD33A  
0.1µF  
DVDD33CLK  
0.1µF  
AVDD18  
0.1µF  
DVDD18CLK  
0.1µF  
AVDD33B  
0.1µF  
DVDD33DRV  
0.1µF  
AVDD18ADC  
0.1µF  
AVDD33C  
0.1µF  
DVDD33DRV  
0.1µF  
AVDD33D  
0.1µF  
AVDD33  
0.1µF  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
54  
NC  
NC  
NC  
TEST4  
DVDD18CLK  
CLK+  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
DSYNC  
PDWN  
DVDD18  
SCLK  
SDIO  
CS  
AUX  
MUXA  
ZSEL  
TEST1  
TEST2  
DVDD33SPI  
AVDD18  
AVDD33A  
INA–  
DSYNC  
PDWN  
CLK+  
CLK–  
SCLK  
CLK–  
10k  
SDIO  
CS  
AUX  
MUXA  
ZSEL  
DVDD33CLK  
AVDD33REF  
VREF  
AD8285  
TOP VIEW  
(Not to Scale)  
0.1µF  
0.1µF  
0.1µF  
10kꢀ  
RBIAS  
BAND  
APOUT  
ANOUT  
TEST3  
1%  
INADC+  
AVDD18ADC  
AVDD18  
INADC+  
INADC–  
NC  
INA+  
NC  
R
0.1µF  
INADC–  
0.1µF  
INA  
0.1µF  
IND  
0.1µF  
INB  
INC  
0.1µF  
0.1µF  
NOTES  
1. RESISTOR R (INx– INPUTS) MUST MATCH THE OUTPUT IMPEDANCE OF THE INPUT DRIVER.  
2. ALL CAPACITORS FOR SUPPLIES AND REFERENCES SHOULD BE PLACED CLOSE TO THE DEVICE.  
Figure 34. Single-Ended Inputs Application Diagram  
Rev. B | Page 26 of 27  
 
Data Sheet  
AD8285  
OUTLINE DIMENSIONS  
10.10  
10.00 SQ  
9.90  
0.60  
0.42  
0.24  
0.30  
0.23  
0.18  
0.60  
0.42  
0.24  
PIN 1  
INDICATOR  
55  
54  
72  
1
PIN 1  
INDICATOR  
9.85  
0.50  
BSC  
9.75 SQ  
9.65  
8.60  
8.50 SQ  
8.40  
EXPOSED  
PAD  
0.50  
0.40  
0.30  
18  
19  
37  
36  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
8.50 REF  
0.70  
0.65  
0.60  
12° MAX  
0.90  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.01 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VNND-4  
Figure 35. 72-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
10 mm × 10 mm Body, Very Thin Quad  
(CP-72-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
Package Option  
AD8285WBCPZ-RL  
AD8285WBCPZ  
AD8285CP-EBZ  
72-Lead LFCSP_VQ, 13”Tape and Reel  
72-Lead LFCSP_VQ  
Evaluation Board  
CP-72-5  
CP-72-5  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The AD8285WBCPZ models are available with controlled manufacturing to support the quality and reliability requirements of automotive  
applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers  
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in  
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to  
obtain the specific Automotive Reliability reports for this model.  
©2014–2015 Analog Devices, Inc. All rights reserved. Trademarks  
and registered trademarks are the property of their respective owners.  
D11952-0-9/15(B)  
Rev. B | Page 27 of 27  
 
 
 

相关型号:

AD8285_17

Radar Receive Path AFE: 4-Channel LNA/PGA/AAF
ADI

AD828AN

Dual, Low Power Video Op Amp
ADI

AD828ANZ

Dual, Low Power Video Op Amp
ADI

AD828AR

Dual, Low Power Video Op Amp
ADI

AD828AR-REEL

Dual, Low Power Video Op Amp
ADI

AD828AR-REEL7

Dual, Low Power Video Op Amp
ADI

AD828ARZ

Dual, Low Power Video Op Amp
ADI

AD828ARZ-REEL

2 CHANNEL, VIDEO AMPLIFIER, PDSO8, PLASTIC, SOIC-8
ADI

AD828ARZ-REEL7

Dual, Low Power Video Op Amp
ADI

AD828_02

Dual, Low Power Video Op Amp
ADI

AD829

High-Speed, Low-Noise Video Op Amp
ADI

AD8290

G = 50, CMOS Sensor Amplifier with Current Excitation
ADI