AD828ARZ-REEL7 [ADI]

Dual, Low Power Video Op Amp;
AD828ARZ-REEL7
型号: AD828ARZ-REEL7
厂家: ADI    ADI
描述:

Dual, Low Power Video Op Amp

放大器 光电二极管
文件: 总13页 (文件大小:496K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual, Low Power  
Video Op Amp  
a
AD828  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Excellent Video Performance  
Differential Gain and Phase Error of 0.01% and 0.05ꢀ  
High Speed  
130 MHz 3 dB Bandwidth (G = +2)  
450 V/s Slew Rate  
1
2
3
4
OUT1  
–IN1  
+IN1  
V–  
8
7
6
5
V+  
OUT2  
–IN2  
+IN2  
80 ns Settling Time to 0.01%  
Low Power  
15 mA Max Power Supply Current  
High Output Drive Capability  
50 mA Minimum Output Current per Amplifier  
Ideal for Driving Back Terminated Cables  
Flexible Power Supply  
AD828  
Specified for +5 V, 5 V, and 15 V Operation  
3.2 V Min Output Swing into a 150 Load  
(VS = 5 V)  
Excellent DC Performance  
2.0 mV Input Offset Voltage  
Available in 8-Lead SOIC and 8-Lead Plastic Mini-DIP  
GENERAL DESCRIPTION  
The AD828 is fully specified for operation with a single 5 V  
power supply and with dual supplies from 5 V to 15 V. This  
power supply flexibility, coupled with a very low supply current  
of 15 mA and excellent ac characteristics under all power supply  
conditions, make the AD828 the ideal choice for many demand-  
ing yet power-sensitive applications.  
The AD828 is a low cost, dual video op amp optimized for use  
in video applications that require gains of +2 or greater and  
high output drive capability, such as cable driving. Due to its  
low power and single-supply functionality, along with excellent  
differential gain and phase errors, the AD828 is ideal for power-  
sensitive applications such as video cameras and professional  
video equipment.  
The AD828 is a voltage feedback op amp that excels as a gain  
stage (gains > +2) or active filter in high speed and video systems  
and achieves a settling time of 45 ns to 0.1%, with a low input  
offset voltage of 2 mV max.  
With video specs like 0.1 dB flatness to 40 MHz and low  
differential gain and phase errors of 0.01% and 0.05°, along  
with 50 mA of output current per amplifier, the AD828 is an  
excellent choice for any video application. The 130 MHz gain  
bandwidth and 450 V/µs slew rate make the AD828 useful in  
many high speed applications, including video monitors, CATV,  
color copiers, image scanners, and fax machines.  
The AD828 is available in low cost, small 8-lead plastic mini-DIP  
and SOIC packages.  
0.03  
+V  
0.1F  
0.02  
DIFF GAIN  
R
75ꢃ  
BT  
75ꢃ  
V
IN  
0.01  
0.07  
1/2  
R
75ꢃ  
T
AD828  
R
75ꢃ  
T
0.1F  
1kꢃ  
0.06  
DIFF PHASE  
–V  
1kꢃ  
0.05  
0.04  
Figure 1. Video Line Driver  
5
10  
15  
SUPPLY VOLTAGE – V  
Figure 2. Differential Phase vs. Supply Voltage  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
AD828* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
REFERENCE MATERIALS  
Product Selection Guide  
High Speed Amplifiers Selection Table  
Tutorials  
EVALUATION KITS  
Universal Evaluation Board for Dual High Speed  
MT-032: Ideal Voltage Feedback (VFB) Op Amp  
MT-033: Voltage Feedback Op Amp Gain and Bandwidth  
MT-047: Op Amp Noise  
Operational Amplifiers  
DOCUMENTATION  
Application Notes  
MT-048: Op Amp Noise Relationships: 1/f Noise, RMS  
Noise, and Equivalent Noise Bandwidth  
AN-356: User's Guide to Applying and Measuring  
Operational Amplifier Specifications  
MT-049: Op Amp Total Output Noise Calculations for  
Single-Pole System  
AN-358: Noise and Operational Amplifier Circuits  
MT-050: Op Amp Total Output Noise Calculations for  
AN-402: Replacing Output Clamping Op Amps with Input  
Second-Order System  
Clamping Amps  
MT-052: Op Amp Noise Figure: Don't Be Misled  
AN-417: Fast Rail-to-Rail Operational Amplifiers Ease  
Design Constraints in Low Voltage High Speed Systems  
MT-053: Op Amp Distortion: HD, THD, THD + N, IMD,  
SFDR, MTPR  
AN-581: Biasing and Decoupling Op Amps in Single  
Supply Applications  
MT-056: High Speed Voltage Feedback Op Amps  
MT-058: Effects of Feedback Capacitance on VFB and CFB  
Op Amps  
AN-649: Using the Analog Devices Active Filter Design  
Tool  
MT-060: Choosing Between Voltage Feedback and  
Current Feedback Op Amps  
Data Sheet  
AD828: Dual, Low Power Video Op Amp Data Sheet  
User Guides  
DESIGN RESOURCES  
AD828 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
UG-128: Universal Evaluation Board for Dual High Speed  
Op Amps in SOIC Packages  
TOOLS AND SIMULATIONS  
Analog Filter Wizard  
Analog Photodiode Wizard  
Power Dissipation vs Die Temp  
VRMS/dBm/dBu/dBV calculators  
AD828 SPICE Macro-Model  
DISCUSSIONS  
View all AD828 EngineerZone Discussions.  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
(@ TA = 25C, unless otherwise noted.)  
AD828–SPECIFICATIONS  
Parameter  
Conditions  
Gain = +2  
VS  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
5 V  
60  
100  
30  
35  
60  
20  
30  
30  
10  
15  
30  
10  
85  
130  
45  
55  
90  
35  
43  
40  
18  
25  
50  
19  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
15 V  
0, +5 V  
5 V  
15 V  
0, +5 V  
5 V  
15 V  
0, +5 V  
5 V  
15 V  
0, +5 V  
Gain = –1  
Gain = +2  
Bandwidth for 0.1 dB Flatness  
C
C = 1 pF  
Gain = –1  
C = 1 pF  
C
Full Power Bandwidth  
*
VOUT = 5 V p-p  
RLOAD = 500 Ω  
5 V  
22.3  
MHz  
V
OUT = 20 V p-p  
R
LOAD = 1 kΩ  
15 V  
5 V  
15 V  
0, +5 V  
5 V  
7.2  
350  
450  
250  
45  
MHz  
V/µs  
V/µs  
V/µs  
ns  
Slew Rate  
RLOAD = 1 kΩ  
Gain = –1  
300  
400  
200  
Settling Time to 0.1%  
–2.5 V to +2.5 V  
0 V–10 V Step, AV = –1  
–2.5 V to +2.5 V  
0 V–10 V Step, AV = –1  
15 V  
5 V  
15 V  
45  
80  
80  
ns  
ns  
ns  
Settling Time to 0.01%  
NOISE/HARMONIC PERFORMANCE  
Total Harmonic Distortion  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error  
(RL = 150 )  
FC = 1 MHz  
f = 10 kHz  
f = 10 kHz  
NTSC  
15 V  
5 V, 15 V  
5 V, 15 V  
15 V  
5 V  
0, +5 V  
15 V  
–78  
10  
1.5  
0.01  
0.02  
0.08  
0.05  
0.07  
0.1  
dB  
nV/Hz  
pA/Hz  
%
%
%
Degrees  
Degrees  
Degrees  
0.02  
0.03  
Gain = +2  
Differential Phase Error  
(RL = 150 )  
NTSC  
Gain = +2  
0.09  
0.1  
5 V  
0, +5 V  
DC PERFORMANCE  
Input Offset Voltage  
5 V, 15 V  
5 V, 15 V  
5 V, 15 V  
5 V  
0.5  
2
3
mV  
mV  
µV/°C  
µA  
T
MIN to TMAX  
Offset Drift  
Input Bias Current  
10  
3.3  
6.6  
10  
4.4  
300  
500  
TMIN  
TMAX  
µA  
µA  
nA  
nA  
nA/°C  
Input Offset Current  
25  
0.3  
5
T
MIN to TMAX  
Offset Current Drift  
Open-Loop Gain  
VOUT  
= 2.5 V  
R
LOAD = 500 Ω  
TMIN to TMAX  
LOAD = 150 Ω  
VOUT 10 V  
RLOAD = 1 kΩ  
MIN to TMAX  
VOUT 7.5 V  
RLOAD = 150 (50 mA Output)  
3
2
2
V/mV  
V/mV  
V/mV  
R
4
=
15 V  
15 V  
5.5  
2.5  
9
V/mV  
V/mV  
T
=
3
5
V/mV  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
300  
1.5  
kΩ  
pF  
V
V
V
V
V
V
Input Common-Mode Voltage Range  
5 V  
+3.8  
–2.7  
+13  
–12  
+3.8  
+1.2  
82  
+4.3  
–3.4  
+14.3  
–13.4  
+4.3  
+0.9  
100  
15 V  
0, +5 V  
Common-Mode Rejection Ratio  
V
CM = +2.5 V, TMIN to TMAX  
VCM 12 V  
TMIN to TMAX  
5 V  
15 V  
15 V  
dB  
dB  
dB  
=
86  
84  
120  
100  
–2–  
REV. C  
AD828  
Parameter  
Conditions  
LOAD = 500 Ω  
VS  
5 V  
5 V  
15 V  
15 V  
Min  
Typ  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
R
3.3  
3.2  
13.3  
12.8  
1.5  
3.5  
50  
3.8  
3.6  
13.7  
13.4  
V
V
V
V
RLOAD = 150 Ω  
R
R
LOAD = 1 kΩ  
LOAD = 500 Ω  
R
LOAD = 500 Ω  
0, +5 V  
15 V  
5 V  
0, +5 V  
15 V  
V
mA  
mA  
mA  
mA  
Output Current  
40  
30  
Short Circuit Current  
Output Resistance  
90  
8
Open-Loop  
MATCHING CHARACTERISTICS  
Dynamic  
Crosstalk  
Gain Flatness Match  
Skew Rate Match  
f = 5 MHz  
G = +1, f = 40 MHz  
G = –1  
15 V  
15 V  
15 V  
–80  
0.2  
10  
dB  
dB  
V/µs  
DC  
Input Offset Voltage Match  
Input Bias Current Match  
Open-Loop Gain Match  
Common-Mode Rejection Ratio Match VCM  
Power Supply Rejection Ratio Match  
T
T
MIN to TMAX  
MIN to TMAX  
5 V, 15 V  
5 V, 15 V  
15 V  
0.5  
2
0.8  
0.15  
mV  
µA  
0.06  
0.01  
100  
100  
VO = 10 V, RL = 1 k, TMIN to TMAX  
mV/V  
dB  
=
12 V, TMIN to TMAX  
15 V  
80  
80  
5 V to 15 V, TMIN to TMAX  
dB  
POWER SUPPLY  
Operating Range  
Dual Supply  
Single Supply  
2.5  
+5  
18  
+36  
15  
15  
15  
V
V
mA  
mA  
mA  
dB  
Quiescent Current  
5 V  
5 V  
5 V  
14.0  
14.0  
T
T
MIN to TMAX  
MIN to TMAX  
Power Supply Rejection Ratio  
VS = 5 V to 15 V, TMIN to TMAX  
80  
90  
*Full power bandwidth = slew rate/2 π VPEAK  
Specifications subject to change without notice.  
.
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
ABSOLUTE MAXIMUM RATINGS1  
AD828AN  
AD828AR  
–40°C to +85°C 8-Lead Plastic DIP N-8  
–40°C to +85°C 8-Lead Plastic SOIC SO-8  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
Internal Power Dissipation2  
AD828AR-REEL7 –40°C to +85°C 7" Tape and Reel  
AD828AR-REEL –40°C to +85°C 13" Tape and Reel SO-8  
SO-8  
Plastic DIP (N) . . . . . . . . . . . . . . . . . . See Derating Curves  
Small Outline (R) . . . . . . . . . . . . . . . . . See Derating Curves  
Input Voltage (Common Mode) . . . . . . . . . . . . . . . . . . . . VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Output Short Circuit Duration . . . . . . . . See Derating Curves  
Storage Temperature Range (N, R) . . . . . . . . –65°C to +125°C  
Operating Temperature Range . . . . . . . . . . . . –40°C to +85°C  
Lead Temperature Range (Soldering 10 sec) . . . . . . . . +300°C  
2.0  
T
= 150C  
J
8-LEAD MINI-DIP PACKAGE  
1.5  
1.0  
0.5  
0
NOTES  
1 Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2 Specification is for device in free air:  
8-LEAD SOIC PACKAGE  
8-Lead Plastic DIP Package: θJA = 100°C/W  
8-Lead SOIC Package: θJA = 155°C/W  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
AMBIENT TEMPERATURE – C  
Figure 3. Maximum Power Dissipation vs.  
Temperature for Different Package Types  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD828 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. C  
–3–  
AD828  
—Typical Performance Characteristics  
7.7  
20  
7.2  
6.7  
15  
+V  
CM  
+85C  
–40C  
+25C  
10  
–V  
CM  
6.2  
5.7  
5
0
0
5
10  
SUPPLY VOLTAGE – V  
15  
20  
0
5
10  
SUPPLY VOLTAGE – V  
15  
20  
TPC 1. Common-Mode Voltage Range vs. Supply  
Voltage  
TPC 4. Quiescent Supply Current per Amp vs. Supply  
Voltage for Various Temperatures  
20  
15  
500  
450  
400  
R
= 500ꢃ  
L
10  
5
R
= 150ꢃ  
L
350  
300  
0
0
5
10  
15  
20  
0
5
10  
SUPPLY VOLTAGE – V  
15  
20  
SUPPLY VOLTAGE – V  
TPC 2. Output Voltage Swing vs. Supply Voltage  
TPC 5. Slew Rate vs. Supply Voltage  
30  
25  
100  
V
= 15V  
s
10  
1
20  
15  
10  
5
0.1  
0.01  
V
= 5V  
s
0
10  
100  
1k  
10k  
1k  
10k  
100k  
1M  
100M  
10M  
LOAD RESISTANCE – ꢃ  
FREQUENCY – Hz  
TPC 6. Closed-Loop Output Impedance vs. Frequency  
TPC 3. Output Voltage Swing vs. Load Resistance  
–4–  
REV. C  
AD828  
100  
7
6
5
4
3
2
1
100  
80  
60  
40  
20  
0
PHASE 5V OR  
15V SUPPLIES  
80  
60  
15V SUPPLIES  
40  
20  
5V SUPPLIES  
0
R
= 1kꢃ  
L
–20  
1k  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY – Hz  
TEMPERATURE –  
C  
TPC 7. Input Bias Current vs. Temperature  
TPC 10. Open-Loop Gain and Phase Margin vs.  
Frequency  
9
130  
15V  
8
110  
90  
70  
50  
30  
SOURCE CURRENT  
7
5V  
6
SINK CURRENT  
5
4
3
100  
1k  
10k  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
LOAD RESISTANCE – ꢃ  
TEMPERATURE – C  
TPC 8. Short Circuit Current vs. Temperature  
TPC 11. Open-Loop Gain vs. Load Resistance  
80  
100  
90  
80  
80  
70  
70  
60  
+SUPPLY  
PHASE MARGIN  
70  
60  
50  
60  
–SUPPLY  
40  
GAIN BANDWIDTH  
50  
50  
40  
30  
20  
10  
40  
100  
1k  
10k  
100k  
1M  
10M  
100M  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
FREQUENCY – Hz  
TEMPERATURE – C  
TPC 9. –3 dB Bandwidth and Phase Margin vs.  
Temperature, Gain = +2  
TPC 12. Power Supply Rejection vs. Frequency  
REV. C  
–5–  
AD828  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
140  
V
= 1V p-p  
IN  
GAIN = +2  
120  
100  
80  
2ND HARMONIC  
3RD HARMONIC  
60  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 16. Harmonic Distortion vs. Frequency  
TPC 13. Common-Mode Rejection vs. Frequency  
50  
40  
30  
20  
10  
0
30  
R
= 1kꢃ  
L
20  
10  
0
R
= 150ꢃ  
L
0
10  
100  
1k  
10k  
100k  
1M  
10M  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 14. Large Signal Frequency Response  
TPC 17. Input Voltage Noise Spectral Density vs.  
Frequency  
10  
650  
550  
450  
350  
250  
8
6
4
1%  
1%  
0.1%  
0.01%  
0.01%  
2
0
2  
4  
6  
0.1%  
8  
10  
0
20  
40  
60  
80  
100  
120  
140  
160  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
SETTLING TIME ns  
TEMPERATURE – C  
TPC 18. Slew Rate vs. Temperature  
TPC 15. Output Swing and Error vs. Settling Time  
–6–  
REV. C  
AD828  
10  
8
5
4
1pF  
1kꢃ  
0.1dB  
1pF  
0.1dB  
FLATNESS  
15V 50MHz  
V
FLATNESS  
15V 40MHz  
S
V
S
1kꢃ  
6
4
3
2
1kꢃ  
1kꢃ  
AD828  
150ꢃ  
V
43MHz  
18MHz  
5V  
+5V  
OUT  
V
25MHz  
19MHz  
5V  
+5V  
OUT  
V
IN  
AD828  
150ꢃ  
V
IN  
V
= 15V  
2
0
1
0
V = 15V  
S
S
–2  
–1  
V
= +5V  
S
–4  
–6  
–2  
–3  
–4  
–5  
V
S
= 5V  
S
V
= 5V  
S
V
= +5V  
–8  
–10  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 19. Closed-Loop Gain vs. Frequency  
TPC 22. Closed-Loop Gain vs. Frequency, G = –1  
0.03  
0.02  
1.0  
0.8  
0.6  
0.4  
0.2  
DIFF GAIN  
0.01  
0.07  
V
= 15V  
S
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0.06  
0.05  
0.04  
V
= 5V  
S
DIFF PHASE  
V
= 5V  
S
5
10  
15  
100k  
1M  
10M  
100M  
SUPPLY VOLTAGE – V  
FREQUENCY – Hz  
TPC 23. Gain Flatness Matching vs. Supply, G = +2  
TPC 20. Differential Gain and Phase vs. Supply Voltage  
–30  
–40  
–50  
–60  
5V  
0.1F  
V
OUT  
1F  
5
6
3
2
8
1/2  
AD828  
1/2  
1
7
V
IN  
AD828  
–70  
–80  
R
= 150ꢃ  
L
4
0.1F  
1F  
R
R
L
L
R
= 1kꢃ  
–90  
–100  
–110  
L
5V  
USE GROUND PLANE  
10k  
100k  
1M  
FREQUENCY – Hz  
10M  
100M  
PINOUT SHOWN IS FOR MINI-DIP PACKAGE  
TPC 21. Crosstalk vs. Frequency  
TPC 24. Crosstalk Test Circuit  
REV. C  
–7–  
AD828  
C
F
5V  
50ns  
1kꢃ  
100  
90  
+V  
S
3.3F  
0.01F  
HP PULSE (LS)  
OR FUNCTION (SS)  
GENERATOR  
V
1kꢃ  
50ꢃ  
IN  
8
2
3
V
OUT  
TEKTRONIX  
7A24  
PREAMP  
TEKTRONIX  
P6201 FET  
PROBE  
1/2  
1
AD828  
10  
0.01F  
4
0%  
R
L
5V  
3.3F  
–V  
S
TPC 25. Inverting Amplifier Connection  
TPC 28. Inverter Large Signal Pulse Response 15 VS,  
CF = 1 pF, RL = 1 kΩ  
10ns  
200mV  
50ns  
2V  
100  
90  
100  
90  
10  
10  
0%  
0%  
200mV  
2V  
TPC 29. Inverter Small Signal Pulse Response 15 VS,  
CF = 1 pF, RL = 1500 Ω  
TPC 26. Inverter Large Signal Pulse Response 5 VS,  
CF = 1 pF, RL = 1 kΩ  
10ns  
200mV  
10ns  
200mV  
100  
90  
100  
90  
10  
10  
0%  
0%  
200mV  
200mV  
TPC 27. Inverter Small Signal Pulse Response 5 VS,  
CF = 1 pF, RL = 150 Ω  
TPC 30. Inverter Small Signal Pulse Response 5 VS,  
CF = 0 pF, RL = 150 Ω  
–8–  
REV. C  
AD828  
C
F
50ns  
5V  
1kꢃ  
1kꢃ  
100  
90  
+V  
S
3.3F  
0.01F  
8
2
3
V
OUT  
TEKTRONIX  
7A24  
PREAMP  
TEKTRONIX  
P6201 FET  
PROBE  
1/2  
R
100ꢃ  
1
IN  
HP PULSE (LS)  
OR FUNCTION (SS)  
GENERATOR  
V
AD828  
IN  
10  
0.01F  
3.3F  
4
0%  
50ꢃ  
R
L
5V  
–V  
S
TPC 31. Noninverting Amplifier Connection  
TPC 34. Noninverting Large Signal Pulse Response  
15 VS, CF = 1 pF, RL = 1 kΩ  
50ns  
1V  
100mV  
10ns  
100  
90  
100  
90  
10  
10  
0%  
0%  
2V  
200mV  
TPC 32. Noninverting Large Signal Pulse Response  
5 VS, CF = 1 pF, RL = 1 kΩ  
TPC 35. Noninverting Small Signal Pulse Response  
15 VS, CF = 1 pF, RL = 150 Ω  
100mV  
10ns  
100mV  
10ns  
100  
90  
100  
90  
10  
10  
0%  
0%  
200mV  
200mV  
TPC 33. Noninverting Small Signal Pulse Response  
5 VS, CF = 1 pF, RL = 150 Ω  
TPC 36. Noninverting Small Signal Pulse Response  
5 VS, CF = 0 pF, RL = 150 Ω  
REV. C  
–9–  
AD828  
THEORY OF OPERATION  
Circuit Board Layout  
The AD828 is a low cost, dual video operational amplifier  
designed to excel in high performance, high output current  
video applications.  
Input and output runs should be laid out so as to physically  
isolate them from remaining runs. In addition, the feedback  
resistor of each amplifier should be placed away from the feed-  
back resistor of the other amplifier, since this greatly reduces  
interamp coupling.  
The AD828 consists of a degenerated NPN differential pair  
driving matched PNPs in a folded-cascade gain stage (Figure 4).  
The output buffer stage employs emitter followers in a class AB  
amplifier that delivers the necessary current to the load while  
maintaining low levels of distortion.  
Choosing Feedback and Gain Resistors  
To prevent the stray capacitance present at each amplifier’s  
summing junction from limiting its performance, the feedback  
resistors should be 1 k. Since the summing junction capaci-  
tance may cause peaking, a small capacitor (1 pF to 5 pF) may  
be paralleled with RF to neutralize this effect. Finally, sockets  
should be avoided, because of their tendency to increase interlead  
capacitance.  
The AD828 will drive terminated cables and capacitive loads of  
10 pF or less. As the closed-loop gain is increased, the AD828  
will drive heavier cap loads without oscillating.  
+V  
S
Power Supply Bypassing  
Proper power supply decoupling is critical to preserve the  
integrity of high frequency signals. In carefully laid out designs,  
decoupling capacitors should be placed in close proximity to  
the supply pins, while their lead lengths should be kept to a  
minimum. These measures greatly reduce undesired inductive  
effects on the amplifier’s response.  
OUTPUT  
–IN  
+IN  
Though two 0.1 µF capacitors will typically be effective in  
decoupling the supplies, several capacitors of different values  
can be paralleled to cover a wider frequency range.  
PARALLEL AMPS PROVIDE 100 mA TO LOAD  
–V  
S
By taking advantage of the superior matching characteristics of the  
AD828, enhanced performance can easily be achieved by employ-  
ing the circuit in Figure 5. Here, two identical cells are paralleled  
to obtain even higher load driving capability than that of a single  
amplifier (100 mA min guaranteed). R1 and R2 are included to  
limit current flow between amplifier outputs that would arise in  
the presence of any residual mismatch.  
Figure 4. Simplified Schematic  
INPUT CONSIDERATIONS  
An input protection resistor (RIN in TPC 31) is required in circuits  
where the input to the AD828 will be subjected to transient or  
continuous overload voltages exceeding the 6 V maximum dif-  
ferential limit. This resistor provides protection for the input  
transistors by limiting their maximum base current.  
+V  
1kꢃ  
S
1F  
For high performance circuits, the “balancing” resistor should be  
used to reduce the offset errors caused by bias current flowing  
through the input and feedback resistors. The balancing resistor  
equals the parallel combination of RIN and RF and thus provides  
a matched impedance at each input terminal. The offset voltage  
error will then be reduced by more than an order of magnitude.  
0.1F  
1kꢃ  
R1  
5ꢃ  
8
2
1/2  
AD828  
1
3
V
V
OUT  
IN  
APPLYING THE AD828  
R2  
5ꢃ  
5
6
R
L
1/2  
The AD828 is a breakthrough dual amp that delivers precision and  
speed at low cost with low power consumption. The AD828 offers  
excellent static and dynamic matching characteristics, combined  
with the ability to drive heavy resistive loads.  
7
AD828  
1kꢃ  
4
0.1F  
1F  
As with all high frequency circuits, care should be taken to main-  
tain overall device performance as well as their matching. The  
following items are presented as general design considerations.  
1kꢃ  
–V  
S
Figure 5. Parallel Amp Configuration  
–10–  
REV. C  
AD828  
A
3
2
3
2
B
IN  
IN  
R
R
Z
Z
1/2  
AD828  
1/2  
AD828  
510ꢃ  
510ꢃ  
1
1
510ꢃ  
510ꢃ  
100FT  
RG59A/U  
R
= 75ꢃ  
510ꢃ  
Z
510ꢃ  
536ꢃ  
536ꢃ  
6
5
6
5
1/2  
AD828  
1/2  
AD828  
B
A
7
OUT  
7
OUT  
Figure 6. Bidirectional Transmission CKT  
Full-Duplex Transmission  
clearly show that each input signal appears undisturbed at its out-  
put, while the unwanted signal is eliminated at either receiver.  
Superior load handling capability (50 mA min/amp), high  
bandwidth, wide supply voltage range, and excellent crosstalk  
rejection makes the AD828 an ideal choice for even the most  
demanding high speed transmission applications.  
The transmitters operate as followers, while the receivers’ gain  
is chosen to take full advantage of the AD828’s unparalleled  
CMRR. In practice, this gain is adjusted slightly from its  
theoretical value to compensate for cable nonidealities and losses.  
RZ is chosen to match the characteristic impedance of the  
cable employed.  
The schematic below shows a pair of AD828s configured to  
drive 100 feet of coaxial cable in a full-duplex fashion.  
Two different NTSC video signals are simultaneously applied at  
A
IN and BIN and are recovered at AOUT and BOUT, respectively.  
Finally, although a coaxial cable was used, the same topology  
applies unmodified to a variety of cables (such as twisted pairs  
often used in telephony).  
This situation is illustrated in Figures 7 and 8. These pictures  
500mV  
500mV  
100  
90  
100  
90  
B
A
IN  
IN  
B
OUT  
A
OUT  
10  
10  
0%  
0%  
500mV  
10µs  
500mV  
10µs  
Figure 7. A Transmission/B Reception  
Figure 8. B Transmission/A Reception  
+15V  
A High Performance Video Line Driver  
The buffer circuit shown in Figure 9 will drive a back-terminated  
75 video line to standard video levels (1 V p-p) with 0.1 dB  
gain flatness to 40 MHz with only 0.05° and 0.01% differential  
phase and gain at the 3.58 MHz NTSC subcarrier frequency.  
This level of performance, which meets the requirements for  
high definition video displays and test equipment, is achieved  
using only 7 mA quiescent current/amplifier.  
0.1F  
1.0F  
8
75ꢃ  
V
3
2
IN  
1/2  
AD828  
1
R
T
R
BT  
R
T
75ꢃ  
75ꢃ  
4
75ꢃ  
0.1F  
1.0F  
–15V  
1kꢃ  
1kꢃ  
Figure 9. Video Line Driver  
REV. C  
–11–  
AD828  
LOW DISTORTION LINE DRIVER  
1.1kꢃ  
The AD828 can quickly be turned into a powerful, low distor-  
tion line driver (see Figure 10). In this arrangement, the AD828  
can comfortably drive a 75 back-terminated cable with a  
5 MHz, 2 V p-p input, while achieving the harmonic distortion  
performance outlined in the following table.  
+V  
S
1kꢃ  
1F  
0.1F  
2
3
8
1/2  
AD828  
1
Configuration  
2nd Harmonic  
R
7.5ꢃ  
C
1. No Load  
2. 150 RL Only  
3. 150 RL 7.5 RC  
–78.5 dBm  
–63.8 dBm  
–70.4 dBm  
1kꢃ  
1kꢃ  
R
6
5
L
75ꢃ  
1/2  
V
In this application, one half of the AD828 operates at a gain of +2.1  
and supplies the current to the load, while the other provides the  
overall system gain of +2. This is important for two reasons: the  
first is to keep the bandwidth of both amplifiers the same, and  
the second is to preserve the AD828’s ability to operate from low  
supply voltage. RC varies with the load and must be chosen to  
satisfy the following equation:  
IN  
7
AD828  
4
75ꢃ  
1F  
75ꢃ  
0.1F  
–V  
S
Figure 10. Low Distortion Amplifier  
RC = MRL  
where M is defined by [(M + 1) GS = GD] and GD = Driver’s  
Gain, GS = System Gain.  
OUTLINE DIMENSIONS  
8-Lead Plastic Dual-in-Line Package [PDIP]  
(N-8)  
8-Lead Standard Small Outline Package [SOIC]  
(R-8)  
Dimensions shown in inches and (millimeters)  
Dimensions shown in millimeters and (inches)  
0.4299 (10.92)  
0.3480 (8.84)  
5.00 (0.1968)  
4.80 (0.1890)  
8
5
4
8
1
5
4
0.2799 (7.11)  
0.2402 (6.10)  
6.20 (0.2440)  
5.80 (0.2284)  
0.1574 (4.00)  
0.1497 (3.80)  
1
PIN 1  
PIN 1  
0.3248 (8.25)  
0.3000 (7.62)  
0.1000 (2.54)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45ꢀ  
0.0598 (1.52)  
0.0150 (0.38)  
0.2098  
(5.33)  
MAX  
1.75 (0.0688)  
1.35 (0.0532)  
COPLANARITY  
0.25 (0.0098)  
0.10 (0.0040)  
0.1949 (4.95)  
0.1154 (2.93)  
8ꢀ  
0.1299  
(3.30)  
MIN  
0.1598 (4.06)  
0.1154 (2.93)  
01.27 (0.0500)  
0.51 (0.0201)  
0.33 (0.0130)  
0.0150 (0.38)  
0.0079 (0.20)  
0.25 (0.0098)  
0.19 (0.0075)  
SEATING  
PLANE  
0.41 (0.0160)  
0.0220 (0.56)  
0.0142 (0.36)  
SEATING  
PLANE  
0.0697 (1.77)  
0.0453 (1.15)  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MS-012 AA  
Revision History  
Location  
Page  
6/02–Data Sheet changed from REV. B to REV. C.  
Renumbered Figures and TPCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Global  
Changes to Figure 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
–12–  
REV. C  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY