AD828 [ADI]

Dual, Low Power Video Op Amp; 双通道,低功耗视频运算放大器
AD828
型号: AD828
厂家: ADI    ADI
描述:

Dual, Low Power Video Op Amp
双通道,低功耗视频运算放大器

运算放大器
文件: 总12页 (文件大小:258K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual, Low Power  
Video Op Amp  
a
AD828  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Excellent Video Performance  
Differential Gain & Phase Error of 0.01% & 0.05ꢀ  
High Speed  
130 MHz 3 dB Bandwidth (G = +2)  
450 V/s Slew Rate  
1
2
3
4
OUT1  
–IN1  
+IN1  
V–  
8
7
6
5
V+  
OUT2  
–IN2  
+IN2  
80 ns Settling Time to 0.01%  
Low Power  
15 mA Max Power Supply Current  
High Output Drive Capability:  
50 mA Minimum Output Current per Amplifier  
Ideal for Driving Back Terminated Cables  
Flexible Power Supply  
AD828  
Specified for +5 V, 5 V and 15 V Operation  
3.2 V Min Output Swing into a 150 Load  
(VS = 5 V)  
Excellent DC Performance  
2.0 mV Input Offset Voltage  
Available in 8-Lead SOIC and 8-Lead Plastic Mini-DIP  
PRODUCT DESCRIPTION  
The AD828 is fully specified for operation with a single +5 V  
power supply and with dual supplies from 5 V to 15 V. This  
power supply flexibility, coupled with a very low supply current  
of 15 mA and excellent ac characteristics under all power supply  
conditions, make the AD828 the ideal choice for many demand-  
ing yet power sensitive applications.  
The AD828 is a low cost, dual video op amp optimized for use  
in video applications which require gains of +2 or greater and  
high output drive capability, such as cable driving. Due to its  
low power and single supply functionality, along with excellent  
differential gain and phase errors, the AD828 is ideal for power  
sensitive applications such as video cameras and professional  
video equipment.  
The AD828 is a voltage feedback op amp which excels as a gain  
stage (gains >+2) or active filter in high speed and video systems  
and achieves a settling time of 45 ns to 0.1%, with a low input  
offset voltage of 2 mV max.  
With video specs like 0.1 dB flatness to 40 MHz and low differ-  
ential gain and phase errors of 0.01% and 0.05°, along with  
50 mA of output current per amplifier, the AD828 is an excel-  
lent choice for any video application. The 130 MHz gain  
bandwidth and 450 V/µs slew rate make the AD828 useful in  
many high speed applications including: video monitors, CATV,  
color copiers, image scanners and fax machines.  
The AD828 is available in low cost, small 8-lead plastic mini-  
DIP and SOIC packages.  
0.03  
V
0.1F  
0.02  
DIFF GAIN  
R
75ꢃ  
BT  
75ꢃ  
V
IN  
0.01  
0.07  
0.06  
0.05  
0.04  
1/2  
R
75ꢃ  
T
AD828  
R
75ꢃ  
T
0.1F  
1kꢃ  
V  
DIFF PHASE  
1kꢃ  
Figure 1. Video Line Driver  
5
10  
SUPPLY VOLTAGE Volts  
15  
Figure 2. Differential Phase vs. Supply Voltage  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
AD828–SPECIFICATIONS (@ T = +25C, unless otherwise noted)  
A
AD828  
Typ  
Parameter  
Conditions  
VS  
Min  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
Gain = +2  
5 V  
60  
100  
30  
35  
60  
20  
30  
30  
10  
15  
30  
10  
85  
130  
45  
55  
90  
35  
43  
40  
18  
25  
50  
19  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
15 V  
0, +5 V  
5 V  
15 V  
0, +5 V  
5 V  
15 V  
0, +5 V  
5 V  
15 V  
0, +5 V  
Gain = –1  
Bandwidth for 0.1 dB Flatness  
Gain = +2  
CC = 1 pF  
Gain = –1  
CC = 1 pF  
Full Power Bandwidth1  
Slew Rate  
VOUT = 5 V p-p  
RLOAD = 500 Ω  
VOUT = 20 V p-p  
RLOAD = 1 kΩ  
RLOAD 1 kΩ  
5 V  
22.3  
MHz  
15 V  
5 V  
15 V  
0, +5 V  
5 V  
15 V  
5 V  
7.2  
350  
450  
250  
45  
45  
80  
MHz  
V/µs  
V/µs  
V/µs  
ns  
ns  
ns  
300  
400  
200  
Gain = –1  
Settling Time to 0.1%  
Settling Time to 0.01%  
–2.5 V to +2.5 V  
0 V–10 V Step, AV = –1  
–2.5 V to +2.5 V  
0 V–10 V Step, AV = –1  
15 V  
80  
ns  
NOISE/HARMONIC PERFORMANCE  
Total Harmonic Distortion  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error  
(RL = 150 )  
FC = 1 MHz  
f = 10 kHz  
f = 10 kHz  
NTSC  
15 V  
5 V, 15 V  
5 V, 15 V  
15 V  
5 V  
0, +5 V  
15 V  
–78  
10  
1.5  
0.01  
0.02  
0.08  
0.05  
0.07  
0.1  
dB  
nV/Hz  
pA/Hz  
%
%
%
Degrees  
Degrees  
Degrees  
0.02  
0.03  
Gain = +2  
Differential Phase Error  
(RL = 150 )  
NTSC  
Gain = +2  
0.09  
0.1  
5 V  
0, +5 V  
DC PERFORMANCE  
Input Offset Voltage  
5 V, 15 V  
5 V, 15 V  
5 V, 15 V  
5 V  
0.5  
2
3
mV  
mV  
µV/°C  
µA  
TMIN to TMAX  
Offset Drift  
Input Bias Current  
10  
3.3  
6.6  
10  
4.4  
300  
500  
TMIN  
TMAX  
µA  
µA  
nA  
nA  
nA/°C  
Input Offset Current  
25  
0.3  
5
TMIN to TMAX  
Offset Current Drift  
Open Loop Gain  
VOUT  
= 2.5 V  
RLOAD = 500 Ω  
TMIN to TMAX  
RLOAD = 150 Ω  
3
2
2
V/mV  
V/mV  
V/mV  
4
VOUT  
=
10 V  
15 V  
15 V  
RLOAD = 1 kΩ  
TMIN to TMAX  
5.5  
2.5  
9
V/mV  
V/mV  
VOUT  
= 7.5 V  
RLOAD = 150 (50 mA Output)  
3
5
V/mV  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
300  
1.5  
kΩ  
pF  
V
V
V
V
V
V
Input Common-Mode Voltage Range  
5 V  
+3.8  
–2.7  
+13  
–12  
+3.8  
+1.2  
82  
+4.3  
–3.4  
+14.3  
–13.4  
+4.3  
+0.9  
100  
15 V  
0, +5 V  
Common-Mode Rejection Ratio  
VCM = +2.5 V, TMIN to TMAX  
5 V  
15 V  
15 V  
dB  
dB  
dB  
VCM  
=
12 V  
86  
84  
120  
100  
TMIN to TMAX  
–2–  
REV. B  
AD828  
Parameter  
Conditions  
VS  
5 V  
5 V  
15 V  
15 V  
Min  
Typ  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RLOAD = 500 Ω  
RLOAD = 150 Ω  
RLOAD = 1 kΩ  
RLOAD = 500 Ω  
3.3  
3.2  
13.3  
12.8  
+1.5,  
+3.5  
50  
3.8  
3.6  
13.7  
13.4  
V
V
V
V
RLOAD = 500 Ω  
0, +5 V  
15 V  
5 V  
0, +5 V  
15 V  
V
mA  
mA  
mA  
mA  
Output Current  
40  
30  
Short-Circuit Current  
Output Resistance  
90  
8
Open Loop  
MATCHING CHARACTERISTICS  
Dynamic  
Crosstalk  
Gain Flatness Match  
Skew Rate Match  
f = 5 MHz  
G = +1, f = 40 MHz  
G = –1  
15 V  
15 V  
15 V  
–80  
0.2  
10  
dB  
dB  
V/µs  
DC  
Input Offset Voltage Match  
Input Bias Current Match  
Open-Loop Gain Match  
Common-Mode Rejection Ratio Match VCM  
Power Supply Rejection Ratio Match  
TMIN to TMAX  
TMIN to TMAX  
5 V, 15 V  
5 V, 15 V  
15 V  
0.5  
2
0.8  
0.15  
mV  
µA  
0.06  
0.01  
100  
100  
VO = 10 V, RL = 1 k, TMIN to TMAX  
mV/V  
dB  
=
12 V, TMIN to TMAX  
15 V  
80  
80  
5 V to 15 V, TMIN to TMAX  
dB  
POWER SUPPLY  
Operating Range  
Dual Supply  
Single Supply  
2.5  
+5  
18  
+36  
15  
15  
15  
V
V
mA  
mA  
mA  
dB  
Quiescent Current  
5 V  
5 V  
5 V  
14.0  
14.0  
TMIN to TMAX  
TMIN to TMAX  
VS = 5 V to 15 V, TMIN to TMAX  
Power Supply Rejection Ratio  
80  
90  
NOTES  
ORDERING GUIDE  
1Full power bandwidth = slew rate/2 π VPEAK  
.
Specifications subject to change without notice.  
Temperature Package  
Package  
Option  
Model  
Range  
Description  
ABSOLUTE MAXIMUM RATINGS1  
AD828AN  
AD828AR  
–40°C to +85°C 8-Lead Plastic DIP N-8  
–40°C to +85°C 8-Lead Plastic SOIC SO-8  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
Internal Power Dissipation2  
AD828AR-REEL7 –40°C to +85°C 7" Tape & Reel  
AD828AR-REEL –40°C to +85°C 13" Tape & Reel  
SO-8  
SO-8  
Plastic DIP (N) . . . . . . . . . . . . . . . . . . See Derating Curves  
Small Outline (R) . . . . . . . . . . . . . . . . . See Derating Curves  
Input Voltage (Common Mode) . . . . . . . . . . . . . . . . . . . . VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Output Short Circuit Duration . . . . . . . . See Derating Curves  
Storage Temperature Range (N, R) . . . . . . . –65°C to +125°C  
Operating Temperature Range . . . . . . . . . . . –40°C to +85°C  
Lead Temperature Range (Soldering 10 sec) . . . . . . . .+300°C  
2.0  
T
= +150C  
J
8-LEAD MINI-DIP PACKAGE  
1.5  
1.0  
0.5  
0
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2Specification is for device in free air:  
8-LEAD SOIC PACKAGE  
8-Lead Plastic DIP Package: θJA = 100°C/Watt  
8-Lead SOIC Package: θJA = 155°C/Watt  
50 40 30 20 10  
0
10 20 30 40 50 60 70 80 90  
AMBIENT TEMPERATURE C  
Figure 3. Maximum Power Dissipation vs.  
Temperature for Different Package Types  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD828 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–3–  
AD828Typical Characteristics  
7.7  
20  
7.2  
6.7  
15  
+V  
CM  
+85°C  
40°C  
+25°C  
10  
V  
CM  
6.2  
5.7  
5
0
0
5
10  
SUPPLY VOLTAGE Volts  
15  
20  
0
5
10  
15  
20  
SUPPLY VOLTAGE Volts  
Figure 4. Common-Mode Voltage Range vs. Supply  
Voltage  
Figure 7. Quiescent Supply Current per Amp vs. Supply  
Voltage for Various Temperatures  
20  
15  
500  
450  
400  
R
= 500ꢃ  
L
10  
5
R
= 150ꢃ  
L
350  
300  
0
0
5
10  
15  
20  
0
5
10  
15  
20  
SUPPLY VOLTAGE Volts  
SUPPLY VOLTAGE Volts  
Figure 8. Slew Rate vs. Supply Voltage  
Figure 5. Output Voltage Swing vs. Supply Voltage  
30  
25  
100  
V
= 15V  
s
10  
1
20  
15  
10  
5
V
= 5V  
s
0.1  
0.01  
0
10  
100  
1k  
10k  
LOAD RESISTANCE ꢃ  
1k  
10k  
100k  
1M  
100M  
10M  
FREQUENCY Hz  
Figure 9. Closed-Loop Output Impedance vs. Frequency  
Figure 6. Output Voltage Swing vs. Load Resistance  
–4–  
REV. B  
AD828  
100  
80  
60  
40  
20  
0
+100  
7
6
5
4
3
2
1
PHASE 5V OR  
15V SUPPLIES  
+80  
+60  
+40  
+20  
0
15V SUPPLIES  
5V SUPPLIES  
R
= 1kꢃ  
L
20  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
60 40 20  
0
20  
40  
60  
80  
100 120 140  
FREQUENCY Hz  
TEMPERATURE –  
C  
Figure 10. Input Bias Current vs. Temperature  
Figure 13. Open-Loop Gain and Phase Margin vs.  
Frequency  
9
130  
15V  
8
110  
SOURCE CURRENT  
7
90  
5V  
6
SINK CURRENT  
70  
5
4
3
50  
30  
60 40 20  
0
20  
40  
60  
80  
100 120 140  
100  
1k  
10k  
LOAD RESISTANCE ꢃ  
TEMPERATURE C  
Figure 14. Open-Loop Gain vs. Load Resistance  
Figure 11. Short Circuit Current vs. Temperature  
100  
90  
80  
70  
60  
50  
40  
80  
80  
70  
60  
+SUPPLY  
PHASE MARGIN  
70  
60  
50  
SUPPLY  
40  
GAIN BANDWIDTH  
50  
40  
30  
20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
60 40 20  
0
20  
40  
60  
80  
100 120 140  
FREQUENCY Hz  
TEMPERATURE C  
Figure 15. Power Supply Rejection vs. Frequency  
Figure 12. –3 dB Bandwidth and Phase Margin vs.  
Temperature, Gain = +2  
REV. B  
–5–  
AD828Typical Characteristics  
40  
50  
60  
70  
80  
90  
100  
140  
V
= 1V p-p  
IN  
GAIN = +2  
120  
100  
80  
2ND HARMONIC  
3RD HARMONIC  
60  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY Hz  
FREQUENCY Hz  
Figure 16. Common-Mode Rejection vs. Frequency  
Figure 19. Harmonic Distortion vs. Frequency  
30  
50  
40  
30  
20  
10  
0
R
= 1kꢃ  
L
20  
10  
0
R
= 150ꢃ  
L
100k  
1M  
10M  
100M  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY Hz  
FREQUENCY Hz  
Figure 20. Input Voltage Noise Spectral Density vs.  
Frequency  
Figure 17. Large Signal Frequency Response  
10  
8
650  
550  
450  
350  
250  
6
4
1%  
1%  
0.1%  
0.01%  
0.01%  
2
0
2  
4  
6  
8  
10  
0.1%  
0
20  
40  
60  
80  
100  
120  
140  
160  
60 40 20  
0
20  
40  
60  
80  
100 120 140  
SETTLING TIME ns  
TEMPERATURE C  
Figure 21. Slew Rate vs. Temperature  
Figure 18. Output Swing and Error vs. Settling Time  
–6–  
REV. B  
AD828  
10  
8
5
4
1pF  
1kꢃ  
0.1dB  
1pF  
0.1dB  
FLATNESS  
15V 50MHz  
V
FLATNESS  
15V 40MHz  
S
V
S
1kꢃ  
6
4
3
2
1kꢃ  
1kꢃ  
AD828  
150ꢃ  
V
43MHz  
18MHz  
5V  
+5V  
OUT  
V
25MHz  
19MHz  
5V  
+5V  
OUT  
V
IN  
AD828  
150ꢃ  
V
IN  
V
= 15V  
2
0
1
0
V = 15V  
S
S
2  
1  
V
= +5V  
S
4  
6  
2  
3  
4  
5  
V
S
= 5V  
S
V
= 5V  
S
V
= +5V  
8  
10  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
FREQUENCY Hz  
FREQUENCY Hz  
Figure 22. Closed-Loop Gain vs. Frequency  
Figure 25. Closed-Loop Gain vs. Frequency, G = –1  
0.03  
0.02  
1.0  
0.8  
0.6  
0.4  
0.2  
DIFF GAIN  
0.01  
0.07  
V
= 15V  
S
0
0.2  
0.4  
0.6  
0.8  
1.0  
0.06  
0.05  
0.04  
V
= 5V  
S
DIFF PHASE  
V
= 5V  
S
100k  
1M  
10M  
100M  
5
10  
15  
SUPPLY VOLTAGE Volts  
FREQUENCY Hz  
Figure 23. Differential Gain and Phase vs. Supply Voltage  
Figure 26. Gain Flatness Matching vs. Supply, G = +2  
+5V  
30  
40  
50  
60  
0.1F  
V
OUT  
1F  
5
6
3
2
8
1/2  
AD828  
1/2  
AD828  
1
7
V
IN  
4
70  
80  
R
= 150ꢃ  
L
0.1F  
1F  
R
R
L
L
R
= 1kꢃ  
90  
100  
110  
L
5V  
USE GROUND PLANE  
PINOUT SHOWN IS FOR MINIDIP PACKAGE  
10k  
100k  
1M  
FREQUENCY Hz  
10M  
100M  
Figure 27. Crosstalk Test Circuit  
Figure 24. Crosstalk vs. Frequency  
REV. B  
–7–  
AD828Typical Characteristics  
C
F
5V  
50ns  
1kꢃ  
100  
90  
+V  
S
3.3F  
0.01F  
HP PULSE (LS)  
OR FUNCTION  
(SS)  
V
1kꢃ  
50ꢃ  
IN  
8
2
3
V
OUT  
TEKTRONIX  
P6201 FET  
PROBE  
TEKTRONIX  
7A24  
PREAMP  
1/2  
AD828  
GENERATOR  
1
10  
0.01F  
3.3F  
4
0%  
R
L
5V  
V  
S
Figure 28. Inverting Amplifier Connection  
Figure 31. Inverter Large Signal Pulse Response 15 VS,  
CF = 1 pF, RL = 1 kΩ  
50ns  
2V  
10ns  
200mV  
100  
90  
100  
90  
10  
10  
0%  
0%  
2V  
200mV  
Figure 29. Inverter Large Signal Pulse Response 5 VS,  
Figure 32. Inverter Small Signal Pulse Response 15 VS,  
CF = 1 pF, RL = 1 kΩ  
CF = 1 pF, RL= 1500 Ω  
10ns  
200mV  
10ns  
200mV  
100  
90  
100  
90  
10  
10  
0%  
0%  
200mV  
200mV  
Figure 30. Inverter Small Signal Pulse Response 5 VS,  
Figure 33. Inverter Small Signal Pulse Response 5 VS,  
CF = 1 pF, RL = 150 Ω  
CF = 0 pF, RL = 150 Ω  
REV. B  
–8–  
AD828  
C
F
50ns  
5V  
1kꢃ  
1kꢃ  
100  
90  
+V  
3.3F  
S
0.01F  
8
2
3
V
OUT  
TEKTRONIX  
P6201 FET  
PROBE  
TEKTRONIX  
7A24  
PREAMP  
1/2  
AD828  
1
HP PULSE (LS)  
OR FUNCTION  
(SS)  
V
100ꢃ  
IN  
10  
4
0.01F  
3.3F  
0%  
GENERATOR  
50ꢃ  
R
L
5V  
V  
S
Figure 37. Noninverting Large Signal Pulse Response  
15 VS, CF = 1 pF, RL = 1 kΩ  
Figure 34. Noninverting Amplifier Connection  
50ns  
1V  
100mV  
10ns  
100  
90  
100  
90  
10  
10  
0%  
0%  
2V  
200mV  
Figure 38. Noninverting Small Signal Pulse Response  
15 VS, CF = 1 pF, RL = 150 Ω  
Figure 35. Noninverting Large Signal Pulse Response  
5 VS, CF = 1 pF, RL = 1 kΩ  
100mV  
10ns  
100mV  
10ns  
100  
90  
100  
90  
10  
10  
0%  
0%  
200mV  
200mV  
Figure 39. Noninverting Small Signal Pulse Response  
5 VS, CF = 0 pF, RL = 150 Ω  
Figure 36. Noninverting Small Signal Pulse Response  
5 VS, CF = 1 pF, RL = 150 Ω  
REV. B  
–9–  
AD828  
THEORY OF OPERATION  
Circuit Board Layout  
The AD828 is a low cost, dual video operational amplifier  
designed to excel in high performance, high output current video  
applications.  
Input and output runs should be laid out so as to physically  
isolate them from remaining runs. In addition, the feedback  
resistor of each amplifier should be placed away from the feedback  
resistor of the other amplifier, since this greatly reduces interamp  
coupling.  
The AD828 (Figure 40) consists of a degenerated NPN differen-  
tial pair driving matched PNPs in a folded-cascode gain stage.  
The output buffer stage employs emitter followers in a class AB  
amplifier that delivers the necessary current to the load while  
maintaining low levels of distortion.  
Choosing Feedback and Gain Resistors  
In order to prevent the stray capacitance present at each  
amplifier’s summing junction from limiting its performance, the  
feedback resistors should be 1 k. Since the summing junction  
capacitance may cause peaking, a small capacitor (1 pF–5 pF)  
may be paralleled with Rf to neutralize this effect. Finally, sock-  
ets should be avoided, because of their tendency to increase  
interlead capacitance.  
The AD828 will drive terminated cables and capacitive loads of  
10 pF or less. As the closed-loop gain is increased, the AD828  
will drive heavier cap loads without oscillating.  
+V  
S
Power Supply Bypassing  
Proper power supply decoupling is critical to preserve the integ-  
rity of high frequency signals. In carefully laid out designs,  
decoupling capacitors should be placed in close proximity to the  
supply pins, while their lead lengths should be kept to a mini-  
mum. These measures greatly reduce undesired inductive effects  
on the amplifier’s response.  
OUTPUT  
IN  
Though two 0.1 µF capacitors will typically be effective in de-  
coupling the supplies, several capacitors of different values can  
be paralleled to cover a wider frequency range.  
+IN  
PARALLEL AMPS PROVIDE 100 mA TO LOAD  
V  
S
By taking advantage of the superior matching characteristics of  
the AD828, enhanced performance can easily be achieved by  
employing the circuit in Figure 41. Here, two identical cells are  
paralleled to obtain even higher load driving capability than that  
of a single amplifier (100 mA min guaranteed). R1 and R2 are  
included to limit current flow between amplifier outputs that  
would arise in the presence of any residual mismatch.  
Figure 40. AD828 Simplified Schematic  
INPUT CONSIDERATIONS  
An input protection resistor (RIN in Figure 34) is required in cir-  
cuits where the input to the AD828 will be subjected to transient  
or continuous overload voltages exceeding the 6 V maximum  
differential limit. This resistor provides protection for the input  
transistors by limiting their maximum base current.  
+V  
1kꢃ  
S
1F  
For high performance circuits, it is recommended that a “bal-  
ancing” resistor be used to reduce the offset errors caused by  
bias current flowing through the input and feedback resistors.  
The balancing resistor equals the parallel combination of RIN  
and RF and thus provides a matched impedance at each input  
terminal. The offset voltage error will then be reduced by more  
than an order of magnitude.  
0.1F  
1kꢃ  
R1  
5ꢃ  
8
2
3
1/2  
AD828  
1
V
V
OUT  
IN  
R2  
5ꢃ  
5
6
R
L
APPLYING THE AD828  
1/2  
7
AD828  
The AD828 is a breakthrough dual amp that delivers precision  
and speed at low cost with low power consumption. The AD828  
offers excellent static and dynamic matching characteristics,  
combined with the ability to drive heavy resistive loads.  
1kꢃ  
4
0.1F  
1F  
As with all high frequency circuits, care should be taken to main-  
tain overall device performance as well as their matching. The  
following items are presented as general design considerations.  
1kꢃ  
V  
S
Figure 41. Parallel Amp Configuration  
REV. B  
–10–  
AD828  
A
IN  
3
2
3
2
B
IN  
R
R
Z
Z
1/2  
AD828  
1/2  
AD828  
510ꢃ  
510ꢃ  
1
1
510ꢃ  
510ꢃ  
100FT  
RG59A/U  
R
= 75ꢃ  
510ꢃ  
Z
510ꢃ  
536ꢃ  
536ꢃ  
6
5
6
5
1/2  
AD828  
1/2  
AD828  
B
OUT  
A
7
7
OUT  
Figure 42. Bidirectional Transmission CKT  
Full-Duplex Transmission  
clearly show that each input signal appears undisturbed at its  
output, while the unwanted signal is eliminated at either receiver.  
Superior load handling capability (50 mA min/amp), high band-  
width, wide supply voltage range and excellent crosstalk  
rejection makes the AD828 an ideal choice even for the most  
demanding high speed transmission applications.  
The transmitters operate as followers, while the receivers’ gain is  
chosen to take full advantage of the AD828’s unparalleled CMRR.  
(In practice this gain is adjusted slightly from its theoretical  
value to compensate for cable nonidealities and losses.) RZ is  
chosen to match the characteristic impedance of the cable  
employed.  
The schematic below shows a pair of AD828s configured to  
drive 100 feet of coaxial cable in a full-duplex fashion.  
Two different NTSC video signals are simultaneously applied at  
A
IN and BIN and are recovered at AOUT and BOUT, respectively.  
Finally, although a coaxial cable was used, the same topology  
applies unmodified to a variety of cables (such, as twisted pairs  
often used in telephony).  
This situation is illustrated in Figures 43 and 44. These pictures  
500mV  
500mV  
100  
90  
100  
90  
B
A
IN  
IN  
B
OUT  
A
OUT  
10  
10  
0%  
0%  
500mV  
10µs  
500mV  
10µs  
Figure 44. B Transmission/A Reception  
Figure 43. A Transmission/B Reception  
+15V  
A High Performance Video Line Driver  
0.1F  
1.0F  
The buffer circuit shown in Figure 45 will drive a back-  
terminated 75 video line to standard video levels (1 V p-p)  
with 0.1 dB gain flatness to 40 MHz with only 0.05° and 0.01%  
differential phase and gain at the 3.58 MHz NTSC subcarrier  
frequency. This level of performance, which meets the require-  
ments for high-definition video displays and test equipment, is  
achieved using only 7 mA quiescent current/amplifier.  
8
75ꢃ  
V
2
3
IN  
1/2  
AD828  
1
R
T
R
BT  
75ꢃ  
R
T
75ꢃ  
4
75ꢃ  
0.1F  
1.0F  
15V  
1kꢃ  
1kꢃ  
Figure 45. Video Line Driver  
REV. B  
–11–  
AD828  
LOW DISTORTION LINE DRIVER  
The AD828 can quickly be turned into a powerful, low distor-  
tion line driver (see Figure 46). In this arrangement the AD828  
can comfortably drive a 75 back-terminated cable, with a  
5 MHz, 2 V p-p input; all of this while achieving the harmonic  
distortion performance outlined in the following table.  
1.1kꢃ  
+V  
8
S
1kꢃ  
1F  
0.1F  
Configuration  
2nd Harmonic  
3
2
1/2  
AD828  
1
1. No Load  
2. 150 RL Only  
3. 150 RL 7.5 RC  
–78.5 dBm  
–63.8 dBm  
–70.4 dBm  
R
C
7.5ꢃ  
1kꢃ  
1kꢃ  
In this application one half of the AD828 operates at a gain of  
2.1 and supplies the current to the load, while the other pro-  
vides the overall system gain of 2. This is important for two  
reasons: the first is to keep the bandwidth of both amplifiers the  
same, and the second is to preserve the AD828’s ability to oper-  
ate from low supply voltage. RC varies with the load and must  
be chosen to satisfy the following equation:  
6
5
R
L
75ꢃ  
1/2  
AD828  
V
IN  
7
4
75ꢃ  
1F  
75ꢃ  
0.1F  
V  
S
RC = MRL,  
where M is defined by [(M + 1) GS = GD] and GD = Driver's  
Gain, GS = System Gain.  
Figure 46. Low Distortion Amplifier  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead Plastic Mini-DIP (N) Package  
8-Lead SO (R) Package  
0.1968 (5.00)  
0.1890 (4.80)  
8
5
0.25  
(6.35)  
0.31  
(7.87)  
PIN 1  
8
1
5
4
0.2440 (6.20)  
0.2284 (5.80)  
0.1574 (4.00)  
0.1497 (3.80)  
1
4
0.30 (7.62)  
REF  
0.39 (9.91) MAX  
PIN 1  
0.035  
0.25)  
0.01  
0.0196 (0.50)  
0.0099 (0.25)  
0.0500 (1.27)  
BSC  
45ꢀ  
(0.89ꢂ  
0.1650.01  
(4.19  
0.25)  
0.0688 (1.75)  
0.0532 (1.35)  
0.0098 (0.25)  
0.0040 (0.10)  
SEATING  
PLANE  
8ꢀ  
0ꢀ  
0.011  
(0.28  
15  
0.003  
0.125  
(3.18)  
MIN  
0.18  
(4.57  
0.03  
0.76)  
0.0500 (1.27)  
0.0160 (0.41)  
0.0192 (0.49)  
0.0138 (0.35)  
0.08)  
0.0098 (0.25)  
0.0075 (0.19)  
°
0
°
0.10  
(2.54)  
0.08)  
0.033  
(0.84)  
NOM  
0.018  
(0.46  
0.003  
SEATING  
PLANE  
BSC  
REV. B  
–12–  

相关型号:

AD8280

Lithium Ion Battery Safety Monitor
ADI

AD8280-EVALZ

Lithium Ion Battery Safety Monitor
ADI

AD8280WASTZ

Lithium Ion Battery Safety Monitor
ADI

AD8280WASTZ-RL

Lithium Ion Battery Safety Monitor
ADI

AD8283

Radar Receive Path AFE: 6-Channel LNA/PGA/AAF with ADC
ADI

AD8283CP-EBZ

6-Channel LNA/PGA/AAF with ADC
ADI

AD8283WBCPZ

Radar Receive Path AFE: 6-Channel LNA/PGA/AAF with ADC
ADI

AD8283WBCPZ-RL

Radar Receive Path AFE: 6-Channel LNA/PGA/AAF with ADC
ADI

AD8283_15

6-Channel LNA/PGA/AAF with ADC
ADI

AD8283_17

Radar Receive Path AFE: 6-Channel LNA/PGA/AAF with ADC
ADI

AD8284

6-Channel LNA/PGA/AAF with ADC
ADI

AD8284WCSVZ

Radar Receive Path AFE: 4-Channel MUX with LNA, PGA, AAF, and ADC
ADI