AD8293G80BRJZ-R7 [ADI]

Low Cost, Zero-Drift In-Amp with Filter and Fixed Gain; 低成本,零漂移仪表放大器与滤波器和固定增益
AD8293G80BRJZ-R7
型号: AD8293G80BRJZ-R7
厂家: ADI    ADI
描述:

Low Cost, Zero-Drift In-Amp with Filter and Fixed Gain
低成本,零漂移仪表放大器与滤波器和固定增益

仪表放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:390K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, Zero-Drift In-Amp  
with Filter and Fixed Gain  
AD8293G80/AD8293G160  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Small package: 8-lead SOT-23  
Reduced component count  
7
5
6
+V  
FILT  
R2  
OUT  
S
Incorporates gain resistors and filter resistors  
Low offset voltage: 20 μV maximum  
Low offset drift: 0.3 μV/°C maximum  
Low gain drift: 25 ppm/°C maximum  
High CMR: 140 dB typical  
+IN  
8
1
R3  
5k  
R1  
4kΩ  
4
IN-AMP  
ADC OUT  
OUTPUT TO ADC  
WITH ANTIALIASING  
FILTER  
–IN  
Low noise: 0.7 μV p-p from 0.01 Hz to 10 Hz  
Single-supply operation: 1.8 V to 5.5 V  
Rail-to-rail output  
GND REF  
2
AD8293Gxx  
3
Figure 1.  
Available in 2 fixed-gain models  
+5V  
APPLICATIONS  
C2  
0.1µF  
Current sensing  
Strain gauges  
Laser diode control loops  
Portable medical instruments  
Thermocouple amplifiers  
7
5
6
+VS  
FILT  
R2  
OUT  
LOAD  
I
+IN  
8
1
R3  
5k  
R1  
4kΩ  
4
RSHUNT  
ADC  
IN-AMP  
ADC OUT  
C3  
–IN  
REF  
+3.3V  
1.8V  
DC-DC  
0.1µF  
10µF  
GND REF  
AD8293Gxx  
2
3
Figure 2. Measuring Current Using the AD8293G80/AD8293G160  
Table 1. AD8293Gxx Models and Gains  
Model  
Gain  
AD8293G80  
AD8293G160  
80  
160  
GENERAL DESCRIPTION  
The AD8293G80/AD8293G160 are small, low cost, precision  
instrumentation amplifiers that have low noise and rail-to-rail  
outputs. They are available in two fixed-gain models: 80 and 160.  
They incorporate the gain setting resistors and filter resistors,  
reducing the number of ancillary components. For example,  
only two external capacitors are needed to implement a 2-pole  
filter. The AD8293G80/AD8293G160 also feature low offset  
voltage, offset drift, and gain drift coupled with high common-  
mode rejection. They are capable of operating on a supply of  
1.8 V to 5.5 V.  
Precision instrumentation, position and pressure sensors,  
medical instrumentation, and strain gauge amplifiers benefit  
from the low noise, low input bias current, and high common-  
mode rejection. The small footprint and low cost are ideal for  
high volume applications.  
The small package and low power consumption allow the maxi-  
mum channel density and the minimum board size required for  
portable systems. Designed for ease of use, these instrumentation  
amplifiers, unlike more traditional ones, have a buffered reference,  
eliminating the need for an additional op amp to set the reference  
voltage to midsupply.  
With a low offset voltage of 20 μV (AD8293G160B), an offset  
voltage drift of 0.3 μV/°C, and a voltage noise of only 0.7 μV p-p  
(0.01 Hz to 10 Hz), the AD8293G80/AD8293G160 are ideal  
for applications where error sources cannot be tolerated.  
The AD8293G80/AD8293G160 are specified over the industrial  
temperature range from −40°C to +85°C. The AD8293G80/  
AD8293G160 are available in a halogen-free, Pb-free, 8-lead SOT-23.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
AD8293G80/AD8293G160  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 10  
High PSR and CMR ................................................................... 10  
1/f Noise Correction .................................................................. 10  
Applications Information.............................................................. 11  
Overview ..................................................................................... 11  
Reference Connection ............................................................... 11  
Output Filtering.......................................................................... 11  
Clock Feedthrough..................................................................... 12  
Power Supply Bypassing............................................................ 12  
Input Overvoltage Protection................................................... 12  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 13  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
REVISION HISTORY  
8/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
AD8293G80/AD8293G160  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VCC = 5.0 V, VCM = −0 V, VREF = 3.3 V, VIN = VINP − VINN, TA = 25°C, tested at ADC OUT, unless otherwise noted. Temperature  
specifications guaranteed by characterization.  
Table 2. A Grade  
AD8293G80A  
AD8293G160A  
Parameter  
Symbol Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
COMMON-MODE REJECTION  
CMR  
VCM = 0 V to 3.3 V,  
94  
140  
94  
140  
dB  
−40°C ≤ TA ≤ +85°C  
NOISE PERFORMANCE  
Voltage Noise  
en p-p  
en  
f = 0.01 Hz to 10 Hz  
f = 1 kHz  
0.7  
35  
0.7  
35  
μV p-p  
nV/√Hz  
Voltage Noise Density  
INPUT CHARACTERISTICS  
Input Offset Voltage  
vs. Temperature  
Input Bias Current  
Input Offset Current  
Input Operating Impedance  
Differential  
VOS  
9
0.02  
0.4  
50  
0.3  
2
9
0.02  
0.4  
50  
0.3  
2
μV  
μV/°C  
nA  
ΔVOS/ΔT −40°C ≤ TA ≤ +85°C  
IB  
IOS  
−40°C ≤ TA ≤ +85°C  
4
4
nA  
50||1  
10||10  
50||1  
10||10  
MΩ||pF  
GΩ||pF  
V
Common Mode  
Input Voltage Range  
DYNAMIC RESPONSE  
Small Signal Bandwidth1  
Slew Rate  
0
VCC − 1.7  
0
VCC − 1.7  
BW  
SR  
ts  
Filter limited  
500  
Filter limited  
500  
Filter limited  
Hz  
Settling Time2  
0.1%  
0.01%  
500 Hz filter, VO = 2 V step  
1.9  
2.4  
60  
80  
1.9  
2.4  
60  
ms  
ms  
kHz  
Internal Clock Frequency  
GAIN  
160  
Gain Error  
Gain Drift  
Nonlinearity  
VO = 0.075 V to 4.925 V  
−40°C ≤ TA ≤ +85°C  
VO = 0.075 V to 4.925 V  
0.3  
5
0.003  
1
25  
0.03  
0.3  
5
0.003  
1
25  
0.03  
%
ppm/°C  
% FS  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VCC  
VCC  
V
0.075  
0.075  
Output Voltage Low  
Short-Circuit Current  
REFERENCE CHARACTERISTICS  
VREF Range  
VOL  
ISC  
0.075  
0.075  
V
mA  
35  
35  
0.8  
1.8  
VCC − 0.8 0.8  
1
VCC − 0.8  
1
V
nA  
REF Pin Current  
IREF  
0.01  
0.01  
POWER SUPPLY  
Operating Range  
Power Supply Rejection  
Supply Current  
5.5  
1.8  
94  
5.5  
V
PSR  
ISY  
VCC = 1.8 V to 5.5 V, VCM = 0 V 94  
IO = 0 mA, VIN = 0 V  
120  
1.0  
120  
1.0  
dB  
mA  
mA  
1.3  
1.5  
1.3  
1.5  
−40°C ≤ TA ≤ +85°C  
TEMPERATURE RANGE  
Specified Range  
−40  
+85  
−40  
+85  
°C  
1 Higher bandwidths result in higher noise.  
2 Settling time is determined by filter setting.  
Rev. 0 | Page 3 of 16  
 
AD8293G80/AD8293G160  
VCC = 2.7 V to 5.0 V, VCM = −0 V, VREF = VCC/2, VIN = VINP − VINN, TA = 25°C, tested at OUT with 10 kΩ load and ADC OUT, unless  
otherwise noted. Temperature specifications guaranteed by characterization.  
Table 3. B Grade (Tested and Guaranteed over a Wider Supply Range to More Stringent Specifications Than the A Grade)  
AD8293G80B  
AD8293G160B  
Parameter  
Symbol Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
COMMON-MODE REJECTION  
CMR  
VCC = 5 V, VCM = 0 V to 3.3 V;  
110  
140  
110  
140  
dB  
−40°C ≤ TA ≤ +85°C  
VCC = 2.7 V, VCM = 0 V to 1 V;  
−40°C ≤ TA ≤ +85°C  
106  
140  
106  
140  
dB  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
INPUT CHARACTERISTICS  
Input Offset Voltage  
vs. Temperature  
en p-p  
en  
f = 0.01 Hz to 10 Hz  
f = 1 kHz  
0.7  
35  
0.7  
35  
μV p-p  
nV/√Hz  
VOS  
5
30  
0.3  
0.5  
2
3
20  
0.3  
0.5  
2
μV  
ΔVOS/ΔT −40°C ≤ TA ≤ +85°C, VCC = 5 V  
ΔVOS/ΔT −40°C ≤ TA ≤ +85°C, VCC = 2.7 V  
IB  
0.02  
0.01  
0.4  
0.02  
0.01  
0.4  
μV/°C  
μV/°C  
nA  
vs. Temperature  
Input Bias Current  
Input Offset Current  
Input Operating Impedance  
Differential  
−40°C ≤ TA ≤ +85°C  
IOS  
4
4
nA  
50||1  
10||10  
50||1  
10||10  
MΩ||pF  
GΩ||pF  
V
Common Mode  
Input Voltage Range  
DYNAMIC RESPONSE  
Small Signal Bandwidth1  
0
VCC − 1.7  
0
VCC − 1.7  
BW  
Filter limited; measured at  
ADC OUT  
500  
500  
Hz  
Slew Rate  
Settling Time2  
0.1%  
SR  
ts  
Filter limited  
1.9  
Filter limited  
1.9  
500 Hz filter, VO = 2 V step;  
measured at ADC OUT  
ms  
0.01%  
2.4  
60  
80  
2.4  
60  
ms  
kHz  
Internal Clock Frequency  
GAIN  
160  
Gain Error  
Gain Drift  
Nonlinearity  
VO = 0.075 V to 4.925 V  
−40°C ≤ TA ≤ +85°C  
VO = 0.075 V to 4.925 V  
0.3  
5
0.003  
0.5  
25  
0.009  
0.3  
5
0.003  
0.5  
25  
0.009  
%
ppm/°C  
% FS  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VCC  
VCC  
V
0.075  
0.075  
Output Voltage Low  
Short-Circuit Current  
VOL  
ISC  
0.075  
0.075  
V
mA  
mA  
VCC = 5 V  
VCC = 2.7 V  
35  
25  
35  
25  
REFERENCE CHARACTERISTICS  
VREF Range  
REF Pin Current  
0.8  
VCC − 0.8 0.8  
1
VCC − 0.8  
1
V
nA  
IREF  
0.01  
0.01  
POWER SUPPLY  
Operating Range  
Power Supply Rejection  
Supply Current  
1.8  
100  
5.5  
1.8  
100  
5.5  
V
PSR  
ISY  
VCC = 1.8 V to 5.5 V, VCM = 0 V  
IO = 0 mA, VIN = 0 V  
−40°C ≤ TA ≤ +85°C  
120  
1.0  
120  
1.0  
dB  
mA  
mA  
1.3  
1.5  
1.3  
1.5  
TEMPERATURE RANGE  
Specified Range  
−40  
+85  
−40  
+85  
°C  
1 Higher bandwidths result in higher noise.  
2 Settling time is determined by filter setting.  
Rev. 0 | Page 4 of 16  
 
AD8293G80/AD8293G160  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 4.  
Parameter  
Rating  
Supply Voltage  
Input Voltage  
6 V  
+VSUPPLY  
VSUPPLY  
Indefinite  
−65°C to +150°C  
−40°C to +85°C  
−65°C to +150°C  
300°C  
Differential Input Voltage1  
Output Short-Circuit Duration to GND  
Storage Temperature Range (RJ Package)  
Operating Temperature Range  
Junction Temperature Range (RJ Package)  
Lead Temperature (Soldering, 10 sec)  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
1 Differential input voltage is limited to 5.0 V, the supply voltage, or  
whichever is less.  
Table 5.  
Package Type  
1
θJA  
θJC  
Unit  
8-Lead SOT-23 (RJ)  
211.5  
91.99  
°C/W  
1 θJA is specified for the nominal conditions, that is, θJA is specified for the  
device soldered on a circuit board.  
ESD CAUTION  
Rev. 0 | Page 5 of 16  
 
 
AD8293G80/AD8293G160  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AD8293Gxx  
1
2
3
4
8
7
6
5
+IN  
+V  
–IN  
GND  
S
REF  
OUT  
FILT  
ADC OUT  
TOP VIEW  
(Not to Scale)  
Figure 3. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
5
6
7
8
−IN  
GND  
REF  
ADC OUT  
FILT  
OUT  
+VS  
Inverting Input Terminal (True Differential Input)  
Ground  
Reference Voltage Terminal (Drive This Terminal to Level-Shift the Output)  
Output with Series 5 kΩ Resistor for Use with an Antialiasing Filter  
Place a capacitor across FILT and OUT to limit the amount of switching noise at the output (see Applications Information)  
Output Terminal Without Integrated Filter  
Positive Power Supply Terminal  
Noninverting Input Terminal (True Differential Input)  
+IN  
Rev. 0 | Page 6 of 16  
 
AD8293G80/AD8293G160  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VCC = 5 V, and VREF = VCC/2; G = 80, C2 = 1300 pF, and C3 = 39 nF; G = 160, C2 = 680 pF, and C3 = 39 nF, unless otherwise specified.  
60  
60  
V
= 2.7V, 5V  
V
= 2.7V, 5V  
CC  
FILTER = 10kHz  
CC  
FILTER = 500Hz  
G = 160  
40  
20  
0
40  
20  
G = 160  
G = 80  
G = 80  
0
–20  
–40  
–20  
10  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 4. Gain vs. Frequency  
Figure 7. Gain vs. Frequency  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
V
= 2.7V, 5V  
V
= 2.7V, 5V  
CC  
CC  
GAIN = 80, 160  
FILTER = 500Hz  
GAIN = 80, 160  
FILTER = 10kHz  
60  
60  
40  
40  
20  
10  
20  
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 5. Common-Mode Rejection (CMR) vs. Frequency  
Figure 8. Common-Mode Rejection (CMR) vs. Frequency  
4
4
(0.02V, 3V)  
(4.98V, 3V)  
(0.02V, 3.3V)  
(4.98V, 3.3V)  
V
= 5V, V  
REF  
= V /2  
CC  
3
2
3
2
CC  
V
= 5V, V  
REF  
= V /2  
CC  
CC  
(0.02V, 1V)  
(0.02V, 1V)  
(2.68V, 1V)  
(2.68V, 1V)  
(2.68V, 0V)  
1
1
V
V
= 2.7V,  
= V /2  
CC  
REF  
CC  
V
= 2.7V,  
= V /2  
CC  
V
(2.68V, 0V)  
REF  
CC  
0
0
(0.02V, 0V)  
0
(4.98V, 0V)  
5
(4.98V, 0V)  
5
(0.02V, 0V)  
0
–1  
–1  
–1  
–1  
1
2
3
4
6
1
2
3
4
6
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 9. Input Common-Mode Voltage Range vs. Output Voltage, G = 160  
Figure 6. Input Common-Mode Voltage Range vs. Output Voltage, G = 80  
Rev. 0 | Page 7 of 16  
 
AD8293G80/AD8293G160  
10  
5
10  
POWER SUPPLY ON  
POWER SUPPLY ON  
5
0
4μV OFFSET  
4μV OFFSET  
0
–5  
GAIN = 160  
–10  
–5  
–10  
–15  
GAIN = 160  
GAIN = 80  
GAIN = 80  
–15  
–20  
V
V
= 2.7V  
= 5V  
CC  
CC  
V
V
= 2.7V  
= 5V  
CC  
CC  
–25  
–0.2  
–0.05  
0
0.05  
0.10  
0.15  
0.20  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
TIME (ms)  
TIME (ms)  
Figure 13. Input Offset Voltage vs. Turn-On Time, Filter = 10 kHz  
Figure 10. Input Offset Voltage vs. Turn-On Time, Filter = 500 Hz  
1000  
100  
GAIN = 160  
GAIN = 80  
10  
1
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
TIME (10s/DIV)  
FREQUENCY (Hz)  
Figure 14. 0.01 Hz to 10 Hz Voltage Noise  
Figure 11. Voltage Noise Density  
0.30  
160  
V
= 2.7V, 5V  
CC  
G = 80, 160  
0.25  
0.20  
0.15  
0.10  
140  
120  
100  
80  
GAIN = 160  
10kHz FILTER  
GAIN = 80  
0.05  
0
60  
–0.05  
–0.10  
500Hz FILTER  
40  
500Hz FILTER  
10kHz FILTER  
20  
10  
–0.15  
100  
1k  
10k  
100k  
1ms/DIV  
FREQUENCY (Hz)  
Figure 15. Small Signal Step Response  
Figure 12. Power Supply Rejection (PSR) vs. Frequency  
Rev. 0 | Page 8 of 16  
AD8293G80/AD8293G160  
V
= 5V  
V
= 2.7V  
CC  
CC  
G = 80, 160  
G = 80, 160  
10kHz FILTER  
10kHz FILTER  
500Hz FILTER  
500Hz FILTER  
1ms/DIV  
1ms/DIV  
Figure 16. Large Signal Step Response  
Figure 17. Large Signal Step Response  
Rev. 0 | Page 9 of 16  
AD8293G80/AD8293G160  
THEORY OF OPERATION  
The AD8293G80/AD8293G160 are precision current-mode  
correction instrumentation amplifiers capable of single-supply  
operation. The current-mode correction topology results in  
excellent accuracy. Figure 18 shows a simplified diagram  
illustrating the basic operation of the AD8293G80/AD8293G160  
(without correction). The circuit consists of a voltage-to-current  
amplifier (M1 to M6), followed by a current-to-voltage amplifier  
(R2 and A1). Application of a differential input voltage forces a  
current through External Resistor R1, resulting in conversion of  
the input voltage to a signal current. Transistor M3 to Transistor  
M6 transfer twice this signal current to the inverting input of  
the op amp A1. Amplifier A1 and External Resistor R2 form  
a current-to-voltage converter to produce a rail-to-rail output  
HIGH PSR AND CMR  
Common-mode rejection and power supply rejection indicate  
the amount that the offset voltage of an amplifier changes when  
its common-mode input voltage or power supply voltage changes.  
The autocorrection architecture of the AD8293G80/AD8293G160  
continuously corrects for offset errors, including those induced  
by changes in input or supply voltage, resulting in exceptional  
rejection performance. The continuous autocorrection provides  
great CMR and PSR performances over the entire operating  
temperature range (−40°C to +85°C).  
The parasitic resistance in series with R2 does not degrade CMR,  
but causes a small gain error and a very small offset error.  
Therefore, an external buffer amplifier is not required to drive  
voltage at VOUT  
.
V
REF to maintain excellent CMR performance. This helps reduce  
Op amp A1 is a high precision auto-zero amplifier. This amplifier  
preserves the performance of the autocorrecting, current-mode  
amplifier topology while offering the user a true voltage-in,  
voltage-out instrumentation amplifier. Offset errors are corrected  
internally.  
system costs over conventional instrumentation amplifiers.  
1/f NOISE CORRECTION  
Flicker noise, also known as 1/f noise, is noise inherent in the  
physics of semiconductor devices and decreases 10 dB per decade.  
The 1/f corner frequency of an amplifier is the frequency at which  
the flicker noise is equal to the broadband noise of the amplifier. At  
lower frequencies, flicker noise dominates, causing large errors  
in low frequency or dc applications.  
An external reference voltage is applied to the noninverting  
input of A1 to set the output reference level. External Capacitor  
C2 is used to filter out correction noise.  
Flicker noise is seen effectively as a slowly varying offset  
error, which is reduced by the autocorrection topology of the  
AD8293G80/AD8293G160. This allows the AD8293G80/  
AD8293G160 to have lower noise near dc than standard low  
noise instrumentation amplifiers.  
V
CC  
C2  
2R2  
M5  
M6  
I – I  
I
I
R2  
V
– V  
INN  
INP  
V
= V +  
REF  
OUT  
R1  
R1  
INP  
R1  
2I  
R1  
I – I  
R1  
R3  
I + I  
R1  
(V  
– V  
)
INN  
I
=
C3  
R1  
A1  
R1  
V
BIAS  
V
REF  
V
V
INP  
INN M3  
M4  
M1  
M2  
2I  
2I  
EXTERNAL  
Figure 18. Simplified Schematic  
Rev. 0 | Page 10 of 16  
 
 
AD8293G80/AD8293G160  
APPLICATIONS INFORMATION  
+5V  
OVERVIEW  
C2  
The AD8293G80/AD8293G160 reduce board area by integrating  
filter components, such as Resistors R1, R2, and R3, as shown in  
Figure 19. Two outputs are available to the user: OUT (Pin 6) and  
ADC OUT (Pin 4). The difference between the two is the inclusion  
of a series 5 kꢀ resistor at ADC OUT. With the addition of an  
external capacitor, C3, ADC OUT forms a second filter, comprising  
of the 5 kꢀ resistor and C3, which can be used as an ADC anti-  
aliasing filter. In contrast, OUT is the direct output of the instru-  
mentation amplifier. When using the antialiasing filter, there is  
slightly less switching ripple at ADC OUT than when obtaining  
the signal directly from OUT.  
0.1µF  
OUTPUT  
7
5
6
+V  
FILT  
R2  
OUT  
S
+IN  
8
R3  
5kΩ  
R1  
4kΩ  
4
IN-AMP  
ADC OUT  
–IN  
1
AD8293Gxx  
GND REF  
2
3
0.1µF  
1µF  
VOLTAGE  
REFERENCE  
+5V  
C2  
680pF  
0.1µF  
0.1µF  
7
5
6
Figure 20. Operating on a Single Supply Using an External Voltage Reference  
(The Output Can Be Used Without an Antialiasing Filter if the Signal  
Bandwidth Is <10 Hz)  
+V  
FILT  
OUT  
S
R2  
320k  
+IN  
OUTPUT TO ADC  
WITH ANTIALIASING  
FILTER  
8
1
R3  
5kΩ  
OUTPUT FILTERING  
R1  
4kΩ  
4
IN-AMP  
ADC OUT  
The output of the AD8293G80/AD8293G160 can be filtered to  
reduce switching ripple. Two filters can be used in conjunction  
to set the filter frequency. In the example that follows, two 700 Hz  
filters are used in conjunction to form a 500 Hz (recommended)  
bandwidth. Because the filter resistors are integrated in the  
AD8293G80/AD8293G160, only external capacitors are needed  
to set the filter frequencies.  
C3  
39nF  
–IN  
AD8293G160  
GND REF  
2
+5V  
3
100kΩ  
0.1µF  
100kΩ  
Figure 19. AD8293G160 with Antialiasing Filter and Level-Shifted Output  
(Using the Resistor Divider at the REF Pin, the Output Is Biased at 2.5 V)  
The primary filter is needed to limit the amount of switching  
noise at the output. Regardless of the output that is being used,  
OUT or ADC OUT, the primary filter comprising R2 and C2  
must be implemented. The R2 value depends on the model; Table 7  
shows the R2 value for each model.  
REFERENCE CONNECTION  
Unlike traditional 3-op-amp instrumentation amplifiers, parasitic  
resistance in series with REF (Pin 3) does not degrade CMR  
performance. The AD8293G80/AD8293G160 can attain extremely  
high CMR performance without the use of an external buffer  
amplifier to drive the REF pin, which is required by industry-  
standard instrumentation amplifiers. Reducing the need for  
buffer amplifiers to drive the REF pin helps to save valuable  
printed circuit board (PCB) space and minimizes system costs.  
Table 7. Internal R2 Values  
Model  
R2 (kΩ)  
160  
320  
AD8293G80  
AD8293G160  
The following equation results in the C2 value needed to set a  
700 Hz primary filter. For a gain of 160, substitute R2 with  
320 kꢀ; for a gain of 80, substitute R2 with 160 kꢀ.  
For optimal performance in single-supply applications, REF  
should be set with a low noise precision voltage reference, such  
as the ADR44x (see Figure 20). However, for a lower system cost,  
the reference voltage can be set with a simple resistor voltage  
divider between the supply and GND (see Figure 19). This  
configuration results in degraded output offset performance if  
the resistors deviate from their ideal values. In dual-supply  
applications, VREF can simply be connected to GND.  
C2 = 1/(700 × 2 × π × R2)  
Adding an external capacitor, C3, and measuring the output from  
ADC OUT further reduces the correction ripple. The internal  
5 kΩ resistor, labeled R3 in Figure 18, forms a low-pass filter  
with C3. This low-pass filter is the secondary filter. Set to  
700 Hz, the secondary filter equation for C3 is as follows:  
The REF pin current is approximately 10 pA, and as a result, an  
external buffer is not required.  
C3 = 1/(700 × 2 × π × 5 kꢀ)  
Rev. 0 | Page 11 of 16  
 
 
 
 
 
 
AD8293G80/AD8293G160  
The addition of another single pole of 700 Hz on the output  
(from the secondary filter in Figure 18) is required for bandwidths  
greater than 10 Hz. These two filters, together, produce an overall  
bandwidth of 500 Hz. The internal resistors, R2 and R3, have an  
absolute tolerance of 20%. Table 8 lists the standard capacitors  
needed to create a filter with an overall bandwidth of 500 Hz.  
POWER SUPPLY BYPASSING  
The AD8293G80/AD8293G160 use internally generated clock  
signals to perform autocorrection. As a result, proper bypassing  
is necessary to achieve optimum performance. Inadequate or  
improper bypassing of the supply lines can lead to excessive  
noise and offset voltage.  
Table 8. Standard Capacitors Used to Form a Filter with an  
Overall Bandwidth of 500 Hz  
A 0.1 μF surface-mount capacitor should be connected between  
the supply lines. This capacitor is necessary to minimize ripple  
from the correction clocks inside the IC. For dual-supply operation,  
a 0.1 μF (ceramic) surface-mount capacitor should be connected  
from each supply pin to GND.  
Model  
C2 (pF)  
1300  
680  
C3 (nF)  
AD8293G80  
AD8293G160  
39  
39  
For single-supply operation, a 0.1 μF surface-mount capacitor  
should be connected from the supply line to GND.  
For applications with low bandwidths (<10 Hz), only the primary  
filter is required. In such an event, the high frequency noise  
from the auto-zero amplifier (output amplifier) is not filtered  
before the following stage.  
All bypass capacitors should be positioned as close to the DUT  
supply pins as possible, especially the bypass capacitor between  
the supplies. Placement of the bypass capacitor on the back of  
the board directly under the DUT is preferred.  
CLOCK FEEDTHROUGH  
The AD8293G80/AD8293G160 use two synchronized clocks  
to perform the autocorrection. The input voltage-to-current  
amplifiers are corrected at 60 kHz.  
INPUT OVERVOLTAGE PROTECTION  
All terminals of the AD8293G80/AD8293G160 are protected  
against ESD. In the case of a dc overload voltage beyond either  
supply, a large current would flow directly through the ESD  
protection diodes. If such a condition can occur, an external resistor  
should be used in series with the inputs to limit current for voltages  
beyond the supply rails. The AD8293G80/AD8293G160 can safely  
handle 5 mA of continuous current, resulting in an external  
resistor selection of  
Trace amounts of these clock frequencies can be observed at  
the OUT pin. The amount of visible correction feedthrough  
is dependent on the values of the filters set by R2/C2. Use  
ADC OUT to create a filter using R3/C3 to further reduce  
correction feedthrough as described in the Output Filtering  
section.  
R
EXT = (VIN VS)/5 mA  
+5V  
C2  
1.3nF  
0.1µF  
7
5
6
+V  
FILT  
OUT  
S
LOAD  
R2  
160kΩ  
+IN  
8
R3  
5kΩ  
R1  
4
I
ADC  
C3  
R
IN-AMP  
SHUNT 4kΩ  
ADC OUT  
39nF  
–IN  
1
REF  
+3.3V  
0.1µF  
1.8V  
GND REF  
2
AD8293G80  
DC-DC  
10µF  
3
Figure 21. Measuring Current Through a Shunt Resistor (Filter Is Set to 500 Hz)  
Rev. 0 | Page 12 of 16  
 
 
AD8293G80/AD8293G160  
OUTLINE DIMENSIONS  
2.90 BSC  
8
1
7
2
6
3
5
4
1.60 BSC  
PIN 1  
2.80 BSC  
INDICATOR  
0.65 BSC  
1.95  
BSC  
1.30  
1.15  
0.90  
1.45 MAX  
0.22  
0.08  
0.60  
0.45  
0.30  
8°  
4°  
0°  
0.38  
0.22  
0.15 MAX  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178-BA  
Figure 22. 8-Lead Small Outline Transistor Package [SOT-23]  
(RJ-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Gain  
80  
80  
80  
80  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
8-Lead SOT-23  
Package Option  
Branding  
Y1H  
Y1H  
Y1H  
Y1N  
Y1N  
Y1N  
Y11  
Y11  
Y11  
Y1K  
Y1K  
AD8293G80ARJZ-R21  
AD8293G80ARJZ-R71  
AD8293G80ARJZ-RL1  
AD8293G80BRJZ-R21  
AD8293G80BRJZ-R71  
AD8293G80BRJZ-RL1  
AD8293G160ARJZ-R21  
AD8293G160ARJZ-R71  
AD8293G160ARJZ-RL1  
AD8293G160BRJZ-R21  
AD8293G160BRJZ-R71  
AD8293G160BRJZ-RL1  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
80  
80  
160  
160  
160  
160  
160  
160  
Y1K  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 13 of 16  
 
 
AD8293G80/AD8293G160  
NOTES  
Rev. 0 | Page 14 of 16  
AD8293G80/AD8293G160  
NOTES  
Rev. 0 | Page 15 of 16  
AD8293G80/AD8293G160  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07451-0-8/08(0)  
Rev. 0 | Page 16 of 16  

相关型号:

AD8293G80BRJZ-RL

Low Cost, Zero-Drift In-Amp with Filter and Fixed Gain
ADI

AD8295

Precision Instrumentation Amplifier with Signal Processing Amplifiers
ADI

AD8295ACPZ-R7

Precision Instrumentation Amplifier with Signal Processing Amplifiers
ADI

AD8295ACPZ-RL

Precision Instrumentation Amplifier with Signal Processing Amplifiers
ADI

AD8295ACPZ-WP

Precision Instrumentation Amplifier with Signal Processing Amplifiers
ADI

AD8295BCPZ-R7

Precision Instrumentation Amplifier with Signal Processing Amplifiers
ADI

AD8295BCPZ-RL

Precision Instrumentation Amplifier with Signal Processing Amplifiers
ADI

AD8295BCPZ-WP

Precision Instrumentation Amplifier with Signal Processing Amplifiers
ADI

AD829AQ

High Speed, Low Noise Video Op Amp
ADI

AD829AR

High-Speed, Low-Noise Video Op Amp
ADI

AD829AR-EBZ

High Speed, Low Noise Video Op Amp
ADI

AD829AR-REEL

High-Speed, Low-Noise Video Op Amp
ADI