AD8300AR-REEL [ADI]

暂无描述;
AD8300AR-REEL
型号: AD8300AR-REEL
厂家: ADI    ADI
描述:

暂无描述

文件: 总8页 (文件大小:243K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
+3 Volt, Serial Input  
Complete 12-Bit DAC  
a
AD8300  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Complete 12-Bit DAC  
No External Components  
Single +3 Volt Operation  
0.5 mV/Bit with 2.0475 V Full Scale  
6 s Output Voltage Settling Time  
Low Power: 3.6 mW  
12-BIT  
DAC  
REF  
V
OUT  
12  
V
DD  
CLR  
LD  
DAC  
REGISTER  
12  
GND  
CS  
CLK  
SDI  
EN  
Compact SO-8 1.5 mm Height Package  
SERIAL  
REGISTER  
APPLICATIONS  
AD8300  
Portable Communications  
Digitally Controlled Calibration  
Servo Controls  
PC Peripherals  
GENERAL DESCRIPTION  
A double buffered serial data interface offers high speed, three-  
wire, DSP and microcontroller compatible inputs using data in  
(SDI), clock (CLK) and load strobe (LD) pins. A chip select  
(CS) pin simplifies connection of multiple DAC packages by  
enabling the clock input when active low. Additionally, a CLR  
input sets the output to zero scale at power on or upon user  
demand.  
The AD8300 is a complete 12-bit, voltage-output digital-to-  
analog converter designed to operate from a single +3 volt sup-  
ply. Built using a CBCMOS process, this monolithic DAC  
offers the user low cost, and ease-of-use in single-supply +3 volt  
systems. Operation is guaranteed over the supply voltage range  
of +2.7 V to +5.5 V making this device ideal for battery oper-  
ated applications.  
The AD8300 is specified over the extended industrial (–40°C to  
+85°C) temperature range. AD8300s are available in plastic  
DIP, and low profile 1.5 mm height SO-8 surface mount packages.  
The 2.0475 V full-scale voltage output is laser trimmed to  
maintain accuracy over the operating temperature range of the  
device. The binary input data format provides an easy-to-use  
one-half-millivolt-per-bit software programmability. The voltage  
outputs are capable of sourcing 5 mA.  
3.0  
1.00  
V
= +2.7V  
= –40؇C, +25؇C, +125؇C  
DD  
0.75  
0.50  
VFS 1 LSB  
T
A
2.8  
2.6  
2.4  
2.2  
2.0  
DATA = FFF  
H
T
A
= +25؇C  
0.25  
0.00  
PROPER OPERATION  
WHEN V SUPPLY  
DD  
–0.25  
–0.50  
–0.75  
–1.00  
VOLTAGE ABOVE  
CURVE  
= –40؇C  
= +25؇C  
= +125؇C  
0
1024  
2048  
3072  
4096  
0.01  
0.1  
1.0  
10  
DIGITAL INPUT CODE – Decimal  
OUTPUT LOAD CURRENT – mA  
Figure 2. Linearity Error vs. Digital Code and Temperature  
Figure 1. Minimum Supply Voltage vs. Load  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
AD8300–SPECIFICATIONS  
+3 V OPERATION  
(@ VDD = +5 V ؎ 10%, –40؇C TA +85؇C, unless otherwise noted)  
Parameter  
Symbol  
Condition  
Min Typ  
Max  
Units  
STATIC PERFORMANCE  
Resolution  
N
[Note 1]  
12  
–2  
–1  
Bits  
Relative Accuracy  
Differential Nonlinearity2  
Zero-Scale Error  
INL  
DNL  
VZSE  
VFS  
±1/2  
±1/2  
+1/2  
+2  
+1  
+3  
LSB  
LSB  
mV  
Volts  
ppm/°C  
Monotonic  
Data = 000H  
Data = FFFH  
[Notes 3, 4]  
Full-Scale Voltage3  
Full-Scale Tempco  
2.039 2.0475 2.056  
16  
TCVFS  
ANALOG OUTPUT  
Output Current (Source)  
Output Current (Sink)  
Load Regulation  
Output Resistance to GND  
Capacitive Load  
IOUT  
IOUT  
LREG  
ROUT  
CL  
Data = 800H, VOUT = 5 LSB  
Data = 800H, VOUT = 5 LSB  
RL = 200 to , Data = 800H  
Data = 000H  
5
2
5
mA  
mA  
LSB  
1.5  
30  
500  
No Oscillation4  
pF  
LOGIC INPUTS  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current  
Input Capacitance  
VIL  
VIH  
IIL  
0.6  
V
V
µA  
pF  
2.1  
10  
10  
CIL  
INTERFACE TIMING  
SPECIFICATIONS4, 5  
Clock Width High  
Clock Width Low  
Load Pulsewidth  
Data Setup  
tCH  
tCL  
tLDW  
tDS  
40  
40  
50  
15  
15  
40  
15  
40  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Hold  
Clear Pulsewidth  
Load Setup  
Load Hold  
Select  
tDH  
tCLRW  
tLD1  
tLD2  
tCSS  
tCSH  
Deselect  
AC CHARACTERISTICS4  
Voltage Output Settling Time  
tS  
To ±0.2% of Full Scale  
7
µs  
µs  
V/µs  
nV/s  
nV/s  
To ±1 LSB of Final Value6  
Data = 000H to FFFH to 000H  
14  
2.0  
15  
15  
Output Slew Rate  
DAC Glitch  
Digital Feedthrough  
SR  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
VDD RANGE  
IDD  
DNL < ±1 LSB  
VDD = 3 V, VIL = 0 V, Data = 000H  
2.7  
5.5  
1.7  
3.0  
5.1  
V
1.2  
1.9  
3.6  
mA  
mA  
mW  
%/%  
VDD = 3.6 V, VIH = 2.3 V, Data = FFFH  
Power Dissipation  
Power Supply Sensitivity  
PDISS  
PSS  
VDD = 3 V, VIL = 0 V, Data = 000H  
VDD = ±5%  
0.001 0.005  
NOTES  
1LSB = 0.5 mV for 0 V to +2.0475 V output range.  
2The first two codes (000H, 001H) are excluded from the linearity error measurement.  
3Includes internal voltage reference error.  
4These parameters are guaranteed by design and not subject to production testing.  
5All input control signals are specified with tR = tF = 2 ns (10% to 90% of +3 V) and timed from a voltage level of 1.6 V.  
6The settling time specification does not apply for negative going transitions within the last 6 LSBs of ground. Some devices exhibit double the typical settling time in  
this 6 LSB region.  
Specifications subject to change without notice.  
–2–  
REV. A  
AD8300  
+5 V OPERATION  
(@ VDD = +5 V ؎ 10%, –40؇C TA +85؇C, unless otherwise noted)  
Parameter  
Symbol  
Condition  
Min Typ  
Max  
Units  
STATIC PERFORMANCE  
Resolution  
N
[Note 1]  
12  
Bits  
Relative Accuracy  
Differential Nonlinearity2  
Zero-Scale Error  
INL  
DNL  
VZSE  
VFS  
–2  
–1  
±1/2  
±1/2  
+1/2  
+2  
+1  
+3  
LSB  
LSB  
mV  
Volts  
ppm/°C  
Monotonic  
Data = 000H  
Data = FFFH  
[Notes 3, 4]  
Full-Scale Voltage3  
Full-Scale Tempco  
2.039 2.0475 2.056  
16  
TCVFS  
ANALOG OUTPUT  
Output Current (Source)  
Output Current (Sink)  
Load Regulation  
Output Resistance to GND  
Capacitive Load  
IOUT  
IOUT  
LREG  
ROUT  
CL  
Data = 800H, VOUT = 5 LSB  
Data = 800H, VOUT = 5 LSB  
RL = 200 to , Data = 800H  
Data = 000H  
5
2
5
mA  
mA  
LSB  
1.5  
30  
500  
No Oscillation4  
pF  
LOGIC INPUTS  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current  
Input Capacitance  
VIL  
VIH  
IIL  
0.8  
V
V
µA  
pF  
2.4  
10  
10  
CIL  
INTERFACE TIMING  
SPECIFICATIONS4, 5  
Clock Width High  
Clock Width Low  
Load Pulsewidth  
Data Setup  
tCH  
tCL  
tLDW  
tDS  
tDH  
tCLWR  
tLD1  
tLD2  
tCSS  
tCSH  
30  
30  
30  
15  
15  
30  
15  
30  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Hold  
Clear Pulsewidth  
Load Setup  
Load Hold  
Select  
Deselect  
AC CHARACTERISTICS4  
Voltage Output Settling Time  
tS  
To ±0.2% of Full Scale  
6
µs  
µs  
V/µs  
nV/s  
nV/s  
To ±1 LSB of Final Value6  
Data = 000H to FFFH to 000H  
13  
2.2  
15  
15  
Output Slew Rate  
DAC Glitch  
Digital Feedthrough  
SR  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
VDD RANGE  
IDD  
DNL < ±1 LSB  
VDD = 5 V, VIL = 0 V, Data = 000H  
2.7  
5.5  
1.7  
4.0  
5.1  
V
1.2  
2.8  
6
mA  
mA  
mW  
%/%  
V
DD = 5.5 V, VIH = 2.3 V, Data = FFFH  
Power Dissipation  
Power Supply Sensitivity  
PDISS  
PSS  
VDD = 5 V, VIL = 0 V, Data = 000H  
VDD = ±10%  
0.001 0.006  
NOTES  
11 LSB = 0.5 mV for 0 V to +2.0475 V output range.  
2The first two codes (000H, 001H) are excluded from the linearity error measurement.  
3Includes internal voltage reference error.  
4These parameters are guaranteed by design and not subject to production testing.  
5All input control signals are specified with tR = tF = 2 ns (10% to 90% of +5 V) and timed from a voltage level of 1.6 V.  
6The settling time specification does not apply for negative going transitions within the last 6 LSBs of ground. Some devices exhibit double the typical settling time in  
this 6 LSB region.  
Specifications subject to change without notice.  
REV. A  
–3–  
AD8300  
ABSOLUTE MAXIMUM RATINGS*  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +7 V  
Logic Inputs to GND . . . . . . . . . . . . . . . . . . . . . –0.3 V, +7 V  
PIN CONFIGURATIONS  
SO-8 Plastic DIP  
1
4
8
1
2
3
4
8
7
6
5
V
OUT  
V
DD  
VOUT to GND . . . . . . . . . . . . . . . . . . . . . . –0.3 V, VDD + 0.3 V  
GND  
CLR  
LD  
CS  
AD8300  
TOP VIEW  
(Not to Scale)  
IOUT Short Circuit to GND . . . . . . . . . . . . . . . . . . . . . . 50 mA  
Package Power Dissipation . . . . . . . . . . . . . (TJ Max – TA)/θJA  
Thermal Resistance θJA  
5
CLK  
SDI  
8-Lead Plastic DIP Package (N-8) . . . . . . . . . . . . . 103°C/W  
8-Lead SOIC Package (SO-8) . . . . . . . . . . . . . . . . 158°C/W  
Maximum Junction Temperature (TJ Max) . . . . . . . . . . 150°C  
Operating Temperature Range . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (Soldering, 10 secs) . . . . . . . . . . . . +300°C  
PIN DESCRIPTIONS  
Function  
Pin #  
Name  
1
VDD  
Positive power supply input. Specified range  
of operation +2.7 V to +5.5 V.  
2
CS  
Chip Select, active low input. Disables shift  
register loading when high. Does not affect  
LD operation.  
Clock input, positive edge clocks data into  
shift register.  
Serial Data Input, input data loads directly  
into the shift register, MSB first.  
Load DAC register strobes, active low.  
Transfers shift register data to DAC register.  
See Truth Table I for operation. Asynchro-  
nous active low input.  
Resets DAC register to zero condition.  
Asynchronous active low input.  
Analog and Digital Ground.  
DAC voltage output, 2.0475 V full scale  
with 0.5 mV per bit. An internal tempera-  
ture stabilized reference maintains a fixed  
full-scale voltage independent of time, tem-  
perature and power supply variations.  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
3
4
5
CLK  
SDI  
LD  
ORDERING GUIDE  
Package  
Description  
Package  
Options  
Model  
INL  
Temp  
AD8300AN  
AD8300AR  
±2  
±2  
XIND  
XIND  
8-Lead P-DIP  
8-Lead SOIC  
N-8  
SO-8  
6
CLR  
NOTES  
7
8
GND  
VOUT  
XIND = –40°C to +85°C.  
The AD8300 contains 630 transistors. The die size measures 72 mil × 65 mil.  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDI  
CLK  
CS  
tCSS  
tCSH  
tLD1  
tLD2  
LD  
SDI  
tDS  
tDH  
tCL  
CLK  
tCH  
tLDW  
LD  
tCLRW  
tS  
CLR  
tS  
FS  
VOUT  
ZS  
؎1LSB  
ERROR BAND  
Figure 3. Timing Diagram  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD8300 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. A  
Typical Performance Characteristics–  
AD8300  
2.5  
2.0  
1.5  
1.0  
0.5  
0
80  
60  
POSITIVE  
CURRENT  
LIMIT  
T
A
= –40 TO +85؇C  
V
V
= +5V  
= +3V  
DD  
40  
DD  
20  
DATA = 800  
H
0
R
TIED TO +1.024V  
L
–20  
–40  
–60  
–80  
V
= +3V  
= +5V  
DD  
NEGATIVE  
CURRENT  
LIMIT  
V
DD  
HORIZONTAL = 1s/DIV  
0
1
2
3
4
5
6
0
1
2
V
DD  
SUPPLY VOLTAGE – Volts  
OUTPUT VOLTAGE – Volts  
Figure 5. Logic Input Threshold  
Voltage vs. VDD  
Figure 6. Detail Settling Time  
Figure 4. IOUT vs. VOUT  
50  
45  
V
DD  
= +5V ؎10%  
40  
35  
30  
25  
20  
15  
10  
5
V
= +3V ؎10%  
DD  
T
= +25؇C  
A
DATA = FFF  
H
HORIZONTAL = 20s/DIV  
TIME = 100s/DIV  
0
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
Figure 9. Large Signal Settling Time  
Figure 8. Power Supply Rejection  
vs. Frequency  
Figure 7. Broadband Noise  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
DD  
= +3V  
V
= +5V  
DD  
T
= +25؇C  
A
DATA = FFF  
H
0.5s/DIV  
CODE 800 TO 7FF  
H
H
0
1
2
3
4
5
LOGIC VOLTAGE – Volts  
Figure 12. Digital Feedthrough vs.  
Time  
Figure 11. Midscale Transition  
Performance  
Figure 10. Supply Current vs. Logic  
Input Voltage  
REV. A  
–5–  
AD8300  
3.0  
2.6  
2.2  
1.8  
1.4  
1.0  
1.5  
1.0  
60  
50  
40  
30  
20  
10  
0
V
= +5.5V  
= +5.0V  
DD  
TUE = INL+ZS+FS  
NO LOAD  
ss = 300 UNITS  
NORMALIZED TO +25؇C  
ss = 300 UNITS  
V
DD  
= +3V  
V
DD  
T
A
= +25؇C  
0.5  
V
= +5V  
DD  
V
DD  
= +4.5V  
0
–0.5  
–1.0  
–1.5  
V
DD  
= +2.7, 3.0, 3.3V  
V
= +2.7V  
DD  
DATA = FFF  
H
V
= +2.4V  
= 0V  
IH  
V
IL  
–60  
–20  
20  
60  
100  
140  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE – ؇C  
–1  
0
1
2
3
4
5
6
TEMPERATURE – ؇C  
TOTAL UNADJUSTED ERROR – mV  
Figure 13. Total Unadjusted  
Error Histogram  
Figure 15. Supply Current vs.  
Temperature  
Figure 14. Zero-Scale Voltage Drift  
vs. Temperature  
70  
1.5  
10  
NO LOAD  
ss = 300 UNITS  
NORMALIZED TO +25؇C  
V
= +3V  
60  
50  
40  
30  
20  
10  
0
V
= +3V  
DD  
DD  
1.0  
0.5  
0
DATA = FFF  
DATA FFF  
H
H
T
A
= –40 TO +85؇C  
1
V
DD  
= +5.5V  
–0.5  
0.1  
V
DD  
= +2.7V  
–1.0  
–1.5  
0.01  
–50 –40 –30 –20 –10  
TEMPERATURE COEFFICIENT – ppm/؇C  
0
10 20 30 40  
1
10  
100  
1k  
10k  
100k  
–55 –35 –15  
5
25 45 65 85 105 125  
FREQUENCY – Hz  
TEMPERATURE – ؇C  
Figure 18. Full-Scale Output  
Tempco Histogram  
Figure 17. Output Voltage Noise  
Density vs. Frequency  
Figure 16. Full-Scale Voltage Drift  
vs. Temperature  
2.4  
V
= +2.7V  
DD  
2.0  
1.6  
1.2  
0.8  
0.4  
0
ss = 135 UNITS  
FULL SCALE (DATA = FFF  
)
H
ZERO SCALE (DATA = 000  
)
H
600  
0
100 200  
300  
400  
500  
HOURS OF OPERATION AT +150؇C  
Figure 19. Long Term Drift  
Accelerated by Burn-In  
–6–  
REV. A  
AD8300  
Table I. Control Logic Truth Table  
Serial Shift Register Function  
CS  
CLK  
CLR  
LD  
DAC Register Function  
H
L
L
L
H
H
H
H
X
L
H
L
X
X
X
X
H
H
H
H
H
H
H
L
H
H
H
H
H
L
X
H
No Effect  
No Effect  
No Effect  
Shift-Register-Data Advanced One Bit  
No Effect  
No Effect  
No Effect  
No Effect  
No Effect  
Latched  
Latched  
Latched  
Latched  
Latched  
Updated with Current Shift Register Contents  
Transparent  
Loaded with All Zeros  
Latched All Zeros  
NOTES  
1. = Positive Logic Transition; = Negative Logic Transition; X = Don’t Care.  
2. Do not clock in serial data while LD is LOW.  
3. Data loads MSB first.  
OPERATION  
OUTPUT SECTION  
The AD8300 is a complete ready to use 12-bit digital-to-analog  
converter. Only one +3 V power supply is necessary for opera-  
tion. It contains a 12-bit laser-trimmed digital-to-analog  
converter, a curvature-corrected bandgap reference, rail-to-rail  
output op amp, serial-input register, and DAC register. The  
serial data interface consists of a serial-data-input (SDI) clock  
(CLK), and load strobe pins (LD) with an active low CS strobe.  
In addition an asynchronous CLR pin will set all DAC register  
bits to zero causing the VOUT to become zero volts. This func-  
tion is useful for power on reset or system failure recovery to a  
known state.  
The rail-to-rail output stage of this amplifier has been designed  
to provide precision performance while operating near either  
power supply. Figure 21 shows an equivalent output schematic  
of the rail-to-rail amplifier with its N-channel pull-down FETs  
that will pull an output load directly to GND. The output  
sourcing current is provided by a P-channel pull-up device that  
can source current to GND terminated loads.  
V
DD  
P-CH  
N-CH  
V
OUT  
D/A CONVERTER SECTION  
The internal DAC is a 12-bit device with an output that swings  
from GND potential to 0.4 volt generated from the internal band-  
gap voltage, see Figure 20. It uses a laser-trimmed segmented  
R-2R ladder which is switched by N-channel MOSFETs. The  
output voltage of the DAC has a constant resistance indepen-  
dent of digital input code. The DAC output is internally con-  
nected to the rail-to-rail output op amp.  
AGND  
Figure 21. Equivalent Analog Output Circuit  
The rail-to-rail output stage achieves the minimum operating  
supply voltage capability shown in Figure 2. The N-channel  
output pull-down MOSFET shown in Figure 21 has a 35 on  
resistance which sets the sink current capability near ground. In  
addition to resistive load driving capability, the amplifier has  
also been carefully designed and characterized for up to 500 pF  
capacitive load driving capability.  
AMPLIFIER SECTION  
The internal DAC’s output is buffered by a low power con-  
sumption precision amplifier. This low power amplifier contains  
a differential PNP pair input stage that provides low offset volt-  
age and low noise, as well as the ability to amplify the zero-scale  
DAC output voltages. The rail-to-rail amplifier is configured  
with a gain of approximately five in order to set the 2.0475 volt  
full-scale output (0.5 mV/LSB). See Figure 20 for an equivalent  
circuit schematic of the analog section.  
REFERENCE SECTION  
The internal curvature-corrected bandgap voltage reference is  
laser trimmed for both initial accuracy and low temperature  
coefficient. Figure 18 provides a histogram of total output per-  
formance of full-scale vs. temperature which is dominated by  
the reference performance.  
1.2V  
BANDGAP  
REF  
0.4V  
FS  
POWER SUPPLY  
12-BIT DAC  
V
OUT  
The very low power consumption of the AD8300 is a direct  
result of a circuit design optimizing use of a CBCMOS process.  
By using the low power characteristics of the CMOS for the  
logic, and the low noise, tight matching of the complementary  
bipolar transistors, good analog accuracy is achieved.  
0.4V  
2.047V  
FS  
R2  
R1  
Figure 20. Equivalent AD8300 Schematic of Analog Portion  
For power-consumption sensitive applications it is important to  
note that the internal power consumption of the AD8300 is  
strongly dependent on the actual logic input voltage levels  
present on the SDI, CLK, CS, LD, and CLR pins. Since these  
inputs are standard CMOS logic structures, they contribute  
static power dissipation dependent on the actual driving logic  
The op amp has a 2 µs typical settling time to 0.4% of full scale.  
There are slight differences in settling time for negative slewing  
signals versus positive. Also negative transition settling time to  
within the last 6 LSB of zero volts has an extended settling time.  
See the oscilloscope photos in the typical performances section  
of this data sheet.  
REV. A  
–7–  
AD8300  
Table II. Unipolar Code Table  
VOH and VOL voltage levels. Consequently, for optimum dissipa-  
tion use of CMOS logic versus TTL provides minimal dissipa-  
tion in the static state. A VINL = 0 V on the logic input pins  
provides the lowest standby dissipation of 1.2 mA with a +3.3 V  
power supply.  
Hexadecimal  
Number in  
DAC Register  
Decimal  
Number in  
DAC Register  
Analog Output  
Voltage (V)  
FFF  
801  
800  
7FF  
000  
4095  
2049  
2048  
2047  
0
+2.0475  
+1.0245  
+1.0240  
+1.0235  
+0.0000  
As with any analog system, it is recommended that the AD8300  
power supply be bypassed on the same PC card that contains  
the chip. Figure 8 shows the power supply rejection versus fre-  
quency performance. This should be taken into account when  
using higher frequency switched-mode power supplies with  
ripple frequencies of 100 kHz and higher.  
One advantage of the rail-to-rail output amplifiers used in the  
AD8300 is the wide range of usable supply voltage. The part is  
fully specified and tested over temperature for operation from  
+2.7 V to +5.5 V. If reduced linearity and source current capa-  
bility near full scale can be tolerated, operation of the AD8300  
is possible down to +2.1 volts. The minimum operating supply  
voltage versus load current plot in Figure 2 provides information  
for operation below VDD = +2.7 V.  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead SOIC (SO-8)  
0.1968 (5.00)  
0.1890 (4.80)  
TIMING AND CONTROL  
8
1
5
4
The AD8300 has a separate serial-input register from the 12-bit  
DAC register that allows preloading of a new data value MSB  
first into the serial register without disturbing the present DAC  
output voltage value. Data can only be loaded when the CS pin  
is active low. After the new value is fully loaded in the serial-  
input register, it can be asynchronously transferred to the DAC  
register by strobing the LD pin. The DAC register uses a level  
sensitive LD strobe that should be returned high before any new  
data is loaded into the serial-input register. At any time the  
contents of the DAC resister can be reset to zero by strobing the  
CLR pin which causes the DAC output voltage to go to zero  
volts. All of the timing requirements are detailed in Figure 3  
along with Table I. Control Logic Truth Table.  
0.2440 (6.20)  
0.2284 (5.80)  
0.1574 (4.00)  
0.1497 (3.80)  
PIN 1  
0.0196 (0.50)  
0.0099 (0.25)  
0.0500 (1.27)  
BSC  
؋
 45؇  
0.0688 (1.75)  
0.0532 (1.35)  
0.0098 (0.25)  
0.0040 (0.10)  
8؇  
0؇  
0.0500 (1.27)  
0.0160 (0.41)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0098 (0.25)  
0.0075 (0.19)  
SEATING  
PLANE  
8-Lead Plastic DIP (N-8)  
0.430 (10.92)  
0.348 (8.84)  
All digital inputs are protected with a Zener type ESD protection  
structure (Figure 22) that allows logic input voltages to exceed  
the VDD supply voltage. This feature can be useful if the user is  
loading one or more of the digital inputs with a 5 V CMOS logic  
input voltage level while operating the AD8300 on a +3.3 V  
power supply. If this mode of interface is used, make sure that  
the VOL of the +5 V CMOS meets the VIL input requirement of  
the AD8300 operating at 3 V. See Figure 5 for the effect on  
digital logic input threshold versus operating VDD supply voltage.  
8
5
0.280 (7.11)  
0.240 (6.10)  
1
4
0.325 (8.25)  
0.300 (7.62)  
PIN 1  
0.100 (2.54)  
BSC  
0.015  
(0.381)  
TYP  
0.210  
(5.33)  
MAX  
0.195 (4.95)  
0.115 (2.93)  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
0.022 (0.558) 0.070 (1.77) SEATING  
0.014 (0.356) 0.045 (1.15)  
15؇  
0؇  
V
DD  
PLANE  
LOGIC  
IN  
GND  
Figure 22. Equivalent Digital Input ESD Protection  
Unipolar Output Operation  
This is the basic mode of operation for the AD8300. The  
AD8300 has been designed to drive loads as low as 400 in  
parallel with 500 pF. The code table for this operation is shown  
in Table II.  
APPLICATIONS INFORMATION  
See DAC8512 data sheet for additional application circuit ideas.  
–8–  
REV. A  

相关型号:

AD8300ARZ-REEL

SERIAL INPUT LOADING, 14 us SETTLING TIME, 12-BIT DAC, PDSO8, 1.50 MM HEIGHT, LOW PROFILE, SOIC-8
ROCHESTER

AD8302

LF.2.7 GHz RF/IF Gain and Phase Detector
ADI

AD8302-EVAL

LF.2.7 GHz RF/IF Gain and Phase Detector
ADI

AD8302-EVALZ

LF–2.7 GHz RF/IF Gain and Phase Detector
ADI

AD8302ARU

LF.2.7 GHz RF/IF Gain and Phase Detector
ADI

AD8302ARU-REEL

LF.2.7 GHz RF/IF Gain and Phase Detector
ADI

AD8302ARU-REEL7

LF.2.7 GHz RF/IF Gain and Phase Detector
ADI

AD8302ARUZ

LF–2.7 GHz RF/IF Gain and Phase Detector
ADI

AD8302ARUZ-REEL

LF-2.7 GHz RF/IF Gain and Phase Detector
ADI

AD8302ARUZ-RL7

LF-2.7 GHz RF/IF Gain and Phase Detector
ADI

AD8302_02

LF-2.7 GHz RF/IF Gain and Phase Detector
ADI

AD8302_18

LF–2.7 GHz RF/IF Gain and Phase Detector
ADI