AD831APZ-REEL7 [ADI]

High-Performance, Low Distortion 500 MHz Mixer;
AD831APZ-REEL7
型号: AD831APZ-REEL7
厂家: ADI    ADI
描述:

High-Performance, Low Distortion 500 MHz Mixer

局域网 PC 射频 微波
文件: 总17页 (文件大小:493K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Distortion Mixer  
AD831  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Doubly Balanced Mixer  
Low Distortion  
ꢖꢔ  
ꢓꢔ  
ꢒꢕ  
+24 dBmThird Order Intercept (IP3)  
+10 dBm 1 dB Compression Point  
Low LO Drive Required: –10 dBm  
Bandwidth  
500 MHz RF and LO Input Bandwidths  
250 MHz Differential Current IF Output  
DC to >200 MHz Single-EndedVoltage IF Output  
Single- or Dual-Supply Operation  
DC Coupled Using Dual Supplies  
All Ports May Be DC Coupled  
No Lower Frequency Limit—Operation to DC  
User-Programmable Power Consumption  
ꢓꢔ�  
ꢅꢀꢆ  
ꢃꢀ  
ꢒꢐ  
ꢒꢘ  
ꢒꢗ  
ꢒꢓ  
ꢒꢙ  
ꢎꢉꢏ  
ꢃꢂꢊ  
ꢉꢌꢍ  
ꢃꢀ  
ꢇꢂꢄ  
ꢇꢂꢀ  
ꢃꢀ  
�ꢆꢐꢑꢒ  
ꢊꢁ�ꢋ  
ꢒꢔ  
ꢒꢒ  
ꢒꢖ  
ꢒꢑ  
APPLICATIONS  
building a quadrature-amplitude modulator or image reject mixer,  
the differential current outputs of two AD831s may be summed  
by connecting them together.  
High Performance RF/IF Mixer  
Direct to Baseband Conversion  
Image-Reject Mixers  
An integral low noise amplifier provides a single-ended voltage  
output and can drive such low impedance loads as filters, 50  
amplifier inputs, and A/D converters. Its small signal bandwidth  
exceeds 200 MHz. A single resistor connected between pins  
OUT and FB sets its gain.The amplifier’s low dc offset allows  
its use in such direct-coupled applications as direct-to-baseband  
conversion and quadrature-amplitude demodulation.  
I/Q Modulators and Demodulators  
PRODUCT DESCRIPTION  
The AD831 is a low distortion, wide dynamic range, monolithic  
mixer for use in such applications as RF to IF downconversion  
in HF and VHF receivers, the second mixer in DMR base sta-  
tions, direct-to-baseband conversion, quadrature modulation and  
demodulation, and doppler shift detection in ultrasound imaging  
applications. The mixer includes an LO driver and a low noise  
output amplifier and provides both user-programmable power  
consumption and third order intercept point.  
The mixer’s SSB noise figure is 10.3 dB at 70 MHz using its  
output amplifier and optimum source impedance. Unlike passive  
mixers, the AD831 has no insertion loss and does not require an  
external diplexer or passive termination.  
A programmable-bias feature allows the user to reduce power  
consumption, with a reduction in the 1 dB compression point and  
third-order intercept.This permits a tradeoff between dynamic  
range and power consumption. For example, the AD831 may be  
used as a second mixer in cellular and two-way radio base stations  
at reduced power while still providing a substantial performance  
improvement over passive solutions.  
The AD831 provides a +24 dBm third order intercept point for  
–10 dBm LO power, thus improving system performance and  
reducing system cost compared to passive mixers, by eliminating  
the need for a high power LO driver and its attendant shielding  
and isolation problems.  
The RF, IF, and LO ports may be dc or ac coupled when the  
mixer is operating from ±5V supplies or ac coupled when oper-  
ating from a single-supply of 9V minimum.The mixer operates  
with RF and LO inputs as high as 500 MHz.  
PRODUCT HIGHLIGHTS  
1. –10 dBm LO Drive for a +24 dBm Output ReferredThird  
Order Intercept Point  
The mixer’s IF output is available as either a differential current  
output or a single-ended voltage output.The differential output is  
from a pair of open collectors and may be ac coupled via a trans-  
former or capacitor to provide a 250 MHz output bandwidth. In  
downconversion applications, a single capacitor connected across  
these outputs implements a low-pass filter to reduce harmonics  
directly at the mixer core, simplifying output filtering.When  
2. Single-EndedVoltage Output  
3. High Port-to-Port Isolation  
4. No Insertion Loss  
5. Single- or Dual-Supply Operation  
6. 10.3 dB Noise Figure  
REV.C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed byAnalog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
that may result from its use. No license is granted by implication or oth-  
erwise under any patent or patent rights of Analog Devices.Trademarks  
andregisteredtrademarksarethepropertyoftheirrespectivecompanies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD831* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
AD831 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
EVALUATION KITS  
AD831 Evaluation Board  
DOCUMENTATION  
Data Sheet  
DISCUSSIONS  
View all AD831 EngineerZone Discussions.  
AD831: Low Distortion Mixer Data Sheet  
SAMPLE AND BUY  
TOOLS AND SIMULATIONS  
• ADIsimPLL™  
Visit the product page to see pricing options.  
TECHNICAL SUPPORT  
ADIsimRF  
Submit a technical question or find your regional support  
number.  
REFERENCE MATERIALS  
Product Selection Guide  
RF Source Booklet  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
(TA = +25C and VS = 5 V unless otherwise noted;  
all values in dBm assume 50 load.)  
AD831–SPECIFICATIONS  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RF INPUT  
Bandwidth  
–10 dBm Signal Level, IP3 +20 dBm  
10.7 MHz IF and High Side Injection  
See Figure 1  
400  
MHz  
1 dB Compression Point  
Common-Mode Range  
Bias Current  
DC Input Resistance  
Capacitance  
10  
dBm  
V
µA  
k  
pF  
±1  
500  
DC Coupled  
Differential or Common Mode  
160  
1.3  
2
IF OUTPUT  
Bandwidth  
Single-EndedVoltage Output, –3dB  
Level = 0 dBm,RL = 100   
Terminals OUT andVFB Connected  
DC Measurement; LO Input Switched ±1  
200  
0
+15  
300  
±1.4  
75  
MHz  
dB  
mV  
V/µs  
V
Conversion Gain  
Output OffsetVoltage  
Slew Rate  
OutputVoltage Swing  
Short Circuit Current  
–40  
+40  
RL = 100 , Unity Gain  
mA  
LO INPUT  
Bandwidth  
–10 dBm Input Signal Level  
10.7 MHz IF and High Side Injection  
400  
MHz  
Maximum Input Level  
Common-Mode Range  
Minimum Switching Level  
Bias Current  
Resistance  
Capacitance  
–1  
–1  
+1  
+1  
V
V
Differential Input Signal  
DC Coupled  
Differential or Common Mode  
200  
17  
500  
2
mV p-p  
µA  
50  
pF  
ISOLATION BETWEEN PORTS  
LO-to-RF  
LO-to-IF  
RF-to-IF  
LO = 100 MHz, RS = 50 , 10.7 MHz IF  
LO = 100 MHz, RS = 50 , 10.7 MHz IF  
RF = 100 MHz, RS = 50 , 10.7 MHz IF  
70  
30  
45  
dB  
dB  
dB  
DISTORTION AND NOISE  
Third Order Intercept  
Second Order Intercept  
1 dB Compression Point  
Noise Figure, SSB  
LO = –10 dBm, f = 100 MHz, IF = 10.7 MHz  
Output Referred, ±100 mV LO Input  
Output Referred, ±100 mV LO Input  
RL = 100 , RBIAS =   
Matched Input, RF = 70 MHz, IF = 10.7 MHz  
Matched Input, RF = 150 MHz, IF = 10.7 MHz  
24  
62  
10  
10.3  
14  
dBm  
dBm  
dBm  
dB  
dB  
POWER SUPPLIES  
Recommended Supply Range  
Dual Supply  
Single Supply  
±4.5  
9
±5.5  
11  
V
V
Quiescent Current*  
For BestThird Order Intercept Point Performance  
BIAS Pin Open Circuited  
100  
125  
mA  
*Quiescent current is programmable.  
Specifications subject to change without notice.  
–2–  
REV. C  
AD831  
ABSOLUTE MAXIMUM RATINGS1  
SupplyVoltage ±VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5.5V  
InputVoltages  
RFHI, RFLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±3V  
LOHI, LOLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±1V  
Internal Power Dissipation2 . . . . . . . . . . . . . . . . . . . .1200 mW  
OperatingTemperature Range  
AD831A . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
StorageTemperature Range . . . . . . . . . . . . . . –65°C to +150°C  
LeadTemperature Range (Soldering 60 sec) . . . . . . . . . . 300°C  
NOTES  
1 Stresses above those listed underAbsolute Maximum Ratings may cause permanent  
damage to the device. This is a stress rating only and functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2 Thermal Characteristics:  
20-Lead PLCC Package: JA = 110°C/W; JC = 20°C/W.  
Note that the JA = 110°C/W value is for the package measured while suspended  
in still air; mounted on a PC board, the typical value is JA = 90°C/W due to the  
conduction provided by theAD831’s package being in contact with the board,which  
serves as a heat sink.  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
AD831AP  
AD831AP-REEL7  
AD831AP-EB  
–40°C to +85°C  
–40°C to +85°C  
20-Lead PLCC  
20-Lead PLCC  
Evaluation Board  
P-20A  
P-20A  
PIN DESCRIPTION  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VP  
IFN  
AN  
GND  
VN  
RFP  
RFN  
VN  
Positive Supply Input  
Mixer Current Output  
Amplifier Negative Input  
Ground  
Negative Supply Input  
RF Input  
PIN CONFIGURATION  
20-Lead PLCC  
RF Input  
ꢓꢔ ꢐꢑ  
Negative Supply Input  
Positive Supply Input  
Local Oscillator Input  
Local Oscillator Input  
Positive Supply Input  
Ground  
Bias Input  
Negative Supply Input  
Amplifier Output  
Amplifier Feedback Input  
Amplifier Output Common  
Amplifier Positive Input  
Mixer Current Output  
ꢐꢗ  
ꢐꢙ  
ꢐꢘ  
�ꢀꢁ  
ꢂꢀ  
ꢊꢉꢋ  
ꢂꢄꢌ  
ꢉꢎꢏ  
VP  
LON  
LOP  
VP  
GND  
BIAS  
VN  
OUT  
VFB  
COM  
AP  
ꢆꢁꢗꢒꢐ  
ꢏꢉꢅꢚꢂꢇꢛꢜ  
ꢝꢀꢞꢟꢚꢟꢞꢚꢍꢠꢡꢢꢣꢤ  
ꢃꢄꢅ  
ꢃꢄꢀ  
ꢂꢀ  
ꢐꢖ ꢂꢀ  
ꢐꢕ ꢌꢇꢆꢍ  
ꢐꢔ  
ꢐꢓ ꢐꢒ  
ꢐꢐ  
IFP  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000V readily accumulate  
on the human body and test equipment and can discharge without detection.Although the AD831 features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
REV. C  
–3–  
AD831–Typical Performance Characteristics  
65  
64  
63  
62  
61  
60  
�ꢀ  
ꢁꢂ  
ꢁꢀ  
ꢃꢂ  
ꢃꢀ  
10  
100  
1000  
ꢃꢀ  
ꢃꢀꢀ  
ꢃꢀꢀꢀ  
FREQUENCY (MHz)  
ꢄꢅꢆꢇꢈꢆꢉꢊꢋꢌꢍꢎꢏꢐꢑ  
TPC 1.Third Order Intercept vs. Frequency,  
IF Held Constant at 10.7 MHz  
TPC 4. Second Order Intercept vs. Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
100  
1000  
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 2. IF-to-RF Isolation vs. Frequency  
TPC 5. LO-to-RF Isolation vs. Frequency  
60  
80  
70  
60  
50  
40  
30  
20  
10  
0
3 x RF – IF  
3 x RF – IF  
2 x LO – IF  
3 x LO – IF  
50  
40  
30  
20  
2 x RF – IF  
2 x RF – IF  
RF – IF  
LO  
RF – IF  
10  
0
10  
100  
1000  
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 3. LO-to-IF Isolation vs. Frequency  
TPC 6. RF-to-IF Isolation vs. Frequency  
–4–  
REV. C  
AD831  
12  
10  
8
1.00  
0.75  
0.50  
0.25  
0.00  
6
–0.25  
–0.50  
–0.75  
–1.00  
4
2
0
10  
100  
1000  
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 7. 1 dB Compression Point vs. Frequency,  
Gain = 1  
TPC 10. Gain Error vs. Frequency, Gain = 1  
12  
10  
8
9
8
7
6
5
4
3
2
1
0
6
4
2
0
10  
100  
1000  
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 8. 1 dB Compression Point vs. RF Input, Gain = 2  
TPC 11. 1 dB Compression Point vs. Frequency, Gain = 4  
11  
�ꢀ  
ꢆꢇꢈꢉꢊꢋꢕꢎꢖꢌꢎꢖ  
ꢖꢊꢐꢗꢏꢑꢕꢊꢆꢉꢊ  
ꢘꢕꢎꢌꢍꢉꢙꢋꢌꢉꢊꢋꢑꢇꢓꢎꢊꢉꢋ�  
V
= 9V  
S
��  
10  
9
V
= 8V  
ꢁꢃ  
S
ꢁꢄ  
ꢆꢇꢈꢉꢊꢋꢌꢍꢎꢏꢋꢐꢆꢌꢍꢇꢑꢇꢉꢊꢒ  
ꢓꢋꢔꢋꢁ  
8
ꢁꢅ  
LO LEVEL = –10dBm  
IF = 10.7MHz  
7
ꢁꢂ  
ꢁꢂꢂ  
0
100  
200  
300  
400  
500  
600  
ꢁꢀꢂ  
�ꢂꢂ  
�ꢀꢂ  
ꢅꢂꢂ  
ꢅꢀꢂ  
FREQUENCY (MHz)  
ꢑꢊꢉꢚꢎꢉꢗꢘꢛꢋꢜꢆꢝꢞꢟ  
TPC 9. Third Order Intercept vs. Frequency,  
LO Held Constant at 241 MHz  
TPC 12. Input 1 dB Compression Point vs.  
Frequency, Gain = 1, 9 V Single Supply  
REV. C  
–5–  
AD831  
�ꢀ  
1200  
1000  
800  
600  
400  
200  
0
INPUT RESISTANCE  
INPUT CAPACITANCE  
4.0  
3.5  
3.0  
2.5  
2.0  
ꢁꢂ  
ꢁꢀ  
ꢃꢂ  
ꢇꢇ  
ꢉ ꢇꢊꢇꢙꢉ  
ꢉ ꢇꢊꢇꢥꢉ  
ꢅꢆꢇꢅꢈꢉꢈꢅꢇꢊꢇꢋꢃꢀꢌꢍꢎ  
ꢏꢐꢇꢊꢇꢃꢀꢑꢒꢓꢔꢕ  
ꢖꢇꢊꢇꢁꢀꢗꢔꢕ  
ꢂꢀ ꢃꢀꢀ ꢃꢂꢀ ꢁꢀꢀ ꢁꢂꢀ �ꢀꢀ �ꢂꢀ ꢄꢀꢀ ꢄꢂꢀ ꢂꢀꢀ  
ꢐꢚꢈꢛꢜꢈꢝꢞꢟꢇꢠꢓꢔꢕꢡ  
50  
100  
150  
200  
250  
FREQUENCY (MHz)  
TPC 13. InputThird Order Intercept, 9 V Single Supply  
TPC 15. Input Impedance vs. Frequency, ZIN = R C  
18  
17  
16  
15  
14  
�ꢀꢁꢂ  
ꢈꢈ  
ꢟ ꢈꢠꢈꢦꢟ  
�ꢀꢁꢀ  
�ꢀꢁꢄ  
�ꢃꢁꢅ  
�ꢃꢁ�  
ꢟ ꢈꢠꢈꢅꢟ  
�ꢃꢁꢂ  
�ꢃꢁꢀ  
�ꢃꢁꢄ  
�ꢄꢁꢅ  
13  
12  
11  
ꢞꢙꢈꢞꢋꢟꢋꢞꢈꢠꢈꢡꢃꢄꢛꢜꢝ  
ꢗꢉꢈꢠꢈꢃꢄꢁꢢꢒꢓꢔ  
ꢣꢈꢠꢈꢀꢄꢤꢓꢔ  
10  
9
�ꢄꢁ�  
�ꢄꢁꢂ  
�ꢄꢁꢀ  
8
ꢆꢄ ꢃꢄꢄ ꢃꢆꢄ ꢀꢄꢄ ꢀꢆꢄ ꢇꢄꢄ ꢇꢆꢄ ꢂꢄꢄ ꢂꢆꢄ ꢆꢄꢄ  
ꢉꢊꢋꢌꢍꢋꢎꢏꢐꢈꢑꢒꢓꢔꢕ  
50  
100  
150  
200  
250  
FREQUENCY (MHz)  
TPC 14. Input Second Order Intercept, 9 V Single Supply  
TPC 16. Noise Figure vs. Frequency,  
Matched Input  
–6–  
REV. C  
AD831  
THEORY OF OPERATION  
The AD831 consists of a mixer core, a limiting amplifier, a low  
noise output amplifier, and a bias circuit (Figure 1).  
When the integral output amplifier is used, pins IFN and IFP  
are connected directly to pins AFN and AFP; the on-chip load  
resistors convert the output current into a voltage that drives  
the output amplifier.The ratio of these load resistors to resistors  
R1, R2 provides nominal unity gain (0 dB) from RF-to-IF.The  
expression for the gain, in decibels, is  
The mixer’s RF input is converted into differential currents by  
a highly linear, Class A voltage-to-current converter, formed by  
transistors Q1, Q2 and resistors R1, R2.The resulting currents  
drive the differential pairs Q3, Q4 and Q5, Q6.The LO input is  
through a high gain, low noise limiting amplifier that converts the  
–10 dBm LO input into a square wave.This square wave drives  
the differential pairs Q3, Q4 and Q5, Q6 and produces a high  
level output at IFP and IFN—consisting of the sum and differ-  
ence frequencies of the RF and LO inputs—and a series of lower  
level outputs caused by odd harmonics of the LO frequency mix-  
ing with the RF input.  
Ê 4ˆ Ê 1ˆ Ê p ˆ  
GdB = 20 log10  
(1)  
Á
˜ Á ˜ Á ˜  
2 2  
p
Ë
¯ Ë ¯ Ë ¯  
where:  
4
p
is the amplitude of the fundamental component of a  
squarewave.  
1
2
is the conversion loss.  
An on-chip network supplies the bias current to the RF and LO  
inputs when these are ac-coupled; this network is disabled when  
the AD831 is dc-coupled.  
p
2
is the small signal dc gain of the AD831 when the LO input  
is driven fully positive or negative.  
ꢐꢆ  
ꢑꢒ  
ꢓꢒ�  
ꢑꢒ�  
ꢓꢒ�  
ꢊꢚ  
ꢅꢆ  
ꢅꢃ  
�ꢀ  
ꢀꢇꢃ  
ꢀꢇꢆ  
ꢊꢖꢗꢅꢘꢂꢙꢆ  
ꢊꢖꢗꢅꢘꢂꢙꢆ  
ꢔꢀꢅꢕ  
ꢊꢋ  
ꢌꢏꢂ  
ꢊꢊ  
ꢊꢒ  
ꢁꢂ ꢝꢞ  
ꢝꢋ  
�ꢌꢆ  
�ꢌꢃ  
ꢝꢑ  
�ꢌꢎꢅ�  
ꢌꢕꢎꢀ��ꢅꢂꢌꢉ  
ꢀꢃꢆꢏꢂ  
ꢑꢜ�  
ꢑꢜ�  
ꢊꢍ ꢐꢇꢔ  
ꢑꢒ�  
ꢑꢒ�  
�ꢀꢁꢀꢂꢀꢃꢄ  
ꢅꢁꢆ�ꢀꢇꢀꢈꢉ  
ꢉꢞ  
ꢉꢑ  
ꢊꢖ ꢎꢌꢁ  
ꢊꢜ�  
ꢊꢜ�  
ꢝꢓ  
ꢝꢊ  
ꢉꢇꢆ  
ꢉꢇꢃ  
ꢉꢇ  
ꢀꢃꢆꢏꢂ  
ꢎꢏꢉꢉꢈꢃꢂ  
ꢁꢀꢉꢉꢌꢉ  
ꢔꢀꢅꢕ  
ꢉꢊ  
ꢉꢓ  
ꢓꢒ�  
ꢓꢒ�  
ꢐꢆ  
ꢛꢋ�  
ꢔꢀꢅꢕ  
ꢎꢏꢉꢉꢈꢃꢂ  
ꢝꢍ  
ꢔꢀꢅꢕ  
ꢉꢛ  
ꢓꢋ�  
ꢐꢃ  
ꢛꢋꢗꢅꢘꢂꢙꢆ  
ꢓꢍꢗꢅꢘꢂꢙꢆ  
ꢊꢓꢗꢅꢘꢂꢙꢆ  
Figure 1. Simplified Schematic Diagram  
REV. C  
–7–  
AD831  
Low-Pass Filtering  
The mixer has two open-collector outputs (differential currents) at  
pins IFN and IFP.These currents may be used to provide nominal  
unity RF to IF gain by connecting a center-tapped transformer  
(1:1 turns ratio) to pins IFN and IFP as shown in Figure 2.  
A simple low-pass filter may be added between the mixer and  
the output amplifier by shunting the internal resistive loads  
(an equivalent resistance of about 14 with a tolerance of 20%)  
with external capacitors; these attenuate the sum component in  
a downconversion application (Figure 4). The corner frequency  
of this one-pole low-pass filter (f = (2 RCF)–1) should be placed  
about an octave above the difference frequency IF. Thus, for a  
70 MHz IF, a –3 dB frequency of 140 MHz might be chosen,  
using CF = (2 14 140 MHz)–1 82 pF, the nearest  
standard value.  
ꢀꢇꢎꢘꢛꢂꢆꢛꢂ  
ꢁꢝ�ꢂꢕꢞꢋꢟ  
ꢊꢆ  
ꢊꢆꢘꢚ  
�ꢀ  
ꢀꢇꢃ  
ꢀꢇꢆ  
ꢋꢌꢍꢅꢎꢂꢏꢆ  
ꢋꢌꢍꢅꢎꢂꢏꢆ  
ꢛ ꢚꢚꢚꢚꢚꢚꢚꢚꢚꢚꢛ  
ꢀꢚ  
ꢔꢚꢚꢜꢚꢇ  
ꢐꢒꢝꢏꢚꢜ  
ꢐꢑ  
ꢐꢑ�  
ꢋꢋ  
ꢋꢜ  
ꢁꢂ ꢒꢕ  
ꢒꢔ  
�ꢘꢆ  
�ꢘꢃ  
ꢒꢐ  
�ꢘꢝꢅ�  
ꢘꢚꢝꢀ��ꢅꢂꢘꢉ  
ꢀꢃꢆꢛꢂ  
�ꢀꢁꢀꢂꢀꢃꢄ  
ꢅꢁꢆ�ꢀꢇꢀꢈꢉ  
ꢉꢕ  
ꢋꢑ�  
ꢉꢐ  
ꢋꢑ�  
ꢔꢍ  
ꢓꢒ  
ꢄꢃ  
ꢒꢓ  
ꢒꢋ  
ꢄꢁ  
ꢌꢍ  
�ꢀꢁ  
ꢂꢃ  
�ꢀꢃ  
ꢌꢍ�  
ꢉꢇꢆ  
ꢉꢇꢃ  
ꢉꢇ  
ꢀꢃꢆꢛꢂ  
ꢖꢉꢗ  
ꢓꢐ  
ꢓꢏ  
ꢓꢎ  
ꢓꢌ  
ꢓꢑ  
ꢅꢁꢆ  
ꢉꢋ  
ꢓꢜ�  
ꢉꢓ  
ꢓꢜ�  
ꢂꢀꢊ  
ꢉꢘꢙ  
ꢂꢁ  
ꢊꢆ  
ꢙꢀꢅꢚ  
ꢝꢛꢉꢉꢈꢃꢂ  
ꢒꢗ  
ꢉꢖ  
ꢇꢀꢃ  
ꢙꢀꢅꢚ  
ꢓꢔ�  
ꢊꢃ  
ꢖꢔꢍꢅꢎꢂꢏꢆ  
ꢂꢁ  
ꢇꢀꢁ  
ꢂꢁ  
ꢄꢆꢐꢕꢓ  
ꢙꢞꢟꢚꢂꢠꢡꢢ  
Figure 2. Connections forTransformer Coupling to  
the IF Output  
ꢊ�ꢄꢋ  
ꢈꢉꢁ  
ꢓꢍ  
ꢈꢉꢃ  
ꢓꢓ  
ꢅꢁꢆ  
ꢓꢕ  
ꢂꢃ  
ꢂꢃ  
ꢓꢔ  
Programming the Bias Current  
Because the AD831’s RF port is a Class-A circuit, the maximum  
RF input is proportional to the bias current.This bias current  
may be reduced by connecting a resistor from the BIAS pin to the  
positive supply (Figure 3). For normal operation, the BIAS pin is  
left unconnected. For lowest power consumption, the BIAS pin is  
connected directly to the positive supply.The range of adjustment  
is 100 mA for normal operation to 45 mA total current at minimum  
power consumption.  
Figure 4. Low-Pass Filtering Using External Capacitors  
Using the Output Amplifier  
The AD831’s output amplifier converts the mixer core’s differential  
current output into a single-ended voltage and provides an output  
as high as ±1 V peak into a 50 V load (+10 dBm). For unity gain  
operation (Figure 5), the inputs AN and AP connect to the open-  
collector outputs of the mixer’s core and OUT connects to VFB.  
ꢟꢃ  
�ꢞ  
ꢍꢉ  
ꢚꢃ  
ꢐꢄꢉ  
ꢅꢆ  
ꢐꢄꢆ  
ꢚꢃ  
ꢍꢆ  
ꢠꢇꢡ  
ꢖꢕ  
ꢔꢓ  
ꢇꢄ  
ꢇꢅ  
ꢒꢕ  
�ꢀꢅ  
ꢆꢄ  
�ꢀꢄ  
�ꢔ  
�ꢜ  
�ꢛ  
�ꢚ  
�ꢝ  
ꢑꢉꢎ  
ꢒꢕ�  
ꢘꢁꢙ  
ꢔꢐ  
ꢔꢏ  
ꢔꢎ  
ꢔꢒ  
ꢔꢑ  
ꢈꢅꢉ  
ꢅꢄꢓ  
ꢇꢢꢊ  
ꢅꢉ  
ꢆꢀꢌ  
ꢁꢂꢃ  
ꢏꢄꢆ  
ꢆꢅ  
ꢊꢀꢄ  
�ꢀ  
ꢅꢆꢇꢈ  
ꢃꢀ�ꢄ  
ꢅꢉ  
ꢁꢂꢃꢄꢂꢃ  
ꢏꢄꢉ  
ꢅꢉ  
ꢍꢎꢔꢁ�  
ꢊꢕꢖꢌꢅꢗꢘꢙ  
�ꢀꢁꢁꢂ  
ꢆꢅ  
ꢊꢀꢅ  
ꢆꢅ  
ꢓꢐꢍꢈ  
ꢇꢉꢐꢗꢔ  
ꢃꢚꢛꢜꢆꢝꢞꢟ  
ꢒꢇꢉ  
�ꢃ  
ꢒꢇꢆ  
��  
ꢑꢉꢎ  
�ꢁ  
ꢅꢆ  
ꢅꢆ  
�ꢟ  
ꢌ�ꢇꢍ  
ꢉꢇꢊꢋꢌꢍꢎꢎꢋꢎ  
ꢏꢋꢈꢐꢈꢊꢇꢏ  
ꢋꢁꢅ  
ꢔꢕ  
ꢋꢁꢄ  
ꢔꢔ  
ꢈꢅꢉ  
ꢔꢗ  
ꢆꢄ  
ꢆꢄ  
ꢔꢖ  
Figure 3. Programming the Quiescent Current  
Figure 5. Output Amplifier Connected for Unity  
Gain Operation  
–8–  
REV. C  
AD831  
For gains other than unity, the amplifier’s output at OUT is  
connected via an attenuator network to VFB; this determines  
the overall gain. Using resistors R1 and R2 (Figure 6), the gain  
setting expression is  
ꢀꢖ  
ꢁꢕ  
ꢊꢇ  
ꢊꢈ  
ꢔꢖ  
ꢂꢃꢈ  
ꢉꢇ  
ꢂꢃꢇ  
ꢔꢖ�  
ꢘꢄꢙ  
ꢁꢒ  
ꢁꢑ  
ꢁꢐ  
ꢁꢔ  
ꢁꢓ  
ꢋꢈꢌ  
�ꢀ  
ꢔꢁꢚꢁ�  
ꢉꢃꢎ  
ꢄꢅꢆ  
Ê R1+ R2ˆ  
ꢉꢈ  
GdB = 20 log10  
(2)  
Á
Ë
˜
¯
�ꢁ  
ꢁꢁꢖ�  
R2  
�ꢃꢇ  
ꢂꢃ  
ꢎꢇꢃ  
ꢄꢅꢆꢇꢅꢆ  
ꢀꢑ  
ꢁꢖ  
ꢊꢇ  
ꢉꢈ  
�ꢃꢈ  
ꢉꢈ  
ꢊꢌꢒꢗꢁ  
ꢊꢈ  
ꢐꢑ  
ꢂꢃꢈ  
ꢉꢇ  
ꢂꢃꢇ  
ꢐꢑ�  
ꢆꢚꢚꢚꢉꢚꢚꢚ  
ꢘꢄꢙ  
ꢎꢂꢊꢏ  
ꢁꢔ  
ꢁꢓ  
ꢁꢒ  
ꢁꢐ  
ꢁꢕ  
ꢋꢈꢌ  
ꢍꢄꢈ  
ꢁꢖ  
ꢍꢄꢇ  
ꢁꢁ  
�ꢀ  
�ꢁ  
ꢋꢈꢌ  
ꢁꢗ  
ꢉꢇ  
ꢉꢇ  
ꢁꢀ  
ꢉꢃꢎ  
ꢄꢅꢆ  
ꢉꢈ  
�ꢃꢇ  
ꢂꢃ  
ꢄꢅꢆꢇꢅꢆ  
Figure 7. Connections for Driving a DoublyTerminated  
Band-Pass Filter  
ꢉꢈ  
�ꢃꢈ  
ꢉꢈ  
ꢊꢌꢔꢗꢁ  
ꢆꢚꢛꢜꢉꢝꢞꢟ  
Higher gains can be achieved, using different resistor ratios, but  
with concomitant reduction in the bandwidth of this amplifier  
(Figure 8). Note also that the Johnson noise of these gain setting  
resistors, as well as that of the BPF terminating resistors, is ulti-  
mately reflected back to the mixer’s input; thus they should be as  
small as possible, consistent with the permissible loading on the  
amplifier’s output.  
ꢎꢂꢊꢏ  
ꢍꢄꢈ  
ꢁꢑ  
ꢍꢄꢇ  
ꢁꢁ  
ꢋꢈꢌ  
ꢁꢗ  
ꢉꢇ  
ꢉꢇ  
ꢁꢀ  
Figure 6. Output Amplifier Feedback Connections  
for Increasing Gain  
Driving Filters  
12  
The output amplifier can be used for driving reverse-terminated  
loads. When driving an IF band-pass filter (BPF), for example,  
proper attention must be paid to providing the optimal source  
and load terminations so as to achieve the specified filter response.  
The AD831’s wideband highly linear output amplifier affords an  
opportunity to increase the RF to IF gain to compensate for a  
filter’s insertion and termination losses.  
G =  
1
10  
8
G =  
G =  
2
4
6
Figure 7 indicates how the output amplifier’s low impedance  
(voltage source) output can drive a doubly terminated band-pass  
filter.The typical 10 dB of loss (4 dB of insertion loss and 6 dB  
due to the reverse-termination) be made up by the inclusion of a  
feedback network that increases the gain of the amplifier by  
10 dB (3.162).When constructing a feedback circuit, the signal  
path between OUT andVFB should be as short as possible.  
4
2
0
10  
100  
1000  
FREQUENCY (MHz)  
Figure 8. Output Amplifier 1 dB Compression  
Point for Gains of 1, 2, and 4 (Gains of 0 dB, 6 dB,  
and 12 dB, Respectively)  
REV. C  
–9–  
AD831  
APPLICATIONS  
The RF input to the AD831 is shown connected by an impedance  
matching network for an assumed source impedance of 50 .  
TPC 15 shows the input impedance of the AD831 plotted vs.  
frequency. The input circuit can be modeled as a resistance in  
parallel with a capacitance. The 82 pF capacitors (CF) connected  
from IFN and IFP to VP provide a low-pass filter with a cutoff  
frequency of approximately 140 MHz in down-conversion appli-  
cations (see the Theory of Operation section for more details).  
The LO input is connected single-ended because the limiting  
amplifier provides a symmetric drive to the mixer. To minimize  
intermodulation distortion, connect pins OUT and VFB by the  
shortest possible path. The connections shown are for unity-gain  
operation.  
Careful component selection, circuit layout, power supply  
dc coupling, and shielding are needed to minimize the AD831’s  
susceptibility to interference from radio and TV stations, etc. In  
bench evaluation, we recommend placing all of the components  
in a shielded box and using feedthrough decoupling networks for  
the supply voltage.  
Circuit layout and construction are also critical, since stray capaci-  
tances and lead inductances can form resonant circuits and are a  
potential source of circuit peaking, oscillation, or both.  
Dual-Supply Operation  
Figure 9 shows the connections for dual-supply operation. Supplies  
may be as low as ±4.5V but should be no higher than ±5.5V, due  
to power dissipation.  
At LO frequencies less than 100 MHz, the AD831’s LO power  
may be as low as –20 dBm for satisfactory operation. Above  
100 MHz, the specified LO power of –10 dBm must be used.  
ꢇꢈꢉ  
ꢄꢅꢆꢀ  
ꢁꢂꢃꢀ  
ꢁꢂꢃꢀ  
ꢃꢂ  
ꢁꢀ  
ꢍꢌ  
ꢅꢆ  
�ꢂ  
ꢊꢀꢋ  
ꢉꢌ  
ꢊꢀꢌ  
�ꢂ�  
ꢊꢋꢌ  
ꢁꢒ  
ꢁꢑ  
ꢁꢐ  
ꢁ�  
ꢁꢏ  
ꢎꢋꢏ  
�ꢁꢚꢁ�  
ꢁꢁꢂ�  
�ꢀꢁꢂ  
ꢇꢈꢉ  
ꢋꢍꢎ  
ꢉꢋ  
ꢇꢁ  
ꢇꢈ  
ꢆꢄꢅ  
ꢐꢀꢌ  
ꢊꢂ  
ꢋꢌꢍꢎꢏ  
�ꢀ  
ꢆꢄꢀ  
ꢁꢂꢃꢄꢂꢃ  
ꢉꢁ  
ꢉꢊꢋ  
ꢌꢍꢎꢀ  
ꢉꢋ  
ꢐꢀꢋ  
ꢉꢋ  
ꢅꢛꢒꢄꢁ  
�ꢀꢁꢂ  
ꢎꢜꢝꢔꢇꢞꢟꢠ  
ꢓꢊꢍꢔ  
ꢇꢈ  
ꢑꢒꢋ  
ꢑꢒꢌ  
ꢆꢄꢅ  
ꢎꢋꢏ  
ꢉꢌ  
ꢉꢌ  
ꢁꢂ  
ꢁꢁ  
ꢁꢃ  
ꢁꢄ  
ꢌꢍꢎꢀ  
�ꢁꢚꢁ�  
ꢃꢄꢅ  
�ꢀꢁꢂ  
ꢏꢊꢋ  
ꢓꢋꢔꢕꢆꢖꢍꢎ  
ꢗꢁꢂꢔꢘꢉꢙ  
Figure 9. Connections for ±5 V Dual-Supply Operation Showing Impedance  
Matching Network and Gain of 2 for Driving Reverse-Terminated IF Filter  
–10–  
REV. C  
AD831  
Single-Supply Operation  
In single-supply operation, the COM terminal is the “ground”  
reference for the output amplifier and must be biased to half the  
supply voltage, which is done by resistors R1 and R2.The OUT  
pin must be ac-coupled to the load.  
Figure 10 is similar to the dual-supply circuit in Figure 9. Supplies  
may be as low as 9V but should not be higher than 11 V, due to  
power dissipation. As in Figure 9, both the RF and LO ports are  
driven single-ended and terminated.  
�ꢀꢁ  
ꢂꢃꢄꢅ  
ꢏꢇꢐꢅ ꢏꢇꢐꢅ  
�ꢀꢁ  
ꢈꢇ  
ꢆꢅ  
�ꢀ  
ꢁꢂꢃꢂ  
�ꢀ  
�ꢀ�  
ꢊꢋ  
�ꢇ  
ꢄꢅ  
ꢆꢇ ꢄꢅꢇ  
ꢈꢇ  
ꢏꢐꢑ  
�ꢇ�  
ꢆꢃ  
ꢆꢂ  
ꢆꢁ  
ꢆ�  
ꢆꢄ  
ꢂꢃꢄꢅ  
ꢉꢊꢋ  
�ꢀ  
ꢀꢀꢁ  
ꢌꢍꢎ  
ꢐꢒꢓ  
ꢆꢊ  
ꢆꢇ  
ꢆꢄ  
�ꢅꢇ  
ꢉꢅ  
ꢊꢋꢌꢍꢎ  
ꢉꢅ  
ꢊꢋꢌꢍꢎ  
ꢂꢃꢄꢅ  
ꢈꢄ  
ꢆꢊ  
�ꢅꢊ  
ꢆꢊ  
ꢊꢔꢃꢉꢆ  
ꢓꢕꢖꢗꢌꢘꢙꢚ  
ꢐꢄꢈꢑ  
ꢂꢃ  
ꢎꢏꢊ  
ꢎꢏꢇ  
ꢉꢊꢋ  
ꢆꢇ  
ꢆꢇ  
ꢆꢇ  
ꢆꢆ  
ꢆꢈ  
ꢆꢉ  
ꢂꢃꢄꢅ  
ꢂꢃꢄꢅ  
ꢂꢃꢄꢅ  
�ꢀꢁ  
ꢂꢃꢄꢅ  
ꢇꢀꢈꢀ  
ꢄꢅꢆ  
ꢈꢑꢒꢊꢋꢌꢍꢎ  
ꢓꢄꢂꢒꢔꢕꢖ  
Figure 10. Connections for +9 V Single-Supply Operation  
REV. C  
11–  
AD831  
Connections Quadrature Demodulation  
The mixers’ inputs may be connected in parallel and a single  
termination resistor used if the mixers are located in close prox-  
imity on the PC board.  
Two AD831 mixers may have their RF inputs connected in parallel  
and have their LO inputs driven in phase quadrature (Figure 11)  
to provide demodulated in-phase (I) and quadrature (Q) outputs.  
ꢃꢄꢅ  
�ꢀꢁꢂ  
ꢔꢓ  
ꢒꢑ  
ꢄꢃ  
ꢄꢁ  
ꢅꢁ  
�ꢀꢁ  
ꢂꢃ  
�ꢀꢃ  
ꢅꢁꢁ  
ꢖꢉꢗ  
ꢒꢎ  
ꢒꢍ  
ꢒꢌ  
ꢒꢐ  
ꢒꢏ  
ꢅꢁꢆ  
�ꢀꢁꢂ  
ꢂꢀꢊ  
ꢉꢘꢙ  
ꢂꢁ  
ꢆꢄꢅ  
�ꢀꢁꢂ�ꢃꢄꢅꢆꢀ�  
ꢇꢃꢅ�ꢈꢅꢆꢃꢈꢀ  
ꢂꢃꢆꢉꢃꢆ  
ꢇꢀꢃ  
ꢌꢍꢎ  
ꢏꢐꢑꢒ  
ꢂꢁ  
ꢇꢀꢁ  
ꢂꢁ  
ꢏꢕꢚꢞꢃ  
�ꢀꢁꢂ  
ꢎꢠꢠꢉꢆꢠꢠꢠ  
ꢊ�ꢄꢋ  
ꢊꢋ  
ꢈꢉꢁ  
ꢒꢓ  
ꢈꢉꢃ  
ꢒꢒ  
ꢆꢄꢅ  
ꢅꢁꢆ  
ꢒꢕ  
ꢂꢃ  
ꢂꢃ  
ꢒꢔ  
ꢏꢐꢑꢒ  
ꢍꢑꢐꢑ  
ꢃꢄꢅ  
�ꢀꢁꢂ  
ꢓꢍꢎ  
ꢈꢉꢚ�ꢁꢃꢘꢙ  
ꢄꢙꢚꢑꢓ  
ꢛꢒꢓꢚꢜꢊꢝ  
ꢇꢂ  
ꢇꢈꢉꢊꢋ  
ꢄꢅꢆ  
ꢅꢃꢂꢃ  
ꢁꢂꢃꢀ  
ꢝꢁ  
ꢃꢜ  
ꢏꢋ  
ꢅꢁꢁ  
ꢊꢀꢋ  
ꢆꢌ  
ꢊꢀꢌ  
ꢅꢁꢁ  
ꢏꢌ  
�ꢈꢟ  
ꢃꢚ  
ꢃꢙ  
ꢃꢘ  
ꢃꢅ  
ꢃꢛ  
ꢔꢋꢕ  
ꢓꢡꢒꢀ  
ꢆꢀꢒ  
ꢈꢍꢎ  
ꢆꢋ  
ꢛꢐꢂ  
ꢆꢞꢗꢉꢆꢘꢈꢄꢙꢞꢆ  
�ꢁꢟꢃꢠꢄꢋꢞ  
ꢉꢘꢙꢃꢘꢙ  
ꢖꢀꢌ  
ꢛꢐꢂ  
ꢓꢡꢒꢀ  
ꢆꢋ  
ꢖꢀꢋ  
ꢆꢋ  
ꢏꢕꢚꢞꢃ  
ꢓꢡꢒꢀ  
ꢎꢠꢠꢉꢆꢠꢠꢠ  
ꢒꢊꢏꢗ  
ꢁꢖ  
ꢇꢈꢋ  
ꢃꢁ  
ꢇꢈꢌ  
ꢃꢃ  
ꢛꢐꢂ  
ꢔꢋꢕ  
ꢃꢞ  
ꢆꢌ  
ꢆꢌ  
ꢃꢝ  
ꢓꢡꢒꢀ  
ꢐꢒꢡꢒ  
ꢢꢐꢂ  
ꢓꢡꢒꢀ  
ꢢꢐꢂ  
ꢇꢈꢉꢊꢋꢌꢍꢎ  
ꢏꢎꢉꢁ  
ꢐꢃꢁꢉꢑꢒꢓ  
Figure 11. Connections for Quadrature Demodulation  
–12–  
REV. C  
AD831  
Table I. AD831 MixerTable, 4.5V Supplies, LO = –9 dBm  
LO Level  
RF Level  
–9.0 dBm, LO Frequency 130.7 MHz, Data File imdTB10771  
0.0 dBm, RF Frequency 120 MHz  
Temperature Ambient  
Dut Supply  
VPOS Current  
VNEG Current  
±4.50V  
90 mA  
91 mA  
Intermodulation table RF harmonics (rows) LO harmonics (columns).  
First row absolute value of nRF – mLO, and second row is the sum.  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
–32.7  
–32.7  
–35.7  
–35.7  
–21.1  
–21.1  
–11.6  
–11.6  
–19.2  
–19.2  
–35.1  
–35.1  
–41.9  
–41.9  
–31.6  
–31.6  
0.0  
–28.5  
–37.2  
–26.7  
–41.5  
–28.0  
–30.4  
–27.2  
–34.3  
–33.2  
–25.2  
–34.3  
–40.1  
–44.8  
–45.3  
–45.3  
–48.2  
–42.4  
–39.4  
–49.4  
–57.6  
–42.5  
–44.9  
–51.1  
–42.4  
–46.2  
–40.2  
–58.1  
–40.2  
–61.6  
–54.5  
–54.5  
–57.1  
–65.5  
–57.5  
–46.0  
–50.6  
–63.7  
–62.6  
–60.6  
–55.8  
–69.6  
–59.7  
–72.7  
–55.2  
–73.5  
–67.1  
–67.1  
–63.1  
–53.6  
–69.9  
–72.9  
–69.9  
–71.2  
–69.6  
–70.1  
–74.1  
–72.6  
–69.7  
–73.5  
–58.6  
–72.7  
–53.5  
–53.5  
–62.6  
–68.4  
–73.8  
–70.8  
–72.3  
–72.8  
–70.7  
–73.4  
–71.1  
–73.2  
–74.3  
–73.3  
–73.0  
–72.5  
–73.6  
–73.6  
–57.7  
–73.5  
–68.6  
–72.7  
–73.1  
–73.5  
–73.8  
–73.6  
–73.0  
–73.1  
–72.9  
–72.4  
–74.4  
–73.7  
–73.8  
–73.8  
–73.9  
–73.8  
–63.4  
–73.2  
–72.6  
–73.8  
–74.6  
–72.6  
–74.9  
–73.7  
–73.6  
–73.5  
–74.5  
–72.9  
Table II. AD831 MixerTable, 5V Supplies, LO = –9 dBm  
LO Level  
RF Level  
–9.0 dBm, LO Frequency 130.7 MHz, Data File imdTB13882  
0.0 dBm, RF Frequency 120 MHz  
Temperature Ambient  
Dut Supply  
VPOS Current  
VNEG Current  
±5.00V  
102 mA  
102 mA  
Intermodulation table RF harmonics (rows) LO harmonics (columns).  
First row absolute value of nRF – mLO, and second row is the sum.  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
–36.5  
–36.5  
–46.5  
–46.5  
–33.0  
–33.0  
–17.0  
–17.0  
–23.0  
–23.0  
–34.2  
–34.2  
–45.6  
–45.6  
–37.5  
–37.5  
0.0  
–29.1  
–41.2  
–38.7  
–41.1  
–22.9  
–38.5  
–28.4  
–29.0  
–35.3  
–31.7  
–34.3  
–47.4  
–52.4  
–45.9  
–45.9  
–45.2  
–39.4  
–47.6  
–35.7  
–61.5  
–38.4  
–53.7  
–42.3  
–43.5  
–53.7  
–41.5  
–52.8  
–41.8  
–66.3  
–46.4  
–46.4  
–53.0  
–40.0  
–67.0  
–50.0  
–43.0  
–48.9  
–60.9  
–57.8  
–47.9  
–57.0  
–50.7  
–71.8  
–41.0  
–67.4  
–45.1  
–45.1  
–56.0  
–39.0  
–48.7  
–48.1  
–64.6  
–58.4  
–53.5  
–56.1  
–55.7  
–63.8  
–53.5  
–70.5  
–51.1  
–67.6  
–35.2  
–35.2  
–45.3  
–53.0  
–54.1  
–62.4  
–54.1  
–67.3  
–53.7  
–67.0  
–57.9  
–69.4  
–66.6  
–73.2  
–64.3  
–72.9  
–63.4  
–63.4  
–41.1  
–66.3  
–53.6  
–67.2  
–66.5  
–67.5  
–58.8  
–72.9  
–63.3  
–71.2  
–61.7  
–71.7  
–71.4  
–73.2  
–67.3  
–67.3  
–65.8  
–61.6  
–37.8  
–66.3  
–54.6  
–72.9  
–62.5  
–71.4  
–71.7  
–70.7  
–55.2  
–72.1  
–57.1  
–73.1  
REV. C  
–13–  
AD831  
Table III. AD831 MixerTable, 3.5V Supplies, LO = –20 dBm  
LO Level  
RF Level  
–20.0 dBm, LO Frequency 130.7 MHz, Data File G1T1K 0771  
0.0 dBm, RF Frequency 120 MHz  
Temperature Ambient  
Dut Supply  
VPOS Current  
VNEG Current  
±3.50V  
55 mA  
57 mA  
Intermodulation table RF harmonics (rows) LO harmonics (columns).  
First row absolute value of nRF – mLO, and second row is the sum.  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
–45.2  
–45.2  
–35.7  
–35.7  
–16.1  
–16.1  
–21.6  
–21.6  
–22.3  
–22.3  
–32.0  
–32.0  
–36.4  
–36.4  
–30.3  
–30.3  
0.0  
–29.7  
–33.7  
–28.2  
–47.9  
–24.4  
–37.5  
–26.0  
–33.8  
–47.4  
–32.0  
–35.9  
–45.2  
–49.7  
–50.3  
–50.3  
–49.4  
–41.0  
–47.4  
–51.4  
–49.9  
–34.7  
–48.8  
–49.8  
–38.5  
–48.6  
–40.7  
–68.5  
–51.  
–67.9  
–48.4  
–48.4  
–55.7  
–52.9  
–58.2  
–50.0  
–45.0  
–64.5  
–57.0  
–62.8  
–68.4  
–73.4  
–55.5  
–74.0  
–47.7  
–71.8  
–66.7  
–66.7  
–59.7  
–65.9  
–67.2  
–78.1  
–62.8  
–74.2  
–58.2  
–77.5  
–71.5  
–74.4  
–72.9  
–77.9  
–63.5  
–77.5  
–66.9  
–66.9  
–71.5  
–76.3  
–73.6  
–78.1  
–77.6  
–78.2  
–70.8  
–78.1  
–70.2  
–78.0  
–75.8  
–77.9  
–78.1  
–77.9  
–78.0  
–78.0  
–69.7  
–78.3  
–76.7  
–78.3  
–78.6  
–78.2  
–78.8  
–78.1  
–75.4  
–78.0  
–78.1  
–77.9  
–79.0  
–77.8  
–78.4  
–78.4  
–78.5  
–78.3  
–76.9  
–78.2  
–78.7  
–78.2  
–79.0  
–77.9  
–79.1  
–77.9  
–78.6  
–77.8  
–78.9  
–77.5  
Table IV. AD831 MixerTable, 5V Supplies, 1 kBias Resistor, LO = –20 dBm  
LO Level  
RF Level  
–20.0 dBm, LO Frequency 130.7 MHz, Data File G1T1K 3881  
0.0 dBm, RF Frequency 120 MHz  
Temperature Ambient  
Dut Supply  
VPOS Current  
VNEG Current  
±3.50V  
59 mA  
61 mA  
Intermodulation table RF harmonics (rows) LO harmonics (columns).  
First row absolute value of nRF – mLO, and second row is the sum.  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
–60.6  
–60.6  
–52.3  
–52.3  
–16.6  
–16.6  
–12.8  
–12.8  
–26.0  
–26.0  
–45.0  
–45.0  
–38.8  
–38.8  
–34.1  
–34.1  
0.0  
–27.3  
–35.2  
–28.7  
–41.8  
–20.7  
–29.8  
–32.9  
–29.1  
–39.2  
–35.3  
–38.2  
–49.0  
–47.8  
–46.6  
–46.6  
–48.8  
–37.8  
–40.1  
–47.6  
–52.2  
–41.7  
–57.9  
–54.2  
–38.6  
–50.4  
–45.8  
–64.1  
–47.7  
–64.9  
–41.3  
–41.3  
–58.8  
–47.9  
–59.5  
–65.2  
–41.8  
–62.5  
–61.2  
–64.2  
–58.1  
–73.8  
–57.5  
–72.3  
–54.0  
–72.6  
–53.9  
–53.9  
–52.5  
–61.4  
–73.7  
–70.6  
–68.1  
–76.9  
–60.3  
–76.8  
–71.0  
–78.6  
–63.4  
–78.3  
–62.3  
–78.1  
–66.9  
–66.9  
–65.8  
–69.7  
–76.6  
–72.9  
–75.2  
–77.4  
–65.4  
–77.7  
–70.0  
–78.5  
–73.6  
–78.4  
–68.7  
–78.2  
–77.4  
–77.4  
–73.3  
–78.6  
–73.8  
–78.7  
–78.8  
–78.6  
–79.2  
–78.6  
–73.6  
–78.4  
–74.9  
–78.2  
–79.3  
–78.2  
–78.9  
–78.9  
–79.0  
–78.8  
–77.9  
–78.7  
–78.0  
–78.6  
–79.3  
–78.3  
–79.5  
–78.3  
–79.3  
–78.1  
–79.3  
–78.0  
–14–  
REV. C  
AD831  
ꢜꢗꢘꢝꢝꢖꢊꢓ  
ꢗꢑꢌꢙꢑꢓꢃꢃꢓꢍꢅꢐ  
ꢗꢌꢞꢐꢑꢘꢈꢚꢗꢗꢅꢟ  
ꢜꢗꢘꢝꢝꢖꢊꢓ  
ꢗꢑꢌꢙꢑꢓꢃꢃꢓꢍꢅꢐ  
ꢗꢌꢞꢐꢑꢘꢈꢚꢗꢗꢅꢟ  
ꢜꢗꢘꢕꢝꢀꢝꢍ  
ꢈꢟꢏꢠꢜꢐꢈꢎꢆꢐꢔ  
ꢈꢎꢙꢏꢓꢅꢘꢙꢐꢏꢐꢑꢓꢠꢌꢑ  
�ꢀꢁ  
ꢂꢀꢁ  
ꢀꢒ  
ꢜꢗꢘꢕꢀꢝꢋꢐ  
ꢈꢗꢐꢄꢠꢑꢚꢃ  
ꢓꢏꢓꢅꢟꢆꢐꢑ  
ꢓꢔꢕꢖꢋ  
ꢗꢐꢑꢘꢇꢎꢙꢚꢑꢐꢘꢛ  
ꢃꢄꢅ  
ꢆꢇꢈꢄꢉꢊꢉꢋ  
ꢄꢌꢃꢍꢎꢏꢐꢑ  
ꢅꢌ  
ꢜꢗꢘꢕꢝꢀꢝꢓ  
ꢈꢟꢏꢠꢜꢐꢈꢎꢆꢐꢔ  
ꢈꢎꢙꢏꢓꢅꢘꢙꢐꢏꢐꢑꢓꢠꢌꢑ  
ꢇꢅꢚꢡꢐꢘꢝꢒꢕꢊꢓ  
ꢈꢟꢏꢠꢜꢐꢈꢎꢆꢐꢔ  
ꢈꢎꢙꢏꢓꢅꢘꢙꢐꢏꢐꢑꢓꢠꢌꢑ  
ꢜꢗꢘꢛꢛꢊꢒ  
ꢎꢐꢐꢐꢘꢄꢌꢏꢠꢑꢌꢅꢅꢐꢑ  
ꢜꢗꢘꢛꢋꢊꢋ  
ꢔꢎꢈꢡꢘꢔꢑꢎꢁꢐ  
ꢎꢐꢐꢐꢉꢢꢕꢕꢘꢍꢚꢈ  
Figure 12. Third Order Intercept Characterization Setup  
ꢓꢊꢍꢔꢔꢈꢜꢅ  
ꢊꢌꢄꢐꢌꢅꢝꢝꢅꢕꢃꢋ  
ꢊꢄꢞꢋꢌꢍꢖꢑꢊꢊꢃꢗ  
ꢓꢊꢍꢔꢔꢈꢜꢅ  
ꢊꢌꢄꢐꢌꢅꢝꢝꢅꢕꢃꢋ  
ꢊꢄꢞꢋꢌꢍꢖꢑꢊꢊꢃꢗ  
�ꢀꢁ  
ꢂꢀꢁ  
ꢝꢡꢃ  
ꢚꢎꢖꢡꢟꢜꢟꢉ  
ꢓꢊꢍꢇꢔꢀꢔꢕ  
ꢀꢛ  
ꢌꢎ  
ꢏꢎ  
ꢓꢊꢍꢇꢔꢀꢔꢕ  
ꢅꢆꢇꢈꢉ  
ꢊꢋꢌꢍꢎꢏꢐꢑꢌꢋꢍꢒ  
ꢖꢗꢘꢙꢓꢋꢖꢏꢚꢋꢆ  
ꢖꢗꢘꢙꢓꢋꢖꢏꢚꢋꢆ  
ꢖꢏꢐꢘꢅꢃꢍꢐꢋꢘꢋꢌꢅꢙꢄꢌ  
ꢖꢏꢐꢘꢅꢃꢍꢐꢋꢘꢋꢌꢅꢙꢄꢌ  
ꢃꢄ  
ꢀꢛ�  
ꢀꢛ�  
ꢑꢖꢋꢆꢍꢎꢄꢌ  
ꢝꢡꢃ  
ꢚꢎꢖꢡꢟꢜꢟꢉ  
ꢏꢎꢟꢙꢄꢟꢌꢎꢠꢍꢃꢄ  
ꢃꢄꢟꢙꢄꢟꢌꢎ  
ꢝꢄꢁꢋꢍꢖꢊꢋꢡꢙꢌꢑꢝ  
ꢅꢘꢅꢃꢗꢚꢋꢌꢍꢎꢄꢌꢍꢏꢎ  
ꢝꢋꢅꢖꢑꢌꢋꢝꢋꢘꢙꢖ  
ꢀꢛ�  
ꢓꢊꢍꢇꢀꢔꢉꢋ  
ꢖꢊꢋꢡꢙꢌꢑꢝ  
ꢅꢘꢅꢃꢗꢚꢋꢌ  
ꢓꢊꢍꢇꢔꢀꢔꢕ  
ꢖꢗꢘꢙꢓꢋꢖꢏꢚꢋꢆ  
ꢖꢏꢐꢘꢅꢃꢍꢐꢋꢘꢋꢌꢅꢙꢄꢌ  
Figure 13. IF-to-RF Isolation Characterization Setup  
REV. C  
–15–  
AD831  
OUTLINE DIMENSIONS  
20-Lead Plastic Leaded Chip Carrier [PLCC]  
(P-20A)  
Dimensions shown in inches and (millimeters)  
0.180 (4.57)  
0.165 (4.19)  
0.048 (1.21)  
0.042 (1.07)  
0.056 (1.42)  
0.020 (0.50)  
R
0.20 (0.51)  
MIN  
0.042 (1.07)  
3
4
19  
0.021 (0.53)  
0.013 (0.33)  
0.048 (1.21)  
0.042 (1.07)  
18  
14  
0.050  
(1.27)  
BSC  
0.330 (8.38)  
0.290 (7.37)  
BOTTOM  
VIEW  
TOP VIEW  
(PINS DOWN)  
0.032 (0.81)  
0.026 (0.66)  
(PINS UP)  
8
9
13  
0.020  
(0.50)  
R
0.040 (1.01)  
0.025 (0.64)  
0.356 (9.04)  
0.350 (8.89)  
SQ  
0.120 (3.04)  
0.090 (2.29)  
0.395 (10.02)  
0.385 (9.78)  
SQ  
COMPLIANT TO JEDEC STANDARDS MO-047AA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Revision History  
Location  
Page  
6/03–Data Sheet Changed from REV. B to REV. C.  
Updated format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UNIVERSAL  
Changes to Figure 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
–16–  
REV. C  

相关型号:

AD8320

Serial Digital Controlled Variable Gain Line Driver
ADI

AD8320-EB

Serial Digital Controlled Variable Gain Line Driver
ADI

AD8320ARP

Serial Digital Controlled Variable Gain Line Driver
ADI

AD8320ARP-REEL

IC SPECIALTY TELECOM CIRCUIT, PDSO20, SOIC-20, Telecom IC:Other
ADI

AD8320ARPZ

IC SPECIALTY TELECOM CIRCUIT, PDSO20, SOIC-20, Telecom IC:Other
ADI

AD8320ARPZ-REEL

IC SPECIALTY TELECOM CIRCUIT, PDSO20, SOIC-20, Telecom IC:Other
ADI

AD8321

Gain Programmable CATV Line Driver
ADI

AD8321-EVAL

Gain Programmable CATV Line Driver
ADI

AD8321AR

Gain Programmable CATV Line Driver
ADI

AD8321AR-REEL

Gain Programmable CATV Line Driver
ADI

AD8321ARZ

Gain Programmable CATV Line DRiver
ADI

AD8321ARZ-REEL

暂无描述
ADI