AD8337-EVALZ-SS [ADI]

General-Purpose, Low Cost, DC-Coupled VGA;
AD8337-EVALZ-SS
型号: AD8337-EVALZ-SS
厂家: ADI    ADI
描述:

General-Purpose, Low Cost, DC-Coupled VGA

文件: 总28页 (文件大小:954K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
General-Purpose, Low Cost,  
DC-Coupled VGA  
Data Sheet  
AD8337  
FEATURES  
GENERAL DESCRIPTION  
Low noise  
Voltage noise = 2.2 nV/√Hz  
Current noise = 4.8 pA/√Hz (positive input)  
Wide bandwidth (−3 dB) = 280 MHz  
Nominal gain range: 0 dB to 24 dB (preamp gain = 6 dB)  
Gain scaling: 19.7 dB/V  
The AD8337 is a low noise, single-ended, linear-in-dB, general-  
purpose, variable gain amplifier (VGA) usable at frequencies  
from dc to 100 MHz; the −3 dB bandwidth is 280 MHz.  
Excellent bandwidth uniformity across the entire gain range  
and low output referred noise make the AD8337 ideal for  
gain trim applications and for driving high speed analog-to-  
digital converters (ADCs).  
DC-coupled  
Single-ended input and output  
High speed uncommitted op amp input  
Supplies: +5 V, 2.5 V, or 5 V  
Low power: 78 mW with 2.5 V supplies  
Excellent dc characteristics combined with high speed make the  
AD8337 particularly suited for industrial ultrasound, PET  
scanners, and video applications. Dual-supply operation enables  
gain control of negative going pulses, such as those generated  
by photodiodes or photomultiplier tubes.  
APPLICATIONS  
Gain trim  
PET scanners  
The AD8337 uses the Analog Devices, Inc., exclusive X-AMP®  
architecture with 24 dB gain range scaled to 19.7 dB/V,  
referenced to VCOM.  
High performance AGC systems  
I/Q signal processing  
Video  
Industrial and medical ultrasound  
Radar receivers  
The AD8337 preamplifier is configured in a current feedback  
architecture optimized for gains of 6 dB to 24 dB. The AD8337  
is characterized by a noninverting preamplifier gain of 2× using a  
pair of 100 Ω resistors. The attenuator has a range of 24 dB, and  
the output amplifier has a fixed gain of 8× (18.06 dB). The lowest  
nominal gain range is 0 dB to 24 dB and can be shifted up or down  
by adjusting the preamplifier gain. Series connected AD8337  
devices provide larger gain ranges, interstage filtering to suppress  
noise and distortion, and nulling of offset voltages.  
FUNCTIONAL BLOCK DIAGRAM  
GAIN CONTROL  
INTERFACE  
GAIN  
EIGHT SECTIONS  
PREAMP  
INPP  
INPN  
18dB  
VOUT  
PRAO  
VCOM  
Figure 1  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2005–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD8337  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Single-Supply Operation and AC Coupling ........................... 19  
Noise ............................................................................................ 19  
Applications Information.............................................................. 20  
Preamplifier Connections ......................................................... 20  
Driving Capacitive Loads.......................................................... 20  
Gain Control Considerations ................................................... 21  
Thermal Considerations............................................................ 22  
PSI (Ψ) ......................................................................................... 22  
Board Layout............................................................................... 22  
Evaluation Boards........................................................................... 23  
Circuit Options........................................................................... 24  
Output Protection ...................................................................... 24  
Measurement Setup.................................................................... 25  
Board Layout Considerations................................................... 25  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 28  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Test Circuits..................................................................................... 14  
Theory of Operation ...................................................................... 18  
Overview...................................................................................... 18  
Preamplifier................................................................................. 18  
VGA.............................................................................................. 18  
Gain Control ............................................................................... 18  
Output Stage................................................................................ 19  
Attenuator.................................................................................... 19  
REVISION HISTORY  
10/2016—Rev. C to Rev. D  
2/2007—Rev. A to Rev. B  
Changes to General Description Section and Figure 1 ............... 1  
Change to Input Voltage Noise Parameter, Table 1...................... 3  
Changes to Figure 2.......................................................................... 6  
Changes to Typical Performance Characteristics Section........... 7  
Changes to Preamplifier Section .................................................. 18  
Deleted Bill of Materials Section, Table 5, and Table 6;  
Renumbered Sequentially.............................................................. 27  
Deleted Table 7................................................................................ 28  
Updated Outline Dimensions....................................................... 28  
Changes to Ordering Guide .......................................................... 28  
Changes to Figure 30, Figure 31, and Figure 32......................... 11  
Changes to Single-Supply Operation and  
AC Coupling Section ..................................................................... 19  
Moved Noise Section to Page........................................................ 19  
Changes to Ordering Guide.......................................................... 24  
6/2006—Rev. 0 to Rev. A  
Updated Format..................................................................Universal  
Changes to Table 3.............................................................................6  
Changes to Figure 22, Figure 25, and Figure 26......................... 10  
Changes to Figure 39 and Figure 40............................................. 13  
Changes to Figure 74 and Figure 75............................................. 23  
Updated Outline Dimensions....................................................... 25  
Changes to Ordering Guide.......................................................... 25  
9/2008—Rev. B to Rev. C  
Changes to Table 1............................................................................ 3  
Added Exposed Pad Note to Figure 2 and Table 3....................... 6  
Changes to Figure 49...................................................................... 14  
Changes to Evaluation Boards Section........................................ 23  
Changes to Circuit Options Section............................................. 24  
Changes to Output Protection Section........................................ 24  
Changes to Measurement Setup Section ..................................... 25  
Changes to Board Layout Considerations Section..................... 25  
Changes to Bill of Materials Section ............................................ 27  
Updated Outline Dimensions, Changes to Ordering Guide .... 29  
9/2005—Revision 0: Initial Version  
Rev. D | Page 2 of 28  
 
Data Sheet  
AD8337  
SPECIFICATIONS  
VS = ±±2. V, TA = ±.°C, preamplifier gain = +±, VCOM = GND, f = 10 MHz, CL = . pF, RL = .00 Ω, including a ±0 Ω snubbing resistor,  
unless otherwise specified2  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
GENERAL PARAMETERS  
−3 dB Small Signal Bandwidth  
−3 dB Large Signal Bandwidth  
Slew Rate  
VOUT = 10 mV p-p  
VOUT = 1 V p-p  
VOUT = 2 V p-p  
VOUT = 1 V p-p  
f = 10 MHz  
f = 10 MHz  
VGAIN = 0.7 V, RS = 50 Ω, unterminated  
VGAIN = 0.7 V, RS = 50 Ω, shunt terminated with 50 Ω  
VGAIN = 0.7 V (gain = 24 dB)  
VGAIN = −0.7 V (gain = 0 dB)  
DC to 10 MHz  
280  
100  
625  
490  
2.2  
4.8  
8.5  
14  
MHz  
MHz  
V/μs  
V/μs  
nV/√Hz  
pA/√Hz  
dB  
Input Voltage Noise  
Input Current Noise  
Noise Figure  
dB  
Output Referred Noise  
34  
21  
1
nV/√Hz  
nV/√Hz  
Ω
Output Impedance  
Output Signal Range  
V
RL ≥ 500 Ω, VS = 2.5 V, +5 V  
RL ≥ 500 Ω, VS = 5 V  
VGAIN = 0.7 V (gain = 24 dB)  
VCOM 1.3  
VCOM 2.4  
5
V
Output Offset Voltage  
−25  
+25  
mV  
DYNAMIC PERFORMANCE  
Harmonic Distortion  
HD2  
VGAIN = 0 V, VOUT = 1 V p-p  
f = 1 MHz  
−72  
−66  
−62  
−63  
−58  
−56  
8.2  
−9.4  
−71  
−57  
−58  
−45  
34  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
dBm  
dBm  
ns  
HD3  
HD2  
HD3  
HD2  
f = 10 MHz  
f = 45 MHz  
HD3  
Input 1 dB Compression Point  
VGAIN = −0.7 V, f = 10 MHz (preamp limited)  
VGAIN = +0.7 V, f = 10 MHz (VGA limited)  
Two-Tone Intermodulation Distortion (IMD3) VGAIN = 0 V, VOUT = 1 V p-p, f1 = 10 MHz, f2 = 11 MHz  
VGAIN = 0 V, VOUT = 1 V p-p, f1 = 45 MHz, f2 = 46 MHz  
VGAIN = 0 V, VOUT = 2 V p-p, f1 = 10 MHz, f2 = 11 MHz  
VGAIN = 0 V, VOUT = 2 V p-p, f1 = 45 MHz, f2 = 46 MHz  
Output Third-Order Intercept  
VGAIN = 0 V, VOUT = 1 V p-p, f = 10 MHz  
VGAIN = 0 V, VOUT = 1 V p-p, f = 45 MHz  
VGAIN = 0 V, VOUT = 2 V p-p, f = 10 MHz  
VGAIN = 0 V, VOUT = 2 V p-p, f = 45 MHz  
VGAIN = 0.75 V, VIN = 50 mV p-p to 500 mV p-p  
1 MHz < f < 100 MHz, full gain range  
28  
35  
26  
50  
Overload Recovery  
Group Delay Variation  
1
ns  
Rev. D | Page 3 of 28  
 
AD8337  
Data Sheet  
Parameter  
Test Conditions/Comments  
VS = ±± V  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Harmonic Distortion  
HD2  
VGAIN = 0 V, VOUT = 1 V p-p  
f = 1 MHz  
−8±  
−7±  
−90  
−80  
−7±  
−76  
14.±  
−1.7  
−74  
−60  
−64  
−49  
3±  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
dBm  
dBm  
ns  
HD3  
HD2  
HD3  
HD2  
f = 10 MHz  
f = 3± MHz  
HD3  
Input 1 dB Compression Point  
VGAIN = −0.7 V, f = 10 MHz  
VGAIN = +0.7 V, f = 10 MHz  
Two-Tone Intermodulation Distortion (IMD3) VGAIN = 0 V, VOUT = 1 V p-p, f1 = 10 MHz, f2 = 11 MHz  
VGAIN = 0 V, VOUT = 1 V p-p, f1 = 4± MHz, f2 = 46 MHz  
VGAIN = 0 V, VOUT = 2 V p-p, f1 = 10 MHz, f2 = 11 MHz  
VGAIN = 0 V, VOUT = 2 V p-p, f1 = 4± MHz, f2 = 46 MHz  
Output Third-Order Intercept  
VGAIN = 0 V, VOUT = 1 V p-p, f = 10 MHz  
VGAIN = 0 V, VOUT = 1 V p-p, f = 4± MHz  
VGAIN = 0 V, VOUT = 2 V p-p, f = 10 MHz  
VGAIN = 0 V, VOUT = 2 V p-p, f = 4± MHz  
VGAIN = 0.7 V, VIN = 0.1 V p-p to 1 V p-p  
28  
36  
28  
±0  
Overload Recovery  
ACCURACY  
Absolute Gain Error  
−0.7 V < VGAIN < −0.6 V  
−0.6 V < VGAIN < −0.± V  
−0.± V < VGAIN < +0.± V  
0.± V < VGAIN < 0.6 V  
0.6 V < VGAIN < 0.7 V  
0.7 to 3.±  
dB  
−1.2± ±0.3±  
−1.0 ±0.2±  
−1.2± ±0.3±  
−0.7 to −3.±  
+1.2± dB  
+1.0 dB  
+1.2± dB  
dB  
GAIN CONTROL INTERFACE  
Gain Scaling Factor  
Gain Range  
−0.6 V < VGAIN < +0.6 V  
19.7  
24  
12.6±  
dB/V  
dB  
dB  
V
MΩ  
μA  
ns  
Intercept  
VGAIN = 0 V  
No foldover  
Input Voltage (VGAIN) Range  
Input Impedance  
Bias Current  
Response Time  
POWER SUPPLY  
Supply Voltage  
VS = ±2.± V  
−VS  
+VS  
70  
0.3  
200  
−0.7 V < VGAIN < +0.7 V  
24 dB gain change  
VPOS to VNEG (dual- or single-supply operation)  
4.±  
±
10  
V
Quiescent Current  
Power Dissipation  
PSRR  
Each supply (VPOS and VNEG)  
No signal, VPOS to VNEG = ± V  
VGAIN = 0.7 V, f = 1 MHz  
10.±  
1±.±  
78  
−40  
23.±  
mA  
mW  
dB  
VS = ±± V  
Quiescent Current  
Power Dissipation  
PSRR  
Each supply (VPOS and VNEG)  
No signal, VPOS to VNEG = 10 V  
VGAIN = 0.7 V, f = 1 MHz  
13.±  
18.±  
18±  
−40  
2±.±  
mA  
mW  
dB  
Rev. D | Page 4 of 28  
Data Sheet  
AD8337  
ABSOLUTE MAXIMUM RATINGS  
Stresses at or above those listed under Absolute Maximum  
Table 2.  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
Voltage  
Supply Voltage (VPOS, VNEG)  
Input Voltage (INPx)  
GAIN Voltage  
±± V  
VPOS, VNEG  
VPOS, VNEG  
8±± mW  
Power Dissipation  
(Exposed Pad Soldered to PCB)  
Temperature  
ESD CAUTION  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering, ±0 sec)  
−40°C to +85°C  
−±5°C to +150°C  
300°C  
Thermal Data, 4-Layer JEDEC Board  
No Air Flow Exposed Pad Soldered to PCB  
θJA  
θJB  
θJC  
ΨJT  
ΨJB  
75.4°C/W  
47.5°C/W  
17.9°C/W  
2.2°C/W  
4±.2°C/W  
Rev. D | Page 5 of 28  
 
 
 
AD8337  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
VOUT 1  
VCOM 2  
INPP 3  
INPN 4  
8
7
6
5
VPOS  
GAIN  
VNEG  
PRAO  
AD8337  
TOP VIEW  
(Not to Scale)  
NOTES  
1. FOR BEST THERMAL PERFORMANCE,  
EXPOSED PAD MUST BE SOLDERED  
TO PCB.  
Figure 2. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No. Mnemonic Description  
VGA Output.  
1
2
VOUT  
VCOM  
Common Ground When Using Plus and Minus Supply Voltages. For single-supply operation, provide half the  
positive supply voltage at the VPOS pin to VCOM pin.  
3
INPP  
Positive Input to Preamplifier.  
4
INPN  
Negative Input to Preamplifier.  
5
PRAO  
Preamplifier Output.  
±
7
8
VNEG  
GAIN  
VPOS  
Negative Supply (−VPOS for Dual Supply; GND for Single Supply).  
Gain Control Input Centered at VCOM.  
Positive Supply.  
EP  
Exposed Pad  
For best thermal performance, exposed pad must be soldered to PCB.  
Rev. D | Page ± of 28  
 
Data Sheet  
AD8337  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 2.5 V, TA = 25C, RL = 500 Ω, including a 20 Ω snubbing resistor, f = 10 MHz, CL = 2 pF, VIN = 10 mV p-p, preamp gain = 2× (6 dB),  
noninverting configuration, unless otherwise noted.  
60  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5
500 UNITS  
+85°C  
+25°C  
–40°C  
V
V
V
= –0.4V  
GAIN  
GAIN  
GAIN  
= 0V  
= +0.4V  
0
–5  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
V
(mV)  
GAIN  
GAIN ERROR (dB)  
Figure 6. Gain Error Histogram for Three Values of VGAIN  
Figure 3. Gain vs. VGAIN at Three Temperatures  
(See Figure 44)  
50  
40  
30  
20  
10  
0
2.0  
1.5  
500 UNITS  
+85°C  
–0.4V V  
+0.4V  
GAIN  
+25°C  
–40°C  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
19.3 19.4 19.5 19.6 19.7 19.8 19.9 20.0 20.1  
GAIN SCALING (dB/V)  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
V
(mV)  
GAIN  
Figure 7. Gain Scaling Histogram  
Figure 4. Gain Error vs. VGAIN at Three Temperatures  
(See Figure 44)  
50  
40  
30  
20  
10  
0
2.0  
1.5  
f = 1MHz  
f = 10MHz  
f = 70MHz  
f = 100MHz  
f = 150MHz  
500 UNITS  
RELATIVE TO BEST FIT  
LINE FOR 10MHz  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–800  
12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 13.0  
INTERCEPT (dB)  
–600  
–400  
–200  
0
200  
400  
600  
800  
V
(mV)  
GAIN  
Figure 5. Gain Error vs. VGAIN at Five Frequencies  
(See Figure 44)  
Figure 8. Intercept Histogram  
Rev. D | Page 7 of 28  
 
 
AD8337  
Data Sheet  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
V
= 0V  
GAIN  
e
= 10mV p-p  
IN  
V
= +0.7  
GAIN  
V
V
= +0.5  
= +0.2  
GAIN  
GAIN  
V
= 0  
GAIN  
V
V
= –0.2  
GAIN  
GAIN  
= –0.5  
= –0.7  
C
= 47pF  
L
C
C
C
= 22pF  
= 10pF  
= 0pF  
L
L
L
0
0
V
GAIN  
–5  
100k  
–5  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
1M  
10M  
100M  
500M  
FREQUENCY (Hz)  
Figure 9. Frequency Response for Various Values of VGAIN  
(See Figure 45)  
Figure 12. Frequency Response for Three Values of CL  
with a 20 Ω Snubbing Resistor (See Figure 45)  
20  
15  
10  
5
10  
8
V
= +0.7  
V
V
= ±2.5V  
= ±5V  
GAIN  
S
S
V
V
= +0.5  
= +0.2  
GAIN  
GAIN  
V
= 0  
GAIN  
6
V
= –0.2  
GAIN  
0
4
V
= –0.5  
= –0.7  
GAIN  
–5  
–10  
–15  
V
GAIN  
2
e
= 10mV p-p  
1M  
IN  
0
100k  
100k  
10M  
FREQUENCY (Hz)  
100M  
500M  
1M  
10M  
100M  
500M  
FREQUENCY (Hz)  
Figure 10. Frequency Response for Various Values of VGAIN—Inverting Input  
(See Figure 58)  
Figure 13. Frequency Response—Preamp  
(See Figure 46)  
30  
25  
20  
15  
10  
5
V
= 0V  
GAIN  
= 10mV p-p  
e
IN  
25  
20  
15  
10  
5
0
C
C
C
C
= 47pF  
= 22pF  
= 10pF  
= 0pF  
L
L
L
L
0
–5  
–5  
100k  
–10  
1M  
1M  
10M  
100M  
500M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 11. Frequency Response for Three Values of CL  
(See Figure 45)  
Figure 14. Group Delay vs. Frequency  
(See Figure 47)  
Rev. D | Page 8 of 28  
Data Sheet  
AD8337  
10  
8
40  
35  
30  
25  
20  
15  
+85°C  
+25°C  
–40°C  
V
= ±5V  
S
6
4
2
0
–2  
–4  
–6  
V
= ±2.5V  
S
+85°C  
–8  
+25°C  
–40°C  
–10  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
V
(mV)  
V
(mV)  
GAIN  
GAIN  
Figure 15. Offset Voltage vs. VGAIN at Three Temperatures  
(See Figure 48)  
Figure 18. Output Referred Noise vs. VGAIN at Three Temperatures  
(See Figure 50)  
80  
25  
500 UNITS  
+85°C  
+25°C  
–40°C  
V
V
V
= –0.4V  
GAIN  
GAIN  
GAIN  
70  
60  
= 0V  
20  
15  
10  
5
= +0.4V  
50  
40  
30  
20  
10  
0
0
–800  
–15  
–10  
–5  
0
5
10  
15  
20  
25  
–600  
–400  
–200  
0
200  
400  
600  
800  
OUTPUT OFFSET VOLTAGE (mV)  
V
(mV)  
GAIN  
Figure 16. Output Offset Voltage Histogram for Three Values of VGAIN  
Figure 19. Short-Circuit, Input Referred Noise at Three Temperatures  
(See Figure 50)  
1k  
7
V
R
= 0.7V  
FB2  
GAIN  
= R  
V
V
= ±2.5V  
= ±5V  
S
S
= 100  
FB1  
6
5
4
3
2
1
0
100  
10  
1
PREAMP GAIN = –1  
PREAMP GAIN = +2  
0.1  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
Figure 17. VGA Output Impedance vs. Frequency  
(See Figure 49)  
Figure 20. Short-Circuit, Input Referred Noise vs. Frequency at Maximum  
Gain—Inverting and Noninverting Preamp Gain = −1 and +2  
(See Figure 50)  
Rev. D | Page 9 of 28  
 
AD8337  
Data Sheet  
–40  
–50  
–60  
–70  
–80  
10  
f = 10MHz,  
= 0.7V  
HD3  
HD2  
V
GAIN  
INPUT-REFERRED NOISE  
1
R
THERMAL NOISE ALONE  
S
0.1  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
1
10  
100  
1k  
SOURCE RESISTANCE ()  
LOAD CAPACITANCE (pF)  
Figure 21. Input Referred Noise vs. RS  
(See Figure 61)  
Figure 24. Harmonic Distortion vs. Load Capacitance  
(See Figure 52)  
35  
30  
25  
20  
15  
10  
5
–30  
–40  
–50  
–60  
–70  
–80  
50SOURCE  
WITH 50SHUNT  
TERMINATION AT INPUT  
UNTERMINATED  
1MHz  
10MHz  
35MHz  
100MHz  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
V
(mV)  
V
(mV)  
GAIN  
GAIN  
Figure 25. HD2 vs. VGAIN at Four Frequencies  
(See Figure 52)  
Figure 22. Noise Figure vs. VGAIN  
(See Figure 51)  
–30  
–40  
–50  
–60  
–70  
–80  
–40  
1MHz  
10MHz  
35MHz  
HD3 V = ±2.5V  
V
V
= 1V p-p  
S
OUT  
HD3 V = ±5V  
S
= 0V  
GAIN  
HD2 V = ±2.5V  
S
100MHz  
HD2 V = ±5V  
S
–50  
–60  
–70  
–80  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
0
200 400 600 800 1.0k 1.2k 1.4k 1.6k 1.8k 2.0k  
V
(mV)  
GAIN  
LOAD RESISTANCE ()  
Figure 26. HD3 vs. VGAIN at Four Frequencies  
(See Figure 52)  
Figure 23. Harmonic Distortion vs. RL and Supply Voltage  
(See Figure 52)  
Rev. D | Page 10 of 28  
Data Sheet  
AD8337  
–30  
50  
40  
30  
20  
10  
0
V
V
V
= 2V p-p  
= 1V p-p  
= 0.5V p-p  
OUT  
OUT  
OUT  
–40  
–50  
–60  
–70  
–80  
–90  
LIMITED BY  
MAXIMUM PREAMP  
OUTPUT SWING  
1MHz  
10MHz  
45MHz  
70MHz  
100MHz  
V
= 1V p-p  
OUT  
TONES SEPARATED BY 100kHz  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
V
(mV)  
V
(mV)  
GAIN  
GAIN  
Figure 27. HD2 vs. VGAIN for Three Levels of Output Voltage  
(See Figure 52)  
Figure 30. Output Referred IP3 (OIP3) vs. VGAIN  
at Five Frequencies (See Figure 64)  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
50  
40  
30  
20  
10  
0
V
V
V
= 2V p-p  
= 1V p-p  
= 0.5V p-p  
OUT  
OUT  
OUT  
LIMITED BY  
MAXIMUM PREAMP  
OUTPUT SWING  
1MHz  
10MHz  
45MHz  
70MHz  
V
V
= ±5V  
S
= 1V p-p  
OUT  
100MHz  
TONES SEPARATED BY 100kHz  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
–800  
–600  
–400  
–200  
0
200  
400  
600 800  
V
(mV)  
V
(mV)  
GAIN  
GAIN  
Figure 28. HD3 vs. VGAIN for Three Levels of Output Voltage  
(See Figure 52)  
Figure 31. Output Referred IP3 (OIP3) vs. VGAIN, VS = 5 V  
at Five Frequencies (See Figure 64)  
20  
15  
10  
5
–20  
–30  
–40  
–50  
–60  
–70  
–80  
V
V
= 1V p-p  
= 0V  
OUT  
V
V
= ±2.5V  
= ±5V  
S
S
PREAMP LIMITED  
GAIN  
TONES SEPARATED BY 100kHz  
0
–5  
–10  
–15  
V
V
= ±2.5V  
= ±5V  
S
S
1M  
10M  
100M  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
V
(mV)  
GAIN  
FREQUENCY (Hz)  
Figure 29. IMD3 vs. Frequency  
(See Figure 64)  
Figure 32. Input Referred P1dB (IP1dB) vs. VGAIN  
(See Figure 63)  
Rev. D | Page 11 of 28  
AD8337  
Data Sheet  
80  
V
8
800  
600  
400  
200  
0
80  
C
C
C
C
= 0pF  
= 0.7V  
L
L
L
L
GAIN  
= 10pF  
= 22pF  
= 47pF  
60  
40  
6
60  
40  
4
20  
20  
2
0
0
0
–200  
–400  
–20  
–40  
–60  
–80  
–20  
–40  
–2  
–4  
–6  
–8  
INPUT  
INPUT  
OUTPUT  
OUTPUT  
–600  
–800  
–60  
–80  
V
V
= ±2.5V  
S
= 0.7V  
GAIN  
–20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
–20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
TIME (ns)  
TIME (ns)  
Figure 33. Small Signal Pulse Response  
(See Figure 53)  
Figure 36. Large Signal Pulse Response for Three Capacitive Loads  
(See Figure 53)  
800  
600  
400  
200  
0
80  
80  
60  
8
C
C
C
C
= 0pF  
V
= 0.7V  
L
L
L
L
GAIN  
= 10pF  
= 22pF  
= 47pF  
60  
6
INPUT  
40  
40  
4
20  
20  
2
0
0
0
–200  
–400  
–20  
–40  
–60  
–80  
–20  
–40  
–2  
–4  
–6  
–8  
INPUT  
OUTPUT  
OUTPUT  
–10  
–600  
–800  
–60  
–80  
V
V
= ±5V  
S
= 0.7V  
GAIN  
–20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
–20  
0
10  
20  
30  
40  
50  
60  
70  
TIME (ns)  
TIME (ns)  
Figure 34. Small Signal Pulse Response—Inverting Feedback  
(See Figure 59)  
Figure 37. Large Signal Pulse Response for Three Capacitive Loads, VS = 5 V  
(See Figure 53)  
800  
600  
400  
200  
0
80  
0.8  
0.6  
V
= 0.7V  
GAIN  
60  
V
OUT  
40  
0.4  
0.2  
20  
0
0
–200  
–400  
–20  
–40  
–60  
–80  
–0.2  
–0.4  
–0.6  
–0.8  
INPUT  
OUTPUT  
–600  
–800  
V
GAIN  
–20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
TIME (ns)  
TIME (µs)  
Figure 38. Gain Response  
(See Figure 54)  
Figure 35. Large Signal Pulse Response  
(See Figure 53)  
Rev. D | Page 12 of 28  
Data Sheet  
AD8337  
1.5  
10  
0
V
V
(V)  
(V)  
V
V
V
V
V
V
= +0.7V, V = ±2.5V  
S
IN  
OUT  
GAIN  
GAIN  
GAIN  
GAIN  
GAIN  
GAIN  
V
= 0.7V  
GAIN  
= +0.7V, V = ±5V  
S
= 0V, V = ±2.5V  
S
1.0  
0.5  
= 0V, V = ±5V  
S
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
= –0.7V, V = ±2.5V  
S
= –0.7V, V = ±5V  
S
0
–0.5  
–1.0  
–1.5  
–0.3 –0.1 0.1  
0.3  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
TIME (µs)  
Figure 39. Preamp Overdrive Recovery  
(See Figure 55)  
Figure 42. PSRR vs. Frequency of Negative Supply  
(See Figure 60)  
1.5  
1.0  
24  
22  
20  
18  
16  
14  
12  
V
V
(V)  
V
= 0.7V  
IN  
V
V
= ±5V  
= ±2.5V  
GAIN  
S
S
(V)  
OUT  
0.5  
0
–0.5  
–1.0  
–1.5  
–0.3 –0.1 0.1  
0.3  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
–50  
–30  
–10  
10  
30  
50  
70  
90  
TEMPERATURE (°C)  
TIME (µs)  
Figure 40. VGA Overdrive Recovery  
(See Figure 56)  
Figure 43. Quiescent Supply Current vs. Temperature  
(See Figure 57)  
10  
0
V
V
V
V
V
V
= +0.7V, V = ±2.5V  
S
GAIN  
GAIN  
GAIN  
GAIN  
GAIN  
GAIN  
= +0.7V, V = ±5V  
S
= 0V, V = ±2.5V  
S
= 0V, V = ±5V  
S
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
= –0.7V, V = ±2.5V  
S
= –0.7V, V = ±5V  
S
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 41. PSRR vs. Frequency of Positive Supply  
(See Figure 60)  
Rev. D | Page 13 of 28  
AD8337  
Data Sheet  
TEST CIRCUITS  
NETWORK ANALYZER  
NETWORK ANALYZER  
OUT  
IN  
OUT  
IN  
50Ω  
50Ω  
50  
50Ω  
AD8337  
AD8337  
3
4
+
453Ω  
20453Ω  
PrA  
1
+
PrA  
3
4
20Ω  
49.9Ω  
1
49.9Ω  
56.2Ω  
56.2Ω  
5
7
100Ω  
5
7
V
100Ω  
GAIN  
100Ω  
100Ω  
Figure 47. Group Delay  
Figure 44. Gain and Gain Error vs. VGAIN  
NETWORK ANALYZER  
OSCILLOSCOPE  
FUNCTION  
GENERATOR  
OUT  
IN  
OUT  
CH1  
CH2  
50  
50Ω  
50  
50Ω  
50Ω  
V
GAIN  
DIFFERENTIAL  
FET PROBE  
7
453Ω  
AD8337  
AD8337  
453Ω  
50Ω  
3
20Ω  
3
4
+
PrA  
+
PrA  
49.9Ω  
1
1
4
5
7
5
OPTIONAL  
POSITIONS FOR  
100Ω  
100Ω  
C
L
V
GAIN  
100Ω  
100Ω  
Figure 45. Frequency Response  
Figure 48. Offset Voltage  
NETWORK ANALYZER  
NETWORK ANALYZER  
CONFIGURE TO  
MEASURE Z  
CONVERTED S11  
IN  
OUT  
IN  
50Ω  
50Ω  
50  
0Ω  
AD8337  
NC  
AD8337  
NC  
20453Ω  
3
3
4
+
PrA  
0Ω  
+
PrA  
1
1
49.9Ω  
49.9Ω  
4
5
7
5
7
100Ω  
100Ω  
NC  
453Ω  
NC  
100Ω  
100Ω  
Figure 49. Output Impedance vs. Frequency  
Figure 46. Frequency Response—Preamp  
Rev. D | Page 14 of 28  
 
 
 
 
 
 
 
Data Sheet  
AD8337  
OSCILLOSCOPE  
PULSE  
GENERATOR  
SPECTRUM ANALYZER  
POWER  
SPLITTER  
OUT  
CH1  
CH2  
IN  
50  
50Ω  
50  
0Ω  
AD8337  
AD8337  
3
4
+
20453Ω  
56.2Ω  
PrA  
1
3
4
+
PrA  
0Ω  
1
49.9Ω  
49.9Ω  
5
7
100Ω  
5
7
0.7V  
100Ω  
100Ω  
V
GAIN  
100Ω  
Figure 53. Pulse Response  
Figure 50. Input Referred and Output Referred Noise  
DUAL  
FUNCTION  
GENERATOR  
OSCILLOSCOPE  
POWER  
SPLITTER  
NOISE FIGURE METER  
NOISE  
SINE  
WAVE  
SQUARE  
WAVE  
CH1  
CH2  
INPUT  
SOURCE  
DRIVE  
50  
50Ω  
NOISE  
SOURCE  
V
GAIN  
DIFFERENTIAL  
FET PROBE  
0  
7
AD8337  
AD8337  
3
20453Ω  
3
4
+
PrA  
+
0Ω  
49.9Ω  
(OR )  
NC  
1
PrA  
1
49.9Ω  
4
5
5
7
100Ω  
100Ω  
V
GAIN  
100Ω  
100Ω  
Figure 51. Noise Figure vs. VGAIN  
Figure 54. Gain Response  
SPECTRUM ANALYZER  
INPUT  
FUNCTION  
GENERATOR  
OSCILLOSCOPE  
R
L
SIGNAL  
GENERATOR  
50  
CH2  
OUTPUT  
CH1  
LOW-  
50  
PASS  
FILTER  
NC  
7
AD8337  
AD8337  
3
20Ω  
+
PrA  
49.9Ω  
1
4
3
4
+
PrA  
C
L
1
NC  
49.9Ω  
5
7
100Ω  
5
V
GAIN  
100Ω  
100Ω  
100Ω  
100Ω  
Figure 52. Harmonic Distortion  
Figure 55. Preamp Overdrive Recovery  
Rev. D | Page 15 of 28  
 
 
 
 
 
 
AD8337  
Data Sheet  
FUNCTION  
OSCILLOSCOPE  
GENERATOR  
POWER  
SPLITTER  
OSCILLOSCOPE  
PULSE  
GENERATOR  
POWER  
SPLITTER  
OUTPUT  
CH1  
CH2  
OUT  
CH1  
CH2  
50  
50Ω  
50  
50Ω  
AD8337  
AD8337  
3
+
PrA  
20453Ω  
NC  
1
20453Ω  
3
4
+
PrA  
49.9Ω  
4
1
100Ω  
56.2Ω  
100Ω  
5
100Ω  
5
7
100Ω  
100Ω  
0.7V  
Figure 56. VGA Overdrive Recovery  
Figure 59. Pulse Response—Inverting Feedback  
+SUPPLY TO NETWORK  
ANALYZER BIAS PORT  
NETWORK ANALYZER  
BENCH  
POWER SUPPLY  
DMM  
(+I)  
OUT  
50  
IN  
50Ω  
8
BYPASS  
CAPACITORS  
REMOVED FOR  
MEASUREMENT  
AD8337  
VPOS  
3
4
+
PrA  
AD8337  
DMM  
(V)  
1
3
4
+
PrA  
1
DIFFERENTIAL  
FET PROBE  
49.9Ω  
5
7
6
100Ω  
5
7
DMM  
(–I)  
100Ω  
100Ω  
V
GAIN  
100Ω  
Figure 57. Supply Current  
Figure 60. PSRR  
SPECTRUM ANALYZER  
NETWORK ANALYZER  
IN  
OUT  
IN  
50  
50Ω  
50Ω  
453Ω  
AD8337  
AD8337  
3
4
+
PrA  
3
4
+
PrA  
20Ω  
1
1
100Ω  
100Ω  
5
7
5
7
100Ω  
100Ω  
V
GAIN  
V
100Ω  
GAIN  
Figure 58. Frequency Response—Inverting Feedback  
Figure 61. Input Referred Noise vs. RS  
Rev. D | Page 1± of 28  
 
 
 
 
 
 
Data Sheet  
AD8337  
NETWORK ANALYZER  
POWER SWEEP  
SPECTRUM ANALYZER  
22dB  
OUT  
IN  
IN  
50  
50Ω  
50  
453Ω  
AD8337  
AD8337  
3
+
PrA  
20Ω  
3
4
+
PrA  
1
1
49.9Ω  
4
5
7
5
7
100Ω  
100Ω  
V
0.7V  
GAIN  
100Ω  
100Ω  
Figure 63. IP1dB vs. VGAIN  
Figure 62. Short-Circuit Input Noise vs. Frequency  
SPECTRUM ANALYZER  
INPUT  
50Ω  
+22dB  
+22dB  
–6dB  
–6dB  
–6dB  
SIGNAL  
GENERATOR  
COMBINER  
–6dB  
AD8337  
453Ω  
3
4
+
PrA  
20Ω  
1
49.9Ω  
SIGNAL  
GENERATOR  
5
7
100Ω  
V
GAIN  
100Ω  
Figure 64. IMD and OIP3  
Rev. D | Page 17 of 28  
 
 
AD8337  
Data Sheet  
THEORY OF OPERATION  
VPOS  
8
R
= R  
= 100  
FB1  
FB2  
INPP  
INPN  
+
+
+
3
4
5
18dB  
(8x)  
PrA  
6dB  
ATTENUATOR  
–24dB TO 0dB  
1
VOUT  
R
G
749Ω  
PRAO  
FB2  
R
GAIN  
INTERFACE  
INTERPOLATOR  
BIAS  
R
FB1  
107Ω  
2
6
7
VCOM  
VNEG  
GAIN  
Figure 65. Circuit Block Diagram  
the negative supply. For ease of adjustment, a trimmer network  
can be used.  
OVERVIEW  
The AD8337 is a low noise, single-ended, linear-in-dB, general-  
purpose variable gain amplifier (VGA) usable at frequencies up  
to 100 MHz. It is fabricated using a proprietary Analog Devices  
dielectrically isolated, complementary bipolar process. The  
bandwidth is dc to 280 MHz and features low dc offset voltage  
and an ideal nominal gain range of 0 dB to 24 dB. Requiring  
about 15.5 mA, the power consumption is only 78 mW from  
either a single +5 V or a dual 2.5 V supply. Figure 65 is the  
circuit block diagram of the AD8337.  
For larger gains, the overall noise is reduced if a low value of  
RFB1 is selected. For values of RFB1 = 20 Ω and RFB2 = 301 Ω, the  
preamp gain is 16× (24.1 dB), and the input referred noise is  
approximately 1.5 nV/√Hz. For this value of gain, the overall  
gain range increases by 18 dB; therefore, the gain range is 18 dB  
to 42 dB.  
VGA  
This X-AMP, with its linear-in-dB gain characteristic  
architecture, yields the optimum dynamic range for receiver  
applications. Referring to Figure 65, the signal path consists of  
a −24 dB variable attenuator followed by a fixed gain amplifier of  
18 dB, for a total VGA gain range of −6 dB to +18 dB. With the  
preamplifier configured for a gain of 6 dB, the composite gain  
range is 0 dB to 24 dB.  
PREAMPLIFIER  
The uncommitted current feedback op amp included in the  
AD8337 is used as a preamplifier to buffer the ladder network  
attenuator of the X-AMP. As with any op amp, the gain is  
established using external resistors, and the preamplifier is  
specified with a noninverting gain of 6 dB (2×) and gain resistor  
values of 100 Ω. Current feedback amplifiers exhibit many  
properties dissimilar from more familiar voltage feedback  
amplifiers. One of the more significant differences is the  
asymmetrical input impedances between inverting and non-  
inverting inputs where the noninverting input impedance is  
much higher. The practical effects of this difference are that  
current feedback amplifiers are more commonly used in  
noninverting gain applications and applications requiring  
higher slew rates or bandwidths. For a description of these  
current vs voltage feedback amplifiers properties, refer to  
Section 1 of the Op Amp Applications Handbook, 2005.  
The VGA plus preamp, with 6 dB of gain, implements the  
following exact gain law:  
dB  
V
Gain(dB) 19.7  
V  
GAIN  
ICPT(dB)  
where the nominal intercept (ICPT) = 12.65 dB.  
The ICPT increases as the gain of the preamp is increased. For  
example, if the gain of the preamp is increased by 6 dB, ICPT  
increases to 18.65 dB. Although the previous equation shows  
the exact gain law as based on statistical data, a quick estimation  
of signal levels can be made using the default slope of 20 dB/V  
for a particular gain setting. For example, the change in gain for  
a VGAIN change of 0.3 V is 6 dB using a slope of 20 dB/V and  
5.91 dB using the exact slope of 19.6 dB/V. This is a difference  
of only 0.09 dB.  
The preamplifier gain is increased using larger values of RFB2  
,
trading off bandwidth and offset voltage. The value of RFB2 is to  
be ≥100 Ω because the value and an internal compensation  
capacitor determine the 3 dB bandwidth, and smaller values can  
compromise preamplifier stability.  
GAIN CONTROL  
The gain control interface provides a high impedance input and is  
referenced to the VCOM pin (in a single-supply application to  
midsupply at [VPOS + VNEG]/2 for optimum swing). When dual  
supplies are used, VCOM is connected to ground. The voltage on the  
VCOM pin determines the midpoint of the gain range. For a ground  
Because the AD8337 is dc-coupled, larger preamp gains increase  
the offset voltage. The offset voltage can be compensated by  
connecting a resistor between the INPN input and the supply  
voltage. If the offset is negative, the resistor value connects to  
Rev. D | Page 18 of 28  
 
 
 
 
 
 
Data Sheet  
AD8337  
referenced design, the VGAIN range is from −0.7 V to +0.7 V with the  
most linear-in-dB section of the gain control between −0.6 V and +0.6  
V. In the center 80% of the VGAIN range, the gain error is typically less  
than 0.2 dB. The gain control voltage can be increased or decreased to  
the positive or negative rails without gain foldover.  
e gain scaling factor (gain slope) is designed for 20 dB/V. This relatively  
low slope ensures that noise on the GAIN input is not unduly  
amplified. Because a VGA functions as a multiplier, it is important that  
the GAIN input does not inadvertently modulate the output signal with  
unwanted noise. Because of its high input impedance, a simple low-  
pass filter can be added to the GAIN input to filter unwanted noise.  
NOISE  
The total input referred voltage and current noise of the positive  
input of the preamplifier are about 2.2 nV/Hz and 4.8 pA/Hz. The  
VGA output referred noise is about 21 nV/Hz at low gains. This  
result is divided by the VGA fixed gain amplifier gain of 8× and  
results in a voltage noise density of 2.6 nV/Hz referred to the  
VGA input. This value includes the noise of the VGA gain setting  
resistors as well. If this voltage is again divided by the preamp gain  
of 2, the VGA noise referred all the way to the preamp input is  
about 1.3 nV/Hz. From this, it is determined that the preamplifier,  
including the 100 Ω gain setting resistors, contributes about 1.8  
nV/Hz. The two 100 Ω resistors contribute 1.29 nV/Hz each at the  
output of the preamp. With the gain resistor noise subtracted, the  
preamplifier noise is approximately 1.55 nV/Hz.  
OUTPUT STAGE  
The output stage is a Class AB, voltage-feedback, complementary emitter-  
follower with a fixed gain of 18 dB, similar to the preamplifier in speed  
and bandwidth. Because of the ac-beta roll-off of the output devices  
and the inherent reduction in feedback beyond the −3 dB bandwidth,  
the impedance looking into the output pin of the preamp and output  
stages appears to be inductive (increasing impedance with increasing  
frequency). The high speed output amplifier used in the AD8337 can  
drive large currents, but its stability is susceptible to capacitive  
loading. A small series resistor mitigates the effects of capacitive  
loading (see the Applications Information section).  
Equation 2 shows the calculation that determines the output  
referred noise at maximum gain (24 dB or 16×).  
where:  
At is the total gain from preamp input to VGA output.  
RS is the source resistance.  
en − PrA is the input referred voltage noise of the preamp.  
in − PrA is the current noise of the preamp at the INPP pin.  
ATTENUATOR  
en −  
is the voltage noise of RFB1.  
The input resistance of the VGA attenuator is nominally 265 Ω. For  
example, if the default preamplifier feedback network RFB1 + RFB2 is  
200 Ω, the effective preamplifier load is approximately 114 Ω. The  
attenuator is composed of eight 3.01 dB sections for a total  
attenuation range of −24.08 dB. Following the attenuator is a fixed  
gain amplifier with 8× (18.06 dB) gain. Because of this relatively low  
gain, the output offset is kept well below 20 mV over temperature; the  
offset is largest at maximum gain when the preamplifier offset is  
amplified. The VCOM pin defines the common-mode reference for  
the output, as shown in Figure 65.  
R
R
FB1  
en −  
is the voltage noise of RFB2  
.
FB2  
e
n − VGA is the input referred voltage noise of the VGA (low gain,  
output referred noise divided by a fixed gain of 8×).  
Assuming RS = 0 Ω, RFB1 = RFB2 = 100 Ω, At = 16×, and AVGA  
8×, the noise simplifies to  
=
en − out  
=
(1.7516)2 2(1.298)2 (1.98)2 35nV Hz (1)  
Dividing the result by 16 gives the total input referred noise with  
a short-circuited input as 2.2 nV/Hz. When the preamplifier is  
SINGLE-SUPPLY OPERATION AND AC COUPLING  
If the AD8337 is to be operated from a single 5 V supply, the bias  
supply for VCOM must be a very low impedance 2.5 V reference,  
especially if dc coupling is used. If the device is dc-coupled, the VCOM  
source must be able to handle the preamplifier and VGA dynamic load  
currents in addition to the bias currents.  
used in the inverting configuration with the same RFB1 and RFB2  
100 Ω as previously noted, en − out does not change. However,  
because the gain dropped by 6 dB, the input referred noise  
increases by a factor of 2 to about 4.4 nV/Hz. The reason for this  
increase is that the noise gain to the output of the noise generators  
stays the same, yet the preamp in the inverting configuration has a  
gain of −1 compared to the +2 in the noninverting configuration;  
this increases the input referred noise by 2.  
=
When ac coupling the preamplifier input, a bias network and  
bypass capacitor must be connected to the opposite polarity input  
pin. The bias generator for the VCOM pin must provide the  
dynamic current to the preamplifier feedback network and the  
VGA attenuator. For many single 5 V applications, a reference, such  
as the ADR391, and a good op amp provide an adequate VCOM  
source if a 2.5 V supply is unavailable.  
R
2
2
2
2
2
2
FB2  
(2)  
e
(e R A ) (en PrA A ) (in PrA R ) (e  
n R  
A  
VGA  
)
(e  
n R  
A  
FB2  
)
(en VGA A  
VGA  
)
n out  
t
t
FB1  
n
S
S
VGA  
R
FB1  
Rev. D | Page 19 of 28  
 
 
 
 
AD8337  
Data Sheet  
APPLICATIONS INFORMATION  
PREAMPLIFIER CONNECTIONS  
Noninverting Gain Configuration  
DRIVING CAPACITIVE LOADS  
Because of the large bandwidth of the AD8337, stray capacitance at  
the output pin can induce peaking in the frequency response as the  
gain of the amplifier begins to roll off. Figure 68 shows peaking  
with two values of load capacitance using 2.5 V supplies and  
The AD8337 preamplifier is an uncommitted current feedback  
op amp that is stable for values of RFB2 ≥ 100 Ω. See Figure 66  
for the noninverting feedback connections.  
VGAIN = 0 V.  
PREAMPLIFIER  
INPP  
25  
V
= 0V  
GAIN  
3
4
5
+
C
C
C
= 0pF  
= 10pF  
= 22pF  
L
L
L
R
INPN  
G
20  
15  
10  
5
NO SNUBBING RESISTOR  
PRAO  
FB2  
R
R
FB1  
Figure 66. AD8337 Preamplifier Configured for Noninverting Gain  
Two surface-mount resistors establish the preamplifier gain.  
Equal values of 100 Ω configure the preamplifier for a 6 dB gain  
and the device for a default gain range of 0 dB to 24 dB.  
0
–5  
100k  
1M  
10M  
100M  
500M  
FREQUENCY (Hz)  
For preamplifier gains ≥2, select a value of RFB2 ≥ 100 Ω and  
Figure 68. Peaking in the Frequency Response for Two Values of Output  
Capacitance with 2.5 V Supplies and No Snubbing Resistor  
R
FB1 ≤ 100 Ω. Higher values of RFB2 reduce the bandwidth and  
increase the offset voltage, but smaller values compromise  
stability. If RFB1 ≤ 100 Ω, the gain increases and the input  
referred noise decreases.  
25  
V
= 0V  
GAIN  
C
C
C
= 0pF  
= 10pF  
= 22pF  
L
L
L
20  
15  
10  
5
WITH 20SNUBBING RESISTOR  
Inverting Gain Configuration  
For applications requiring polarity inversion of negative pulses, or  
for waveforms that require current sinking, the preamplifier can  
be configured as an inverting gain amplifier. When configured  
with bipolar supplies, the preamplifier amplifies positive or  
negative input voltages with no level shifting of the common-  
mode input voltage required. Figure 67 shows the AD8337  
configured for inverting gain operation.  
0
Because the AD8337 is a very high frequency device, stability  
issues can occur unless the circuit board on which it is used is  
carefully laid out. The stability of the preamp is affected by  
parasitic capacitance around the INPN pin. To minimize stray  
capacitance position the preamp gain resistors, RFB1 and RFB2, as  
close as possible to the INPN pin.  
–5  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
Figure 69. Frequency Response for Two Values of Output Capacitance  
with a 20 Ω Snubbing Resistor  
In the time domain, stray capacitance at the output pin can  
induce overshoot on the edges of transient signals, as shown in  
Figure 70 and Figure 72. The amplitude of the overshoot is also a  
function of the slewing of the transient (not shown in Figure 70  
and Figure 72). The transition time of the input pulses used for  
Figure 70 and Figure 72 is deliberately set high at 300 ps to demon-  
strate the fast response time of the amplifier. Signals with longer  
transition times generate less overshoot.  
PREAMPLIFIER  
INPP  
3
4
5
+
R
INPN  
FB1  
PRAO  
R
FB2  
Figure 67. The AD8337 Preamplifier Configured for Inverting Gain  
Rev. D | Page 20 of 28  
 
 
 
 
 
 
 
Data Sheet  
AD8337  
800  
80  
800  
600  
80  
V
= ±5V  
S
600  
60  
60  
400  
200  
40  
400  
200  
40  
20  
20  
C
C
C
= 0pF  
= 10pF  
= 22pF  
L
L
L
0
0
0
0
NO SNUBBING RESISTOR  
–200  
–20  
–40  
–60  
–80  
INPUT  
–200  
–20  
–40  
–60  
INPUT  
–400  
–600  
–800  
OUTPUT  
–400 OUTPUT  
–600  
C
C
C
= 0pF  
= 10pF  
= 22pF  
L
L
L
WITH 20SNUBBING RESISTOR  
–20 –10  
0
10  
20  
30  
40  
50  
60  
70  
80  
–800  
–80  
80  
TIME (ns)  
–20 –10  
0
10  
20  
30  
40  
50  
60  
70  
TIME (ns)  
Figure 70. Pulse Response for Two Values of Output Capacitance  
with 2.5 V Supplies and No Snubbing Resistor  
Figure 73. Pulse Response for Two Values of Output Capacitance  
with 5 V Supplies and a 20 Ω Snubbing Resistor  
800  
80  
The effects of stray output capacitance are mitigated with a  
small value snubbing resistor, RSNUB, placed in series with, and  
as near as possible to, the VOUT pin. Figure 69, Figure 71, and  
Figure 73 show the improvement in dynamic performance with  
a 20 ꢀ snubbing resistor. RSNUB reduces the gain slightly by the  
ratio of RL/(RSNUB + RL), a very small loss when used with high  
impedance loads, such as ADCs. For other loads, alternate values  
of RSNUB can be determined empirically. The data for the curves in  
the Typical Performance Characteristics section are derived using  
a 20 Ω snubbing resistor.  
600  
60  
400  
200  
40  
20  
0
0
–200  
–20  
–40  
–60  
–80  
INPUT  
–400 OUTPUT  
–600  
C
C
C
= 0pF  
= 10pF  
= 22pF  
L
L
L
The best way to avoid the effects of stray capacitance is to  
exercise care in the PCB layout. Locate the passive components  
or devices connected to the AD8337 output pins as close as  
possible to the package.  
WITH 20SNUBBING RESISTOR  
–800  
–20 –10  
0
10  
20  
30  
40  
50  
60  
70  
80  
TIME (ns)  
Figure 71. Pulse Response for Two Values of Output Capacitance  
with 2.5 V Supplies and a 20 Ω Snubbing Resistor  
Although a nonissue, the preamplifier output is also sensitive to  
load capacitance. However, the series connection of RFB1 and  
800  
80  
V
= ±5V  
S
600  
60  
RFB2 is typically the only load connected to the preamplifier. If  
overshoot appears, it can be mitigated by inserting a snubbing  
resistor, the same way as the VGA output.  
400  
200  
40  
20  
GAIN CONTROL CONSIDERATIONS  
0
–200  
–400  
–600  
–800  
0
In typical applications, voltages applied to the GAIN input are dc  
or relatively low frequency signals. The high input impedance of  
the AD8337 enables several devices to be connected in parallel.  
This is useful for arrays of VGAs, such as those used for calibra-  
tion adjustments.  
–20  
–40  
–60  
–80  
INPUT  
OUTPUT  
C
= 0pF  
L
C = 10pF  
L
C
= 22pF  
L
WITH NO SNUBBING RESISTOR  
Under dc or slowly changing ramp conditions, the gain tracks  
the gain control voltage, as shown in Figure 3. However, it is often  
necessary to consider other effects influenced by the VGAIN input.  
–20 –10  
0
10  
20  
30  
40  
50  
60  
70  
80  
TIME (ns)  
Figure 72. Large Signal Pulse Response for Two Values of Output  
Capacitance with 5 V Supplies and No Snubbing Resistor  
Rev. D | Page 21 of 28  
 
 
 
 
 
AD8337  
Data Sheet  
The offset voltage effect of the AD8337, as with all VGAs, can  
appear as a complex waveform when observed across the range  
of VGAIN voltage. Generated by multiple sources, each device has  
a unique offset voltage (VOS) profile while the GAIN input is  
swept through its voltage range. The offset voltage profile seen  
in Figure 15 is a typical example. If the VGAIN input voltage is  
modulated, the output is the product of the VGAIN and the dc  
profile of the offset voltage. This is observed on a scope as a  
small ac signal, as shown in Figure 74. In Figure 74, the signal  
applied to the VGAIN input is a 1 kHz ramp, and the output voltage  
signal is slightly less than 4 mV p-p.  
Under certain circumstances, the product of VGAIN and the  
offset profile plus spikes is a coherent spurious signal within the  
signal band of interest and indistinguishable from desired  
signals. In general, the slower the ramp applied to the GAIN  
Pin, the smaller the spikes are. In most applications, these  
effects are benign and not an issue.  
THERMAL CONSIDERATIONS  
The thermal performance of LFCSPs, such as the AD8337,  
departs significantly from that of leaded devices such as the  
larger TSSOP or QFSP. In larger packages, heat is conducted  
away from the die by the path provided by the bond wires and  
the device leads. In LFCSPs, the heat transfer mechanisms are  
surface-to-air radiation from the top and side surfaces of the  
package and conduction through the metal solder pad on the  
mounting surface of the device.  
10  
V
= ±2.5V  
INPUT  
OUTPUT  
S
8
6
4
2
θJC is the traditional thermal metric used for integrated circuits.  
0
Heat transfer away from the die is a three-dimensional dynamic,  
and the path is through the bond wires, leads, and the six  
surfaces of the package. Because of the small size of LFCSPs, the  
θJC is not measured conventionally. Instead, it is calculated using  
thermodynamic rules.  
–2  
–4  
–6  
–8  
–10  
The θJC value of the AD8837 listed in Table 2 assumes that the  
tab is soldered to the board and that there are three additional  
ground layers beneath the device connected by at least four vias.  
For a device with an unsoldered pad, the θJC nearly doubles,  
becoming 138°C/W.  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
V
(mV)  
GAIN  
Figure 74. Offset Voltage vs. VGAIN for a 1 kHz Ramp  
The profile of the waveform shown in Figure 74 is consistent  
over a wide range of signals from dc to about 20 kHz. Above  
20 kHz, secondary artifacts can be generated due to the effects  
of minor internal circuit tolerances, as shown in Figure 75.  
These artifacts are caused by settling and time constants of the  
interpolator circuit and appear at the output as the voltage  
spikes, as shown in Figure 75.  
PSI (Ψ)  
Table 2 lists a subset of the classic theta specification, ΨJT (Psi  
junction to top). θJC is the metric of heat transfer from the die to  
the case, involving the six outside surfaces of the package. Ψ(XY)  
is a subset of the theta value and the thermal gradient from the  
junction (die) to each of the six surfaces. Ψ can be different for  
each of the surfaces, but since the top of the package is a fraction of  
a millimeter from the die, the surface temperature of the package is  
very close to the die temperature. The die temperature is calculated  
as the product of the power dissipation and ΨJT. Since the top  
surface temperature and power dissipation are easily measured, it  
follows that the die temperature is easily calculated. For example,  
for a dissipation of 180 mW and a ΨJT of 5.3°C/W, the die  
temperature is slightly less than 1°C higher than the surface  
temperature.  
10  
V
= ±2.5V  
INPUT  
S
8
6
OUTPUT  
4
SPIKE  
2
0
–2  
–4  
–6  
–8  
–10  
SPIKE  
BOARD LAYOUT  
Because the AD8337 is a high frequency device, board layout is  
critical. It is very important to have a good ground plane  
connection to the VCOM pin. Coupling through the ground  
plane, from the output to the input, can cause peaking at higher  
frequencies.  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
V
(mV)  
GAIN  
Figure 75. VOS Profile for a 50 kHz Ramp  
Rev. D | Page 22 of 28  
 
 
 
 
 
Data Sheet  
AD8337  
EVALUATION BOARDS  
The AD8337 evaluation boards provide a family of platforms for  
testing and evaluating the AD8337 VGA. Three circuit configu-  
rations are available:  
AD8337-EVALZ, dc-coupled, with noninverting gain and  
dual power supplies  
AD8337-EVALZ-INV, dc-coupled, with inverting gain and  
dual power supplies  
AD8337-EVALZ-SS, ac-coupled, with noninverting gain  
configuration and a single supply  
These fully assembled and tested boards are ready to use. Only  
the appropriate power supply and signal source connections  
need to be made. SMA connectors are provided for the pream-  
plifier and VGA outputs. Photos of fully assembled boards are  
shown in Figure 76 and Figure 77. The board component side  
layouts are shown in Figure 78 and Figure 79.  
Figure 78. Assembly, Dual-Supply Evaluation Board  
Figure 76. AD8337 Evaluation Board for Dual Supplies  
Figure 79. Assembly, Single-Supply Evaluation Board  
Schematic diagrams of the dual-supply board for noninverting  
and inverting configurations are shown in Figure 80 and Figure 81.  
The dual-supply boards require ±±.ꢀ V to ±ꢀ V supplies capable of  
supplying ±0 mA or greater. A schematic diagram of the single-  
supply board is shown in Figure 8±. The single-supply version  
accepts a +ꢀ V to +10 V supply with ±0 mA or greater capability.  
Figure 77. AD8337 Evaluation Board for Single Supply  
Rev. D | Page 23 of 28  
 
 
 
 
 
AD8337  
Data Sheet  
+V  
–V  
S
S
GND1 GND2 GND3 GND4  
CIRCUIT OPTIONS  
Part numbers for fully assembled boards are listed in Table 4.  
+
C1  
10µF  
C2  
RVO1  
VOUT  
+ 10µF  
453Ω  
Table 4. AD8337 Evaluation Board Variations  
L2  
120nH  
L1  
120nH  
Part Number  
Configuration  
AD8337-EVALZ  
AD8337-EVALZ-INV  
AD8337-EVALZ-SS  
Dual-supply noninverting  
Dual-supply inverting  
Single-supply noninverting  
C3  
TP1  
1
2
3
4
8
7
6
5
VOUT  
U1 VPOS  
0.1µF  
RVO3  
GAIN  
AD8337  
VCOM  
0Ω  
GAIN  
CG  
1nF  
R1  
J1  
49.9Ω  
Figure 80, Figure 81, and Figure 82 are schematics for the  
various circuit configurations. Within limits, the AD8337  
preamplifier gain is controlled by Resistor RFB1 and Resistor  
INPP  
VNEG  
PRAO  
R4  
IN  
0Ω  
INPN  
C4  
0.1µF  
R2  
49.9Ω  
RFB2. For simple guidelines applying to the current feedback  
RPO2  
453Ω  
R
FB2  
100Ω  
R5  
100Ω  
preamplifier, see the Theory of Operation section.  
PRAO  
R
100Ω  
FB1  
OUTPUT PROTECTION  
DO NOT INSTALL PARTS IN GRAY  
The AD8337 VGA output stage is specified for driving loads of  
500 Ω or greater. To protect the stage from an accidental  
overload, a 453 Ω resistor is provided, which when connected to  
50 Ω test equipment inputs, enables safe operation. In certain  
high load impedance situations, the value of this resistor can be  
reduced. However, if load capacitance values greater than  
approximately 20 pF are anticipated, such as a BNC cable, the  
minimum series resistor value is not to be less than 20 Ω.  
Figure 80. Schematic—AD8337-EVALZ Noninverting Configuration  
+V  
–V  
S
S
GND1 GND2 GND3 GND4  
+
+
C2  
10µF  
C1  
10µF  
RVO1  
453  
VOUT  
L2  
120nH  
L1  
120nH  
C3  
TP1  
1
2
3
4
8
7
6
5
VOUT  
U1 VPOS  
0.1µF  
An alternate test pin is also provided for direct access to the  
output of the AD8337 VGA. The pin is typically used for a  
probe, and a 0 Ω resistor is provided between the test loop and  
the output pin. If the test loop is connected to loads ≤500 Ω,  
then the 0 Ω resistor is to be changed to an appropriate value.  
RVO3  
GAIN  
AD8337  
0Ω  
VCOM  
INPP  
INPN  
R
GAIN  
CG  
1nF  
R1  
49.9Ω  
100Ω  
IN  
J1  
R4  
VNEG  
PRAO  
0Ω  
C4  
0.1µF  
R2  
49.9Ω  
RPO2  
453Ω  
FB2  
R5  
100Ω  
100Ω  
PRAO  
R
FB1  
100Ω  
DO NOT INSTALL PARTS IN GRAY  
Figure 81. Schematic—AD8337-EVALZ-INV Inverting Configuration  
L1  
120nH FB  
+V  
S
+
C1  
10µF  
10V  
C3  
0.1µF  
8
GND1 GND2 GND3 GND4  
C6  
0.1µF  
RVO1  
453Ω  
IN  
VPOS  
INPP  
VOUT  
GAIN  
3
1
7
VOUT  
GAIN  
C4  
0.1µF  
ADU81337  
CG  
1nF  
INPN  
4
PRAO VCOM VNEG  
R1  
49.9Ω  
C10  
0.1µF  
5
2
6
2
1
R
100Ω  
FB2  
C7  
AD8541AR  
3
R
100Ω  
VIN SHDN  
VOUT  
U2  
FB1  
0.1µF  
R6  
3
4
7
100Ω  
6
U3  
2
+
4
C2  
C5  
0.1µF  
1µF  
16V  
GND  
5
C9  
0.1µF  
C8  
0.22µF  
R4  
10kΩ  
ADR391AUJZ-R2  
Figure 82. Evaluation Board Schematic—Single-Supply Version  
Rev. D | Page 24 of 28  
 
 
 
 
 
 
Data Sheet  
AD8337  
TOP:  
SIGNAL GENERATOR 10.05MHz, 500mV p-p  
BOTTOM:  
SIGNAL GENERATOR 9.95MHz, 500mV p-p  
POWER  
AMPLIFIERS  
SPECTRUM  
ANALYZER  
POWER  
SPLITTER  
SIGNAL  
INPUT  
PREAMP  
OUTPUT  
VGAIN  
+5V  
–5V  
POWER SUPPLY  
Figure 83. Typical Board Test Connections  
For ease of assembly, all board components are located on the  
primary side and are 0603 size surface mounts. Higher density  
applications may require components on both sides of the board  
and present no problem to the AD8337, as demonstrated in  
unreleased versions of the board that featured secondary-side  
components and vias. Not evident in the figures are thermal  
vias within the pad that solder to the mating pad of the AD8337  
chip-scale package. These vias serve as a thermal path and are  
the primary means of removing heat from the device. The thermal  
specifications for the AD8337 are predicated on the use of multi-  
layer board construction with these thermal vias to enable heat  
conductivity from the die.  
MEASUREMENT SETUP  
Figure 83 shows board connections for two generators. In this  
example, the experiment illustrates IMD measurements using  
standard off-the-shelf test equipment used by Analog Devices.  
However, any equivalent equipment can be used.  
BOARD LAYOUT CONSIDERATIONS  
The AD8337 evaluation board is designed using four layers.  
Interconnecting circuitry is located on the component and  
wiring sides, with the inner layers dedicated to power and  
ground planes. Figure 84 through Figure 88 show the copper  
layouts.  
Rev. D | Page 25 of 28  
 
 
 
AD8337  
Data Sheet  
Figure 84. Dual-Supply Component Side Copper  
Figure 88. Dual-Supply Power Plane  
Figure 89. Single-Supply Component Side Copper  
Figure 85. Dual-Supply Wiring Side Copper  
Figure 86. Dual-Supply Component Side Silk-Screen  
Figure 90. Single-Supply Wiring Side Copper  
Figure 91. Single-Supply Component Side Silkscreen  
Figure 87. Dual-Supply Ground Plane  
Rev. D | Page 2± of 28  
 
 
Data Sheet  
AD8337  
Figure 93. Single-Supply Power Plane  
Figure 92. Single-Supply Ground Plane  
Rev. D | Page 27 of 28  
AD8337  
Data Sheet  
OUTLINE DIMENSIONS  
1.84  
1.74  
1.64  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
8
5
PIN 1 INDEX  
EXPOSED  
PAD  
1.55  
1.45  
1.35  
AREA  
0.50  
0.40  
0.30  
4
1
PIN 1  
INDICATOR  
(R 0.15)  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-229-WEED  
Figure 94. 8-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.75 mm Package Height  
(CP-8-13)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option Branding  
AD8337BCPZ-R2  
AD8337BCPZ-REEL  
AD8337BCPZ-REEL7  
AD8337BCPZ-WP  
AD8337-EVALZ  
8-Lead Lead Frame Chip Scale Package [LFCSP]  
8-Lead Lead Frame Chip Scale Package [LFCSP]  
8-Lead Lead Frame Chip Scale Package [LFCSP]  
8-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board with Noninverting Gain Configuration  
Evaluation Board with Inverting Gain Configuration  
Evaluation Board with Single-Supply Operation  
CP-8-13  
CP-8-13  
CP-8-13  
CP-8-13  
HVB  
HVB  
HVB  
HVB  
AD8337-EVALZ-INV  
AD8337-EVALZ-SS  
1 Z = RoHS Compliant Part.  
©2005–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05575-0-10/16(D)  
Rev. D | Page 28 of 28  
 
 

相关型号:

AD8337BCPZ-R2

General-Purpose, Low Cost, DC-Coupled VGA
ADI

AD8337BCPZ-REEL

General-Purpose, Low Cost, DC-Coupled VGA
ADI

AD8337BCPZ-REEL7

General-Purpose, Low Cost, DC-Coupled VGA
ADI

AD8337BCPZ-WP

General-Purpose, Low Cost, DC-Coupled VGA
ADI

AD8337_07

General-Purpose, Low Cost, DC-Coupled VGA
ADI

AD8337_16

General-Purpose, Low Cost, DC-Coupled VGA
ADI

AD8338

Low Power, 18 MHz Variable Gain Amplifier
ADI

AD8338-EVALZ

Low Power, 18 MHz Variable Gain Amplifier
ADI

AD8338ACPZ-R7

Low Power, 18 MHz Variable Gain Amplifier
ADI

AD8338ACPZ-RL

Low Power, 18 MHz Variable Gain Amplifier
ADI

AD8338_16

Low Power, 18 MHz Variable Gain Amplifier
ADI

AD8339

Quad I/Q Demodulator And Phase Shifter
ADI