AD8352ACPZ-R7 [ADI]

2 GHz Ultralow Distortion Differential RF/IF Amplifier; 2 GHz的超低失真差分RF / IF放大器
AD8352ACPZ-R7
型号: AD8352ACPZ-R7
厂家: ADI    ADI
描述:

2 GHz Ultralow Distortion Differential RF/IF Amplifier
2 GHz的超低失真差分RF / IF放大器

放大器
文件: 总20页 (文件大小:336K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2 GHz Ultralow Distortion  
Differential RF/IF Amplifier  
AD8352  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
−3 dB bandwidth of 2.2 GHz (AV = 10 dB)  
Single resistor gain adjust 3 dB AV 21 dB  
Single resistor and capacitor distortion adjust  
Input resistance 3 kΩ, independent of gain (AV)  
Differential or single-ended input to differential output  
Low noise input stage 2.7 nV/√Hz RTI @ AV = 10 dB  
Low broadband distortion  
10 MHz: −86 dBc HD2, −82 dBc HD3  
70 MHz: −84 dBc HD2, −82 dBc HD3  
190 MHz: −81 dBc HD2, −87 dBc HD3  
OIP3 of 41 dBm @ 150 MHz  
VCM  
VCC  
ENB  
RGP  
RDP  
BIAS CELL  
+
VOP  
VON  
VIP  
VIN  
C
D
R
R
D
G
RDN  
RGN  
GND  
Slew rate 8 V/ns  
AD8352  
Fast settling and overdrive recovery of 2 ns  
Single-supply operation: 3 V to 5.0 V  
Low power dissipation: 37 mA @ 5 V  
Power down capability: 5 mA @ 5 V  
Figure 1.  
–60  
44  
42  
40  
38  
36  
34  
32  
30  
28  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
Fabricated using the high speed XFCB3 SiGe process  
APPLICATIONS  
Differential ADC drivers  
Single-ended to differential conversion  
RF/IF gain blocks  
SAW filter interfacing  
–100  
20  
40  
60  
80  
100 120 140 160 180 200 220  
FREQUENCY (MHz)  
Figure 2. IP3 and Third Harmonic Distortion vs. Frequency,  
Measured Differentially  
GENERAL DESCRIPTION  
The AD8352 is a high performance differential amplifier  
optimized for RF and IF applications. It achieves better than  
80 dB SFDR performance at frequencies up to 200 MHz, and  
65 dB beyond 500 MHz, making it an ideal driver for high  
speed 12- to 16-bit analog-to-digital converters (ADCs).  
The device is optimized for wide band, low distortion  
performance at frequencies beyond 500 MHz. These attributes,  
together with its wide gain adjust capability, make this device  
the amplifier of choice for general-purpose IF and broadband  
applications where low distortion, noise, and power are critical.  
In particular, it is ideally suited for driving not only ADCs, but  
also mixers, pin diode attenuators, SAW filters, and multielement  
discrete devices. The device comes in a compact 3 mm × 3 mm,  
16-lead LFCSP package and operates over a temperature range of  
−40°C to +85°C.  
Unlike other wideband differential amplifiers, the AD8352 has  
buffers that isolate the Gain Setting Resistor RG from the signal  
inputs. As a result, the AD8352 maintains a constant 3 kΩ input  
resistance for gains of 3 dB to 24 dB, easing matching and input  
drive requirements. The AD8352 has a nominal 100 Ω differential  
output resistance.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
 
 
AD8352  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications..................................................................................... 11  
Gain and Distortion Adjustment (Differential Input) .......... 11  
Single-Ended Input Operation ................................................. 12  
Narrow-Band, Third-Order Intermodulation Cancellation. 13  
High Performance ADC Driving............................................. 14  
Layout and Transmission Line Effects..................................... 15  
Evaluation Board ............................................................................ 16  
Evaluation Board Loading Schemes ........................................ 17  
Evaluation Board Schematics ................................................... 18  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Noise Distortion Specifications .................................................. 4  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
REVISION HISTORY  
1/06—Revision 0: Initial Version  
Rev. 0| Page 2 of 20  
 
AD8352  
SPECIFICATIONS  
VS = 5 V, RL = 200 Ω differential, RG = 118 Ω (AV = 10 dB), f = 100 MHz, T = 25°C; parameters specified differentially (in/out), unless  
otherwise noted. CD and RD are selected for differential broadband operation (see Table 6 and Table 7).  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
AV = 6 dB, VOUT ≤ 1.0 V p-p  
AV = 10 dB, VOUT ≤ 1.0 V p-p  
AV = 14 dB, VOUT ≤ 1.0 V p-p  
3 dB ≤ AV ≤ 20 dB, VOUT ≤ 1.0 V p-p  
3 dB ≤ AV ≤ 20 dB, VOUT ≤ 1.0 V p-p  
Using 1% resistor for RG, 0 dB ≤ AV ≤ 20 dB  
VS 5%  
2500  
2200  
1800  
190  
300  
1
.06  
4
9
MHz  
MHz  
MHz  
MHz  
MHz  
dB  
dB/V  
mdB/°C  
V/ns  
V/ns  
ns  
Bandwidth for 0.1 dB Flatness  
Bandwidth for 0.2 dB Flatness  
Gain Accuracy  
Gain Supply Sensitivity  
Gain Temperature Sensitivity  
Slew Rate  
−40°C to +85°C  
RL = 1 kΩ, VOUT = 2 V step  
RL = 200 Ω, VOUT = 2 V step  
2 V step to 1%  
8
<2  
Settling Time  
Overdrive Recovery Time  
Reverse Isolation (S12)  
INPUT/OUTPUT CHARACTERISTICS  
Common-Mode Nominal  
Voltage Adjustment Range  
Maximum Output Voltage Swing  
Output Common-Mode Offset  
Output Common-Mode Drift  
Output Differential Offset Voltage  
CMRR  
VIN = 4 V to 0 V step, VOUT  
10 mV  
<3  
−80  
ns  
dB  
VCC/2  
1.2 to 3.8  
6
V
V
1 dB compressed  
Referenced to VCC/2  
−40°C to +85°C  
V p-p  
mV  
mV/°C  
mV  
dB  
−100  
−20  
+20  
+20  
.25  
57  
.15  
5
Output Differential Offset Drift  
Input Bias Current  
−40°C to +85°C  
mV/°C  
μA  
Input Resistance  
3
kΩ  
Input Capacitance (Single-Ended)  
Output Resistance  
Output Capacitance  
0.9  
100  
3
pF  
Ω
pF  
POWER INTERFACE  
Supply Voltage  
ENB Threshold  
ENB Input Bias Current  
3
5
1.5  
75  
−125  
37  
5.3  
5.5  
39  
V
V
nA  
μA  
mA  
mA  
ENB at 3 V  
ENB at 0.6 V  
ENB at 3 V  
ENB at 0.6 V  
Quiescent Current  
35  
Rev. 0| Page 3 of 20  
 
 
AD8352  
NOISE DISTORTION SPECIFICATIONS  
VS = 5 V, RL=200 Ω differential, RG=118 Ω (AV = 10 dB), VOUT = 2 V p-p composite, T = 25°C; parameters specified differentially, unless  
otherwise noted. CD and RD are selected for differential broadband operation (see Table 6 and Table 7).  
Table 2.  
Parameter  
Conditions  
Min Typ  
−88/−95  
Max Unit  
10 MHz  
Second/Third Harmonic Distortion1 RL = 1 kΩ, VOUT = 2 V p-p  
dBc  
dBc  
dBm  
dBc  
dBc  
RL = 200 Ω, VOUT = 2 V p-p  
RL = 200 Ω, f1 = 9.5 MHz, f2 = 10.5 MHz  
RL = 1 kΩ, f1 = 9.5 MHz, f2 = 10.5 MHz, VOUT = 2 V p-p composite  
RL = 200 Ω, f1 = 9.5 MHz, f2 = 10.5 MHz, VOUT = 2 V p-p composite  
−86/−82  
+38  
−86  
Output Third-Order Intercept  
Third-Order IMD  
−81  
Noise Spectral Density (RTI)  
1 dB Compression Point (RTO)  
+2.7  
+15.7  
nV/√Hz  
dBm  
70 MHz  
Second/Third HarmonicDistortion1  
RL = 1 kΩ, RG = 178 Ω, VOUT = 2 V p-p  
RL = 200 Ω, RG = 115 Ω, VOUT = 2 V p-p  
RL = 200 Ω f1 = 69.5 MHz, f2 = 70.5 MHz  
RL = 1 kΩ, f1 = 69.5 MHz, f2 = 70.5 MHz, VOUT = 2 V p-p composite  
RL = 200 Ω, f1 = 69.5 MHz, f2 = 70.5 MHz, VOUT = 2 V p-p composite  
−83/−84  
−84/−82  
+40  
−91  
−83  
dBc  
dBc  
dBm  
dBc  
dBc  
Output Third-Order Intercept  
Third-Order IMD  
Noise Spectral Density (RTI)  
1 dB Compression Point (RTO)  
100 MHz  
+2.7  
+15.7  
nV/√Hz  
dBm  
Second/Third Harmonic Distortion  
RL = 1 kΩ, VOUT = 2 V p-p  
RL = 200 Ω, VOUT = 2 V p-p  
RL = 200 Ω, f1 = 99.5 MHz, f2 = 100.5 MHz  
RL = 1 kΩ, f1 = 99.5 MHz, f2 = 100.5 MHz, VOUT = 2 V p-p composite  
RL = 200 Ω, f1 = 99.5 MHz, f2 = 100.5 MHz, VOUT = 2 V p-p composite  
−83/−83  
−84/−82  
+40  
−91  
−84  
dBc  
dBc  
dBm  
dBc  
dBc  
Output Third-Order Intercept  
Third-Order IMD  
Noise Spectral Density (RTI)  
1 dB Compression Point (RTO)  
140 MHz  
+2.7  
+15.6  
nV/√Hz  
dBm  
Second/Third Harmonic Distortion2 RL = 1 kΩ, VOUT = 2 V p-p  
−83/−82  
−82/−84  
+41  
−89  
−85  
dBc  
dBc  
dBm  
dBc  
dBc  
RL = 200 Ω, VOUT = 2 V p-p  
RL = 200 Ω, f1 = 139.5 MHz, f2 = 140.5 MHz  
RL = 1 kΩ, f1 = 139.5 MHz, f2 = 140.5 MHz, VOUT = 2 V p-p composite  
RL = 200 Ω, f1 = 139.5 MHz, f2 = 140.5 MHz, VOUT = 2V p-p  
Output Third-Order Intercept  
Third-Order IMD  
composite  
Noise Spectral Density (RTI)  
1 dB Compression Point (RTO)  
+2.7  
+15.5  
nV/√Hz  
dBm  
1 When using the evaluation board at frequencies below 50 MHz, replace the Output Balun T1 with a transformer such as Mini-Circuits® ADT1-1WT to obtain the low  
frequency balance required for differential HD2 cancellation.  
2 CD and RD can be optimized for broadband operation below 180 MHz. For operation above 300 MHz, CD and RD components are not required.  
Rev. 0| Page 4 of 20  
 
 
 
 
AD8352  
VS = 5 V, RL = 200 Ω differential, RG = 118 Ω (AV = 10 dB), VOUT = 2 V p-p composite, T = 25°C; parameters specified differentially, unless  
otherwise noted. CD and RD are selected for differential broadband operation (see Table 6 and Table 7). See the Applications section for  
single-ended to differential performance characteristics.  
Table 3.  
Parameter  
Conditions  
Min Typ  
−82/−85  
Max Unit  
190 MHz  
Second/Third Harmonic Distortion1  
RL = 1 kΩ, VOUT = 2 V p-p  
RL = 200 Ω, VOUT = 2 V p-p  
RL = 200 Ω, f1 = 180.5 MHz, f2 = 190.5 MHz  
RL = 1 kΩ, f1 = 180.5 MHz, f2 = 190.5 MHz, VOUT = 2 V p-p composite  
RL = 200 Ω, f1 = 180.5 MHz, f2 = 190.5 MHz, VOUT = 2 V p-p composite  
dBc  
dBc  
dBm  
dBc  
dBc  
−81/−87  
+39  
−83  
Output Third-Order Intercept  
Third-Order IMD  
−81  
Noise Spectral Density (RTI)  
1 dB Compression Point (RTO)  
240 MHz  
+2.7  
+15.4  
nV/√Hz  
dBm  
Second/Third Harmonic Distortion1 RL = 1 kΩ, VOUT = 2 V p-p  
−82/−76  
−80/−73  
+36  
−85  
−77  
dBc  
dBc  
dBm  
dBc  
dBc  
RL = 200 Ω, VOUT = 2 V p-p  
RL = 200 Ω, f1 = 239.5 MHz, f2 = 240.5 MHz  
RL = 1 kΩ, f1 = 239.5 MHz, f2 = 240.5 MHz, VOUT = 2 V p-p composite  
RL = 200 Ω, f1 = 239.5 MHz, f2 = 240.5 MHz, VOUT = 2 V p-p composite  
Output Third-Order Intercept  
Third-Order IMD  
Noise Spectral Density (RTI)  
1 dB Compression Point (RTO)  
+2.7  
+15.3  
nV/√Hz  
dBm  
380 MHz  
Second/Third Harmonic Distortion RL = 1 kΩ, VOUT = 2 V p-p  
RL = 200 Ω, VOUT = 2 V p-p  
−72/−68  
−74/−69  
+33  
−74  
−70  
dBc  
dBc  
dBm  
dBc  
dBc  
Output Third-Order Intercept  
Third-Order IMD  
RL = 200 Ω, f1 = 379.5 MHz, f2 = 380.5 MHz  
RL = 1 kΩ, f1 = 379.5 MHz, f2 = 380.5 MHz, VOUT = 2 V p-p composite  
RL = 200 Ω, f1 = 379.5 MHz, f2 = 380.5 MHz, VOUT = 2 V p-p composite  
Noise Spectral Density (RTI)  
1 dB Compression Point (RTO)  
+2.7  
+14.6  
nV/√Hz  
dBm  
500 MHz  
Second/Third Harmonic Distortion2  
Output Third-Order Intercept  
Third-Order IMD  
RL = 200 Ω, VOUT = 2 V p-p  
RL = 200 Ω, f1 = 499.5 MHz, f2 = 500.5 MHz  
RL = 200 Ω, f1 = 499.5 MHz, f2 = 500.5 MHz, VOUT = 2 V p-p composite  
−71/−64  
+28  
−61  
dBc  
dBm  
dBc  
Noise Spectral Density (RTI)  
1 dB Compression Point (RTO)  
+2.7  
+13.9  
nV/√Hz  
dBm  
1 When using the evaluation board at frequencies below 50 MHz, replace the Output Balun T1 with a transformer such as Mini-Circuits ADT1-1WT to obtain the low  
frequency balance required for differential HD2 cancellation.  
2 CD and RD can be optimized for broadband operation below 180 MHz. For operation above 300 MHz, CD and RD components are not required.  
Rev. 0| Page 5 of 20  
AD8352  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage VCC  
5.5 V  
VIP, VIN  
5 V  
Internal Power Dissipation  
θJA  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering 60 sec)  
210 mW  
91.4°C/W  
104°C  
−40°C to +85°C  
−65°C to +150°C  
300°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0| Page 6 of 20  
 
AD8352  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
12 GND  
11 VOP  
10 VON  
RDP  
RGP  
RGN  
RDN  
1
2
3
4
AD8352  
TOP VIEW  
(Not to Scale)  
9
GND  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
4
RDP  
RGP  
RGN  
RDN  
VIN  
GND  
VCC  
VON  
VOP  
VCM  
Positive Distortion Adjust.  
Positive Gain Adjust.  
Negative Gain Adjust.  
Negative Distortion Adjust.  
Balanced Differential Input. Biased to VCM, typically ac-coupled.  
Ground. Connect to low impedance GND.  
5
6, 7, 9, 12  
8, 13  
10  
11  
14  
Positive Supply.  
Balanced Differential Output. Biased to VCM, typically ac-coupled.  
Balanced Differential Output. Biased to VCM, typically ac-coupled.  
Common-Mode Voltage. A voltage applied to this pin sets the common-mode voltage of the input and output.  
Typically decoupled to ground with a 0.1 μF capacitor. With no reference applied, input and output common  
mode floats to midsupply = VCC/2.  
15  
16  
ENB  
VIP  
Enable. Apply positive voltage (1.3 V < ENB < VCC) to activate device.  
Balanced Differential Input. Biased to VCM, typically ac-coupled.  
Rev. 0| Page 7 of 20  
 
AD8352  
TYPICAL PERFORMANCE CHARACTERISTICS  
25  
30  
25  
20  
15  
10  
5
R
= 20  
G
20  
R
= 43Ω  
G
15  
10  
5
R
= 100Ω  
G
R
= 100Ω  
= 182Ω  
= 383Ω  
G
R
G
G
R
= 520Ω  
G
R
R
= 715Ω  
G
0
0
–5  
10  
–5  
10  
100  
1k  
10k  
100  
1k  
10k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 4. Gain vs. Frequency for a 200 Ω Differential Load with Baluns,  
AV = 18 dB, 12 dB, and 6 dB  
Figure 7. Gain vs. Frequency for a 1 kΩ Differential Load Without Baluns,  
RD/CD Open, AV = 25 dB, 14 dB, 10 dB, 6 dB, and 3 dB  
25  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
11.0  
10.5  
10.0  
9.5  
R
R
T
= 1kΩ  
= 182Ω  
= 0.002dB/°C  
L
G
C
–40°C  
20  
R
= 62Ω  
= 190Ω  
= 3kΩ  
G
+85°C  
+25°C  
15  
10  
5
R
G
9.0  
8.5  
–40°C  
R
G
8.0  
+85°C  
7.5  
+25°C  
R
R
T
= 200Ω  
= 118Ω  
= 0.004dBc  
L
G
C
9.0  
7.0  
0
8.5  
6.5  
6.0  
–5  
10  
8.0  
10  
100  
1k  
10k  
100  
1k  
10k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 5. Gain vs. Frequency for a 1 kΩ Differential Load with Baluns,  
AV = 18 dB, 12 dB, and 6 dB  
Figure 8. Gain vs. Frequency over Temperature (−40°C, +25°C, +85°C)  
Without Baluns, AV = 10 dB, RL = 200 Ω and 1 kΩ  
25  
50  
45  
40  
R
= 19Ω  
G
G
20  
15  
10  
5
A
= 10dB  
V
R
= 64Ω  
= 118Ω  
= 232Ω  
A
= 15dB  
35  
30  
25  
20  
15  
10  
V
R
G
R
R
A
= 6dB  
G
G
V
= 392Ω  
0
–5  
10  
100  
1k  
10k  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 6. Gain vs. Frequency for a 200 Ω Differential Load Without Baluns,  
RD/CD Open, AV = 22 dB, 14 dB, 10 dB, 6 dB, and 3 dB  
Figure 9. OIP3 vs. Frequency in dB, 2 V p-p Composite, RL = 200 Ω  
AV = 15 dB, 10 dB, and 6 dB  
Rev. 0| Page 8 of 20  
 
 
AD8352  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
> 300MHz NO C OR R USED  
D
D
–20  
–40  
–60  
–80  
HD3  
2V p-p  
HD2  
2V p-p  
HD3  
1V p-p  
–100  
–120  
220  
260  
300  
340  
380  
420  
460  
500  
0
100 200 300 400 500 600 700 800 900 1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 10. Third-Order Harmonic Distortion HD3 vs. Frequency,  
AV = 10 dB, RL = 200 Ω  
Figure 13. Phase and Group Delay vs. Frequency, AV = 10 dB, RL = 200 Ω  
–60  
–65  
3500  
3000  
2500  
2000  
1500  
1000  
500  
7
6
5
4
3
2
1
HD3  
–70  
–75  
–80  
–85  
HD2  
–90  
–95  
–100  
–105  
–110  
0
10  
0
1000  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
Figure 11. Harmonic Distortion vs. Frequency for 2 V p-p into RL = 200 Ω,  
Figure 14. S11 Magnitude and Phase  
A
V = 10 dB, RG = 115 Ω, RD = 4.3 kΩ, CD = 0.2 pF  
–50  
120  
118  
116  
114  
112  
110  
108  
106  
104  
102  
100  
0
–10  
–60  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–70  
HD3  
HD2  
–80  
–90  
–100  
–110  
0
50  
100  
150  
200  
250  
300  
350  
400  
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. Harmonic Distortion vs. Frequency for 2 V p-p into RL =1 kΩ,  
AV = 10 dB, 5 V Supply, RG = 180 Ω, RD = 6.8 kΩ, CD = 0.1 pF  
Figure 15. S22 Magnitude and Phase  
Rev. 0| Page 9 of 20  
AD8352  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
17.0  
16.5  
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
13.0  
T
T
(10/90) = 215psec  
(10/90) = 210psec  
RISE  
FALL  
–0.5  
–1.0  
–1.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
50  
100 150 200 250 300 350 400 450 500  
TIME (nsec)  
FREQUENCY (MHz)  
Figure 16 Large Signal Output Transient Response, RL = 200 Ω, AV = 10 dB  
Figure 18. Noise Figure and Noise Spectral Density RTI vs. Frequency,  
AV = 10 dB, RL = 200 Ω and 1 kΩ  
5
4
80  
70  
3
R
= 200  
= 1kΩ  
L
60  
50  
40  
30  
20  
10  
2
1
R
L
0
–1  
–2  
–3  
–4  
–5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
10  
100  
1000  
TIME (nsec)  
FREQUENCY (MHz)  
Figure 17. 1% Settling Time for a 2 V p-p Step Response,  
AV = 10 dB, RL = 200 Ω  
Figure 19. CMRR vs. Frequency, RL = 200 Ω and 1 kΩ,  
Differential Source Resistance  
Rev. 0| Page 10 of 20  
AD8352  
APPLICATIONS  
Table 7. Broadband Selection of RG, CD, and RD: 1 kΩ Load  
GAIN AND DISTORTION ADJUSTMENT  
(DIFFERENTIAL INPUT)  
AV (dB)  
RG (Ω)  
750  
360  
210  
180  
130  
82  
CD (pF)  
0 (DNP)  
0 (DNP)  
0 (DNP)  
0.05  
RD (kΩ)  
3
6
9
10  
12  
15  
18  
6.8  
6.8  
6.8  
6.8  
6.8  
6.8  
Table 6 and Table 7 show the required value of RG for the gains  
specified at 200 Ω and 1 kΩ loads. Figure 20 and Figure 22 plot  
RG vs. gain up to 18 dB for both load conditions. For other  
output loads (RL), use Equation 1 to compute gain vs. RG.  
0.1  
0.3  
R + 500  
G
A
=
R
(1)  
VDifferential  
L
54  
0.5  
6.8  
(
R + 5)(R + 53  
)
+ 430  
G
L
20  
18  
16  
14  
12  
10  
8
where:  
RL = single-ended load.  
RG = gain setting resistor.  
The third-order harmonic distortion can be reduced by using  
external components RD and CD. Table 6 and Table 7 show the  
required values for RD and CD vs. the specified gains to achieve  
(single tone) third-order distortion reduction at 180 MHz.  
Figure 21 and Figure 23 show CD vs. any gain (up to 18 dB) for  
200 Ω and 1 kΩ loads, respectively. When these values are  
selected, they result in minimum single tone, third-order  
distortion at 180 MHz. This frequency point provides the best  
overall broadband distortion for the specified frequencies below  
and above this value. For applications above approximately  
300 MHz, CD and RD are not required. See the Specifications  
section and third-order harmonic plots in the Typical  
6
4
2
0
0
50  
100  
150  
200  
()  
250  
300  
350  
400  
R
G
Figure 20. RG vs. Gain, RL = 200 Ω  
20  
18  
16  
14  
12  
10  
8
Performance Characteristics section for more details.  
CD can be further optimized for narrow-band tuning  
requirements below 180 MHz that result in relatively lower  
third-order (in-band) intermodulation distortion terms. See the  
Narrow-Band, Third-Order Intermodulation Cancellation  
section for more information. Though not shown, single tone,  
third-order optimization can also be improved for narrow-band  
frequency applications below 180 MHz with the proper  
selection of CD, and 3 dB to 6 dB of relative third-order  
improvement can be realized at frequencies below  
approximately 140 MHz.  
6
4
2
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
(pF)  
0.6  
0.7  
0.8  
0.9  
1.0  
Using the information listed in Table 6 and Table 7, an  
extrapolated value for RD can be determined for loads between  
200 Ω and 1 kΩ. For loads above 1 kΩ, use the 1 kΩ RD values  
listed in Table 7.  
C
D
Figure 21. CD vs. Gain, RL = 200 Ω  
Table 6. Broadband Selection of RG, CD, and RD: 200 Ω Load  
AV (dB)  
RG (Ω)  
390  
220  
140  
115  
86  
CD (pF)  
0 (DNP)  
0 (DNP)  
0.1  
0.2  
0.3  
RD (kΩ)  
3
6
9
10  
12  
15  
18  
6.8  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
56  
35  
0.6  
1
Rev. 0| Page 11 of 20  
 
 
 
 
 
 
AD8352  
20  
18  
16  
14  
12  
10  
8
0.1µF  
0.1µF  
0.1µF  
VIP  
RGP  
65  
25Ω  
50Ω  
C
R
R
G
AD8352  
RGN  
D
D
AC  
0.1µF  
R
200Ω  
N
6
Figure 24. Single-Ended Schematic  
4
40  
35  
30  
25  
20  
15  
10  
5
2
0
0
100  
200  
300  
400  
()  
500  
600  
700  
800  
R
G
Figure 22. RG vs. Gain, RL = 1 kΩ  
GAIN, R = 1kΩ  
L
20  
18  
16  
14  
12  
10  
8
GAIN, R = 200Ω  
L
0
1
10  
100  
1k  
10k  
R
()  
G
6
Figure 25. Gain vs. RG  
4
–60  
–70  
2
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
2NDS, 2V p-p OUT  
C
(pF)  
D
Figure 23. CD vs. Gain, RL = 1 kΩ  
–80  
2NDS, 1V p-p OUT  
SINGLE-ENDED INPUT OPERATION  
–90  
The AD8352 can be configured as a single-ended to differential  
amplifier as shown in Figure 24. To balance the outputs when  
driving only the VIP input, an external resistor (RN) of 200 Ω is  
added between VIP and RGN. See Equation 2 to determine the  
single-ended input gain (AVSingle-ended) for a given RG or RL.  
–100  
–110  
10  
70  
140  
FREQUENCY (MHz)  
190  
240  
RG + 500  
RL  
(2)  
AVSingleended  
=
RL +  
Figure 26. Single-Ended, Second-Order Harmonic Distortion,  
200 Ω Load  
(
RG + 5)(RL + 53  
)
+ 430  
RL + 30  
where:  
RL = single-ended load.  
RG = gain setting resistor.  
This broadband optimization was also performed at 180 MHz.  
As with differential input drive, the resulting distortion levels  
at lower frequencies are based on the CD and RD specified in  
Table 8 and Table 9. As with differential input drive, relative  
third-order reduction improvement at frequencies below  
140 MHz are realized with proper selection of CD and RD.  
Figure 25 plots gain vs. RG for 200 Ω and 1 kΩ loads. Table 8  
and Table 9 show the values of CD and RD required (for 180 MHz  
broadband third-order, single tone optimization) for 200 Ω and  
1 kΩ loads, respectively. This single-ended configuration  
provides −3 dB bandwidths similar to input differential drive.  
Figure 26 through Figure 28 show distortion levels at a gain of  
12 dB for both 200 Ω and 1 kΩ loads. Gains from 3 dB to 18 dB,  
using optimized CD and RD values, obtain similar distortion  
levels.  
Rev. 0| Page 12 of 20  
 
 
 
 
 
 
 
 
AD8352  
–60  
–70  
Table 9. Distortion Cancellation Selection Components  
(RD and CD) for Required Gain, 1 kΩ Load  
AV (dB)  
RG (Ω)  
CD (pF)  
0 (DNP)  
0 (DNP)  
0.2  
RD (kΩ)  
6
9
12  
15  
18  
3 k  
4.3  
4.3  
4.3  
3RDS, 2V p-p OUT  
470  
210  
120  
68  
–80  
0.3  
4.3  
–90  
0.5  
4.3  
3RDS, 1V p-p OUT  
–100  
–110  
NARROW-BAND, THIRD-ORDER  
INTERMODULATION CANCELLATION  
Broadband, single tone, third-order harmonic optimization  
does not necessarily result in optimum (minimum) two tone,  
third-order intermodulation levels. The specified values for CD  
and RD in Table 6 and Table 7 were determined for minimizing  
broadband single tone, third-order levels.  
10  
70  
140  
FREQUENCY (MHz)  
190  
240  
Figure 27. Single-Ended, Third-Order Harmonic Distortion, 200 Ω Load  
–60  
Due to phase-related distortion coefficients, optimizing single  
tone, third-order distortion does not result in optimum in band  
(2f1 f2 and 2f2 f1), third-order distortion levels. By proper  
selection of CD (using a fixed 4.3 kΩ RD), IP3s of better than  
45 dBm are achieved. This results in degraded out-of-band,  
third-order frequencies (f2 + 2f1, f1 + 2f2, 3f1 and 3f2). Thus,  
careful frequency planning is required to determine the  
tradeoffs.  
–70  
–80  
2NDS, 2V p-p OUT  
–90  
2NDS, 1V p-p OUT  
–100  
Figure 30 shows narrow band (2 MHz spacing) OIP3 levels  
optimized at 32 MHz, 70 MHz, 100 MHz, and 180 MHz using  
the CD values specified in Figure 31. These four data points (the  
CD value and associated IP3 levels) are extrapolated to provide  
close estimates of IP3 levels for any specific frequency between  
30 MHz and 180 MHz. For frequencies below approximately  
140 MHz, narrow-band tuning of IP3 results in relatively higher  
IP3s (vs. the broadband results shown in Table 2 specifications).  
Though not shown, frequencies below 30 MHz also result in  
improved IP3s when using proper values for CD.  
–110  
10  
70  
140  
190  
240  
FREQUENCY (MHz)  
Figure 28. Single-Ended, Second-Order Harmonic Distortion, 1 kΩ Load  
–60  
–70  
–80  
–90  
3RDS, 2V p-p OUT  
48  
R
R
C
= 200  
= 4.3kΩ  
= 0.3pF  
L
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
D
D
–100  
–110  
3RDS, 1V p-p OUT  
A
=
6db  
V
10  
70  
140  
190  
240  
10db  
15db  
18dB  
FREQUENCY (MHz)  
Figure 29. Single-Ended, Third-Order Harmonic Distortion, 1 kΩ Load  
Table 8. Distortion Cancellation Selection Components  
(RD and CD) for Required Gain, 200 Ω Load  
AV (dB)  
RG (Ω)  
4.3 k  
540  
220  
120  
68  
CD (pF)  
0 (DNP)  
0 (DNP)  
0.1  
0.3  
0.6  
RD (kΩ)  
0
50  
100  
FREQUENCY (MHz)  
150  
200  
3
6
9
12  
15  
18  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
Figure 30. Third-Order Intermodulation Distortion vs. Frequency for  
Various Gain Settings  
43  
0.9  
Rev. 0 | Page 13 of 20  
 
 
 
 
 
 
AD8352  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
These AD8352 simplified circuits provide the gain, isolation,  
and distortion performance necessary for efficiently driving  
high linearity converters such as the AD9445. This device also  
provides balanced outputs whether driven differentially or  
single-ended, thereby maintaining excellent second-order  
distortion levels. Though at frequencies above approximately  
100 MHz, due to phase related errors, single-ended, second-  
order distortion is relatively higher. The output of the amplifier  
is ac-coupled to allow for an optimum common-mode setting at  
the ADC input. Input ac-coupling can be required if the source  
also requires a common-mode voltage that is outside the  
optimum range of the AD8352. A VCM common-mode pin is  
provided on the AD8352 that equally shifts both input and  
output common-mode levels. Increasing the gain of the  
AD8352 increases the system noise and, thus, decreases the  
SNR (3.5 dB at 100 MHz input for Av=10 dB) of the AD9445  
when no filtering is used. Note that amplifier gains from 3 dB to  
18 dB, with proper selection of CD and RD, do not appreciably  
affect distortion levels. These circuits, when configured  
properly, can result in SFDR performance of better than 87 dBc  
at 70 MHz and 82 dBc at 180 MHz input. Single-ended drive,  
with appropriate CD and RD, give similar results for SFDR and  
third-order intermodulation levels shown in these figures.  
R
R
= 200Ω  
= 4.3kΩ  
L
D
A
=
6db  
V
10db  
15db  
18dB  
0
30  
50  
70  
90  
110  
130  
150  
170  
190  
FREQUENCY (MHz)  
Figure 31. Narrow-Band CD vs. Frequency for Various Gain Settings  
HIGH PERFORMANCE ADC DRIVING  
The AD8352 provides the gain, isolation, and balanced low  
distortion output levels for efficiently driving wideband ADCs  
such as the AD9445.  
Figure 32 and Figure 33 (single and differential input drive)  
illustrate the typical front-end circuit interface for the AD8352  
differentially driving the AD9445 14-bit ADC at 105 MSPS. The  
AD8352, when used in the single-ended configuration shows  
little or no degradation in overall third-order harmonic  
performance (vs. differential drive). See the Single-Ended Input  
Operation section. The 100 MHz FFT plots shown in Figure 34  
and Figure 35 display the results for the differential  
configuration. Though not shown, the single-ended third-order  
levels are similar.  
Placing antialiasing filters between the ADC and the amplifier  
is a common approach for improving overall noise and broadband  
distortion performance for both band-pass and low-pass appli-  
cations. For high frequency filtering, matching to the filter is  
required. The AD8352 maintains a 100 Ω output impedance  
well beyond most applications and is well-suited to drive most  
filter configurations with little or no degradation in distortion.  
V
CC  
The 50 Ω resistor shown in Figure 32 provides a 50 Ω  
differential input impedance to the source for matching  
considerations. When the driver is less than one eighth of the  
wavelength from the AD8352, impedance matching is not  
required thereby negating the need for this termination resistor.  
The output 24 Ω resistors provide isolation from the analog-to-  
digital input. Refer to the Layout and Transmission Line Effects  
section for more information. The circuit in Figure 33  
0.1µF  
0.1µF  
0  
16  
1
IF/RF INPUT  
8, 11  
2
0.1µF  
0.1µF  
11  
10  
24Ω  
24Ω  
AD8352  
AD9445  
R
R
G
50Ω  
D
C
D
3
4
5
ADT1-1WT  
14  
0Ω  
0.1µF  
0.1µF  
represents a single-ended input to differential output configura-  
tion for driving the AD9445. In this case, the input 50 Ω resistor  
with RN (typically 200 Ω) provide the input impedance match  
for a 50 Ω system. Again, if input reflections are minimal, this  
impedance match is not required. A fixed 200 Ω resistor (RN) is  
required to balance the output voltages that are required for  
second-order distortion cancellation. RG is the gain-setting  
resistor for the AD8352 with the RD and CD components  
providing distortion cancellation. The AD9445 presents  
approximately 2 kΩ in parallel with 5 pF/differential load to the  
AD8352 and requires a 2.0 V p-p differential signal (VREF = 1 V)  
between VIN+ and VIN− for a full-scale output operation.  
Figure 32. Differential Input to the AD8352 Driving the AD9445  
0.1µF  
0.1µF  
33  
VIP  
VOP  
50Ω  
50Ω  
VIN+  
AD9445  
VIN–  
AC  
C
R
R
G
AD8352  
D
D
VIN  
33Ω  
VON  
0.1µF  
0.1µF  
25Ω  
R
N
200Ω  
Figure 33. Single-Ended Input to the AD8352 Driving the AD9445  
Rev. 0| Page 14 of 20  
 
 
 
 
AD8352  
0
–10  
LAYOUT AND TRANSMISSION LINE EFFECTS  
SNR = 67.26dBc  
SFDR = 83.18dBc  
NOISE FLOOR = –110.5dB  
FUND = –1.074dBFS  
SECOND = –83.14dBc  
THIRD = –85.39dBc  
–20  
High Q inductive drives and loads, as well as stray transmission  
line capacitance in combination with package parasitics, can  
potentially form a resonant circuit at high frequencies resulting  
in excessive gain peaking or possible oscillation. If RF transmis-  
sion lines connecting the input or output are used, they should  
be designed such that stray capacitance at the I/O pins is  
minimized. In many board designs, the signal trace widths  
should be minimal where the driver/receiver is less than one-  
eighth of the wavelength from the AD8352. This non-transmission  
line configuration requires that underlying and adjacent ground  
and low impedance planes be far removed from the signal lines.  
In a similar fashion, stray capacitance should be minimized  
near the RG, CD, and RD components and associated traces. This  
also requires not placing low impedance planes near these  
components. Refer to the evaluation board layout (Figure 37  
and Figure 38) for more information. Excessive stray capacitance  
at these nodes results in unwanted high frequency distortion.  
The 0.1 μF supply decoupling capacitors need to be close to the  
amplifier. This includes Signal Capacitor C2 through Signal  
Capacitor C5.  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
0
5.25 10.50 15.75 21.00 26.25 31.50 36.75 42.00 47.25 52.50  
FREQUENCY (MHz)  
Figure 34. Single Tone Distortion AD8352 Driving AD9445, Encode Clock @  
105 MHz with Fc @ 100 MHz (AV = 10 dB), See Figure 32  
0
SNR = 61.98dBc  
NOISE FLOOR = –111.2dB  
FUND1 = –7.072  
FUND2 = –7.043  
IMD (2F2-F1) = –89dBc  
IMD (2F1-F2) = –88dBc  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
Parasitic suppressing resistors (R5, R6, R7, and R11) can be  
used at the device I/O pins. Use 25 Ω series resistors (Size 0402)  
to adequately de-Q the input and output system from most  
parasitics without a significant decrease in gain. In general,  
if proper board layout techniques are used, the suppression  
resistors may not be required. Output Parasitic Suppression  
Resistor R7 and Output Parasitic Suppression Resistor R11 may  
be required for driving some switch cap ADCs. These  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
0
5.25 10.50 15.75 21.00 26.25 31.50 36.75 42.00 47.25 52.50  
FREQUENCY (MHz)  
suppressors, with Input C of the converter (and possibly added  
External Shunt C), help provide charge kickback isolation and  
improve overall distortion at high encode rates.  
Figure 35. Two Tone Distortion AD8352 Driving AD9445,  
Encode Clock @ 105 MHz with Fc @ 100 MHz (AV = 10 dB),  
Analog In = 98 MHz and 101 MHz, See Figure 32  
Rev. 0 | Page 15 of 20  
 
 
 
 
AD8352  
EVALUATION BOARD  
An evaluation board is available for experimentation of various parameters such as gain, common-mode level, and distortion. The output  
network can be configured for different loads via minor output component changes. The schematic and evaluation board artwork are  
presented in Figure 36, Figure 37, and Figure 38. All discrete capacitors and resistors are Size 0402, except for C1 (3528-B).  
Table 10. Evaluation Board Circuit Components and Functions  
Additional  
Information  
Component  
Name  
Function  
Pin 8 and Pin 13 VCC  
Supply VCC = +5 V.  
Connect to Low Impedance GND.  
Pin 6, Pin 7,  
Pin 9, Pin 12  
GND  
Pin 14, C9  
VCM, Capacitor Common-Mode Offset Pin. Allows for monitoring or adjustment of the  
output common-mode voltage. C9 is a bypass capacitor.  
C9 = 0.1 μF  
RD/CD  
Distortion  
Tuning  
Distortion Adjustment Components. Allows for third-order distortion  
adjustment HD3.  
Typically, both are open  
above 300 MHz  
Components  
CD = 0.2 pF, RD = 4.32 kΩ  
CD is Panasonic High Q  
(microwave) Multilayer  
Chip 402 capacitor  
Pin 15, C8  
ENB, Capacitor  
Enable. Apply positive voltage (1.3 V < ENB < VCC) to activate device. Pull  
down to disable. Can be bypassed and float high (1.8 V) for on state. C8 is  
a bypass capacitor.  
Floats to 1.8 V to  
maintain device in  
power-up mode  
C8 = 0.1 μF  
R1, R2, R3, R4,  
R5, R6, T2, C2,  
C3  
Resistors,  
Transformer,  
Capacitors  
Input Interface. R1 and R4 ground one side of the differential drive  
interface for single-ended applications. T2 is a 1-to-1 impedance ratio  
balun to transform a single-ended input into a balanced differential  
signal. R2 and R3 provide a differential 50 Ω input termination. R5 and R6  
can be increased to reduce gain peaking when driving from a high source  
impedance. The 50 Ω termination provides an insertion loss of 6 dB. C2  
and C3 provide ac-coupling.  
T2 = MacomETC1-1-13  
R1 = open, R2 = 25 Ω,  
R3 = 25 Ω, R4 = 0 Ω,  
R5 = 0 Ω, R6 = 0 Ω,  
C2 = 0.1 μF, C3 = 0.1 μF  
R7, R8, R9, R11,  
R12, R13, R14,  
T1, C4, C5  
Resistors,  
Transformer,  
Capacitors  
Output Interface. R13 and R14 ground one side of the differential output  
interface for single-ended applications. T1 is a 1-to-1 impedance ratio  
balun to transform a balanced differential signal to a single-ended signal.  
R8, R9, and R12 are provided for generic placement of matching  
components. R7 and R11 allow additional output series resistance when  
driving capacitive loads. The evaluation board is configured to provide a  
150 Ω to 50 Ω impedance transformation with an insertion loss of 11.6 dB.  
C4 and C5 provide ac-coupling. R7 and R11 provide additional series  
resistance when driving capacitive loads.  
T1= Macom ETC1-1-13  
R7 = 0 Ω, R8 = 86.6 Ω,  
R9 = 57.6 Ω,  
R11 = 0 Ω, R12 = 86.6 Ω,  
R13 = 0 Ω, R14 = open  
C4 = 0.1 μF, C5 = 0.1 μF  
RG  
Resistor  
Gain Setting Resistor. Resistor RG is used to set the gain of the device.  
Refer to Table 6 and Table 7 when selecting the gain resistor.  
RG = 115 Ω (Size 0402)  
for a gain of 10 dB  
C1, C6, C7  
Capacitors  
Power Supply Decoupling. The supply decoupling consists of a 10 μF  
capacitor to ground. C6 and C7 are bypass capacitors.  
C1 = 10 μF  
C6, C7 = 0.1 μF  
Pin 14  
VCM  
Common-Mode Offset Adjustment. Use Pin 14 to trim common-mode  
Typically decoupled to  
input/output levels. By applying a voltage to Pin 14, the input and output, ground using a 0.1 μF  
common-mode voltage can be directly adjusted.  
capacitor with  
ac-coupled  
input/output ports  
Rev. 0| Page 16 of 20  
 
AD8352  
Table 11. Values Used for 200 Ω and 1000 Ω Loads  
EVALUATION BOARD LOADING SCHEMES  
Component  
200 Ω Load  
1000 Ω Load  
The AD8352 evaluation board is characterized with two load  
configurations representing the most common ADC input  
resistance. The loads chosen are 200 Ω and 1000 Ω using a  
broadband resistive match. The loading can be changed via R8,  
R9, and R12 giving the flexibility to characterize the AD8352  
evaluation board for the load in any given application. These  
loads are inherently lossy and thus must be accounted for in  
overall gain/loss for the entire evaluation board. Measure the  
gain of the AD8352 with an oscilloscope using the following  
procedure to determine the actual gain:  
R8  
86.6  
487  
51.1  
487  
R9  
57.6  
R12  
86.6  
1. Measure the peak-to-peak voltage at the input node  
(C2 or C3), and  
2. Measure the peak-to-peak voltage at the output node  
(C4 or C5), then  
3. Compute gain using the formula  
Gain = 20log VOUT/VIN  
Rev. 0 | Page 17 of 20  
 
AD8352  
EVALUATION BOARD SCHEMATICS  
C
V C  
M V C  
E N  
C
D
D
V C  
G N  
G N  
B
Figure 36. Preliminary Characterization Board v.A01212A  
Rev. 0| Page 18 of 20  
 
 
AD8352  
Figure 37. Component Side Silk Screen  
Figure 38. Far Side Showing Ground Plane Pull Back Around Critical Features  
Rev. 0 | Page 19 of 20  
 
 
AD8352  
OUTLINE DIMENSIONS  
0.50  
0.40  
0.30  
3.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
*
1.65  
13  
12  
16  
1
0.45  
1.50 SQ  
1.35  
PIN 1  
INDICATOR  
2.75  
BSC SQ  
TOP  
VIEW  
EXPOSED  
PAD  
(BOTTOM VIEW)  
4
9
8
5
0.50  
BSC  
0.25 MIN  
1.50 REF  
0.80 MAX  
12° MAX  
0.65 TYP  
0.90  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
0.30  
0.23  
0.18  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VEED-2  
EXCEPT FOR EXPOSED PAD DIMENSION.  
Figure 39. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
3 mm × 3 mm Body, Very Thin Quad  
(CP-16-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD8352ACPZ-WP1  
AD8352ACPZ-R71  
AD8352-EVAL  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CP-16-3  
CP-16-3  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ, 7”Tape and Reel  
Evaluation Board  
1 Z = Pb-free part.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05728-0-1/06(0)  
Rev. 0| Page 20 of 20  
 
 
 

相关型号:

AD8352ACPZ-WP

2 GHz Ultralow Distortion Differential RF/IF Amplifier
ADI

AD8352_0610

2 GHz Ultralow Distortion Differential RF/IF Amplifier
ADI

AD8352_08

2 GHz Ultralow Distortion Differential RF/IF Amplifier
ADI

AD8353

100 MHz-2.7 GHz RF Gain Block
ADI

AD8353-EVAL

100 MHz-2.7 GHz RF Gain Block
ADI

AD8353-EVALZ

RF Gain Block
ADI

AD8353ACP-R2

1 MHz to 2.7 GHz RF Gain Block
ADI

AD8353ACP-REEL7

100 MHz-2.7 GHz RF Gain Block
ADI

AD8353ACPZ-REEL7

1 MHz to 2.7 GHz RF Gain Block
ADI

AD8353_05

1 MHz to 2.7 GHz RF Gain Block
ADI

AD8353_17

RF Gain Block
ADI

AD8354

100 MHz-2.7 GHz RF Gain Block
ADI