AD8372_17 [ADI]

Programmable Dual VGA;
AD8372_17
型号: AD8372_17
厂家: ADI    ADI
描述:

Programmable Dual VGA

文件: 总16页 (文件大小:751K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
41 dB Range, 1 dB Step Size,  
Programmable Dual VGA  
Data Sheet  
AD8372  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Dual independent digitally controlled VGA  
Differential input and output  
ENB1  
REF1  
AD8372  
IPC1  
INC1  
OPC1  
ONC1  
150 Ω differential input  
Open-collector differential output  
7.8 dB noise figure to 100 MHz @ maximum gain  
HD2/HD3 better than 77 dBc for 1 V p-p differential output  
−3 dB bandwidth of 130 MHz  
CHANNEL 1  
POSTAMP  
RXT1  
CLK2  
SDO2  
SDI2  
CLK1  
SDO1  
SDI1  
REGISTERS  
AND  
GAIN DECODER  
LCH1  
41 dB gain range  
LCH2  
1 dB step size 0.2 dB  
RXT2  
IPC2  
Serial 8-bit bidirectional SPI control interface  
Wide input dynamic range  
OPC2  
ONC2  
REF2  
INC2  
Pin-programmable output stage  
Power-down feature  
CHANNEL 2  
POSTAMP  
ENB2  
Figure 1.  
Single 5 V supply: 106 mA per channel  
32-lead LFCSP, 5 mm × 5 mm package  
APPLICATIONS  
Differential ADC drivers  
CMTS upstream direct sampling receivers  
CATV modem signal scaling  
Generic RF/IF gain stages  
Single-ended-to-differential conversion  
GENERAL DESCRIPTION  
The AD8372 is a dual, digitally controlled, variable gain  
amplifier (VGA) that provides precise gain control, high IP3,  
and low noise figure. The excellent distortion performance and  
moderate signal bandwidth make the AD8372 a suitable  
gain control device for a variety of multichannel receiver  
applications.  
setting resistors can be adjusted to manipulate the gain and  
distortion performance of each channel. This is a flexible  
feature in applications where it is desirable to trade off distortion  
performance for lower power consumption.  
The AD8372 is powered on by applying the appropriate logic  
level to the ENB1, ENB2 pins. When powered down, the AD8372  
consumes less than 2.6 mA and offers excellent input-to-output  
isolation. The gain setting is preserved when powered down.  
For wide input dynamic range applications, the AD8372  
provides a broad 41 dB gain range. The gain is programmed  
through a bidirectional 4-pin serial interface. The serial inter-  
face consists of a clock, latch, data input, and data output lines  
for each channel.  
Fabricated on an Analog Devices, Inc., high frequency BiCMOS  
process, the AD8372 provides precise gain adjustment capabilities  
with good distortion performance. The quiescent current of the  
AD8372 is typically 106 mA per channel. The AD8372 amplifier  
comes in a compact, thermally enhanced 5 mm × 5 mm 32-lead  
LFCSP package and operates over the temperature range of  
−40°C to +85°C.  
The AD8372 provides the ability to set the transconductance of  
the output stage using a single external resistor. The RXT1 and  
RXT2 pins provide a band gap derived stable reference voltage  
of 1.56 V. Typically 2.0 kΩ shunt resistors to ground are used to  
set the maximum gain to a nominal value of 31 dB. The current  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject tochange without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2007–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD8372  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................8  
Theory of Operation ...................................................................... 10  
Single-Ended and Differential Signals..................................... 10  
Passive Filter Techniques........................................................... 10  
Digital Gain Control .................................................................. 10  
Driving Analog-to-Digital Converters.................................... 10  
Evaluation Board Schematic ......................................................... 12  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 13  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Serial Control Interface Timing ................................................. 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
REVISION HISTORY  
9/2017—Rev. B to Rev. C  
Changed CP-32-2 to CP-32-7 ...................................... Throughout  
Updated Outline Dimensions....................................................... 13  
Changes to Ordering Guide .......................................................... 13  
6/2011—Rev. A to Rev. B  
Changes to Table 4 ............................................................................ 6  
Changes to Figure 4 and Table 5..................................................... 7  
Added Exposed Pad Notation to Outline Dimensions ............. 13  
Changes to Ordering Guide .......................................................... 13  
5/2008—Rev. 0 to Rev. A  
Changes to Features and Figure 1................................................... 1  
Changes to Figure 2 and Figure 3................................................... 5  
Changes to Figure 9.......................................................................... 8  
Changes to Figure 16...................................................................... 12  
11/2007—Revision 0: Initial Version  
Rev. C | Page 2 of 16  
 
Data Sheet  
AD8372  
SPECIFICATIONS  
VS = 5 V, T = 25°C, ZS = 150 Ω, ZL = 250 Ω at 35 MHz, 1 V p-p differential output, RXT1 = RXT2 = 2.0 kΩ, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
INPUT STAGE  
VOUT < 1 V p-p, CLOAD < 3pF  
130  
MHz  
Pin IPC1, Pin INC1, Pin IPC2, and Pin INC2  
Maximum Input Swing at Each Input Pin  
Input Resistance  
5
V p-p  
Differential  
150  
2.4  
55  
Common-Mode Input Voltage  
CMRR  
V
Gain code = 1x101010 (max gain)  
dB  
GAIN  
Maximum Voltage Gain  
Minimum Voltage Gain  
Gain Step Size  
Gain code = 1x101010  
32  
dB  
Gain code = 1x000001  
−9  
1.0  
0.3  
0.7  
7.5  
20  
dB  
From gain code 1x000001 to 1x101010  
From gain code 1x000001 to 1x101010  
Gain code = 1x101010, from 5 MHz to 65MHz  
Gain code = 1x101010  
dB  
Gain Step Accuracy  
Gain Flatness  
dB  
dB  
Gain Temperature Sensitivity  
Step Response  
mdB/°C  
ns  
For 6 dB gain step, 10% settling  
Pin OPC1, Pin ONC1, Pin OPC2, and Pin ONC2  
At P1dB, gain code = 1x101010  
Differential  
OUTPUT STAGE  
Output Voltage Swing  
Output Resistance  
Channel Isolation  
9
V p-p  
kΩ  
3.5  
55  
Measured at differential output for differential input  
applied to alternate channel  
dB  
NOISE/HARMONIC PERFORMANCE  
5 MHz  
Gain code = 1x101010 (max gain)  
Gain code = 1x101010 (max gain)  
Gain code = 1x101010 (max gain)  
Gain code = 1x101010  
Noise Figure  
7.8  
79  
dB  
Second Harmonic  
Third Harmonic  
Output IP3  
dBc  
dBc  
dBm  
dBm  
91  
32  
Output 1 dB Compression Point  
35 MHz  
18.2  
Noise Figure  
7.8  
79  
dB  
Second Harmonic  
Third Harmonic  
Output IP3  
dBc  
dBc  
dBm  
dBm  
87  
35  
Output 1 dB Compression Point  
65 MHz  
18.1  
Noise Figure  
7.9  
78  
dB  
Second Harmonic  
Third Harmonic  
Output IP3  
dBc  
dBc  
dBm  
dBm  
85  
35  
Output 1 dB Compression Point  
85 MHz  
17.9  
Noise Figure  
8.1  
77  
dB  
Second Harmonic  
Third Harmonic  
Output IP3  
dBc  
dBc  
dBm  
dBm  
85  
35  
Output 1 dB Compression Point  
17.7  
Rev. C | Page 3 of 16  
AD8372  
Data Sheet  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
POWER INTERFACE  
Supply Voltage  
4.5  
5.5  
V
Quiescent Current per Channel  
Thermal connection made to exposed paddle under  
device  
106  
1.2  
mA  
vs. Temperature  
−40°C ≤ TA ≤ +85°C  
135  
1.3  
0.8  
mA  
mA  
mA  
Power-Down Current, Both Channels  
vs. Temperature  
ENB1 and ENB2 low  
−40°C ≤ TA ≤ +85°C  
ENABLE INTERFACE  
Pin ENB1 and Pin ENB2  
Minimum voltage to enable the device  
ENB1, ENB2 = 0 V  
Enable Threshold  
V
ENB1, ENB2 Input Bias Current  
GAIN CONTROL INTERFACE  
400  
nA  
Pin CLK1, Pin CLK2, Pin SDI1, Pin SDI2, Pin SDO1, Pin  
SDO2, Pin LCH1, and Pin LCH2  
VIH  
Minimum voltage for a logic high  
2.4  
V
Input Bias Current  
400  
−60  
nA  
dB  
Serial Port Output Feedthrough  
Worse-case feedthrough from CLK1, CLK2, SDI1,  
SDI2, SDO1, SDO2, LCH1, LCH2 to OPC1 and ONC2,  
or OPC2 and ONC2  
Table 2. Gain Code vs. Voltage Gain Look-Up Table  
8-Bit Binary Gain Code1  
RW DC 000000  
RW DC 000001  
RW DC 000010  
RW DC 000011  
RW DC 000100  
RW DC 000101  
RW DC 000110  
RW DC 000111  
RW DC 001000  
RW DC 001001  
RW DC 001010  
RW DC 001011  
RW DC 001100  
RW DC 001101  
RW DC 001110  
RW DC 001111  
RW DC 010000  
RW DC 010001  
RW DC 010010  
RW DC 010011  
RW DC 010100  
RW DC 010101  
Voltage Gain (dB)  
8-Bit Binary Gain Code1  
RW DC 010110  
RW DC 010111  
RW DC 011000  
RW DC 011001  
RW DC 011010  
RW DC 011011  
RW DC 011100  
RW DC 011101  
RW DC 011110  
RW DC 011111  
RW DC 100000  
RW DC 100001  
RW DC 100010  
RW DC 100011  
RW DC 100100  
RW DC 100101  
RW DC 100110  
RW DC 100111  
RW DC 101000  
RW DC 101001  
RW DC 101010  
RW DC 101011  
Voltage Gain (dB)  
< −60  
−9  
−8  
−7  
−6  
−5  
−4  
−3  
−2  
−1  
0
+12  
+13  
+14  
+15  
+16  
+17  
+18  
+19  
+20  
+21  
+22  
+23  
+24  
+25  
+26  
+27  
+28  
+29  
+30  
+31  
+32  
< −60  
+1  
+2  
+3  
+4  
+5  
+6  
+7  
+8  
+9  
+10  
+11  
1 RW is the read/write bit. RW = 0 for read mode; RW = 1 for write mode. DC is  
the don’t care bit.  
Rev. C | Page 4 of 16  
 
Data Sheet  
AD8372  
SERIAL CONTROL INTERFACE TIMING  
tCLK  
tPW  
CLK1 OR CLK2  
LCH1 OR LCH2  
tLH  
tLS  
tDS  
tDH  
SDI1 OR SDI2  
NOTES  
WRITE BIT  
DON'T CARE  
LSB  
LSB + 1  
LSB + 2  
MSB – 2  
MSB – 1  
MSB  
1. THE FIRST SDI BIT DETERMINES WHETHER THE PART IS WRITING TO OR READING FROM THE INTERNAL GAIN WORD REGISTER. FOR A  
WRITE OPERATION, THE FIRST BIT SHOULD BE A LOGIC 1. THE GAIN WORD BIT IS THEN REGISTERED INTO THE SDI PIN ON CONSECUTIVE  
RISING EDGES OF THE CLOCK.  
Figure 2. Write Mode Timing Diagram  
tLH  
tPW  
tCLK  
tD  
CLK1 OR CLK2  
LCH1 OR LCH2  
SDI1 OR SDI2  
tLS  
tDS  
tDH  
READ BIT  
DC  
LSB  
DC  
DC  
LSB + 2  
DC  
DC  
DC  
MSB  
DC  
SDO1 OR SDO2  
NOTES  
LSB + 1  
MSB – 2  
MSB – 1  
1. THE FIRST SDI BIT DETERMINES WHETHER THE PART IS WRITING TO OR READING FROM THE INTERNAL GAIN WORD REGISTER. FOR A  
READ OPERATION, THE FIRST BIT SHOULD BE A LOGIC 0. THE GAIN WORD BIT IS THEN UPDATED AT THE SDO PIN ON CONSECUTIVE  
FALLING EDGES OF THE CLOCK.  
Figure 3. Read Mode Timing Diagram  
Table 3. Serial Programming Timing Parameters  
Parameter  
Min  
10  
Unit  
ns  
Clock Pulse Width (tPW  
)
Clock Period (tCK  
Write Mode  
)
20  
ns  
Setup Time Data vs. Clock (tDS  
Hold Time Data vs. Clock (tDH  
Setup Time Latch vs. Clock (tLS)  
)
0.0  
ns  
ns  
ns  
ns  
)
1.6  
−1.8  
2.0  
Hold Time Latch vs. Clock (tLH  
Read Mode  
)
Clock to Data Out (tD)  
4.5  
ns  
Rev. C | Page 5 of 16  
 
 
AD8372  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
5.5 V  
Supply Voltage, VS  
ENB1, ENB2, SDI1, SDI2, SDO1, SDO2, CLK1, DGDx − 0.5 V to  
VS + 500 mV  
CLK2, LCH1, LCH2  
Input Voltage, VIPC1, VINC1, VIPC2, VINC2  
AGDx − 0.5 V to  
VS + 500 mV  
Internal Power Dissipation  
1.4 W  
34.6°C/W1, 2  
3.6°C/W2  
θJA (Exposed Paddle Soldered Down)  
θJC (At Exposed Paddle)  
ESD CAUTION  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
150°C  
−40°C to +85°C  
−65°C to +150°C  
1 Still air.  
2 All values are modeled using a standard 4-layer JEDEC test board with the  
pad soldered to the board and thermal vias in the board.  
Rev. C | Page 6 of 16  
Data Sheet  
AD8372  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
DVS1  
LCH1  
SDI1  
CLK1  
CLK2  
SDI2  
1
2
3
4
5
6
7
8
24 OPC1  
23  
22 AGD1  
21 SDO1  
ONC1  
AD8372  
TOP VIEW  
20  
19  
SDO2  
AGD2  
(Not to Scale)  
LCH2  
DVS2  
18 ONC2  
17 OPC2  
NOTES  
1. THE EXPOSED PAD SHOULD BE CONNECTED  
TO AGD1 AND AGD2.  
Figure 4. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
1
Mnemonic  
DVS1  
LCH1  
SDI1  
Description  
Digital Supply Pin for Channel 1  
Latch Input for Channel 1  
2
3
Serial Data Input for Channel 1  
Clock Input for Channel 1  
4
CLK1  
CLK2  
SDI2  
5
Clock Input for Channel 2  
6
Serial Data Input for Channel 2  
Serial Data Input for Channel 2 Latch Input for Channel 2  
Digital Supply Pin for Channel 2  
Digital Ground for Channel 2  
7
LCH2  
DVS2  
DGD2  
INC2  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Negative Input for Channel 2  
IPC2  
Positive Input for Channel 2  
REF2  
Reference Voltage for Channel 2  
External Bias Setting Resistor Connection for Channel 2  
Analog Ground for Channel 2  
RXT2  
AGD2  
ENB2  
AVS2  
OPC2  
ONC2  
AGD2  
SDO2  
SDO1  
AGD1  
ONC1  
OPC1  
AVS1  
ENB1  
AGD1  
RXT1  
REF1  
Chip Enable Pin for Channel 2  
Analog Supply Pin for Channel 2  
Positive Output for Channel 2  
Negative Output for Channel 2  
Analog Ground for Channel 2  
Serial Data Output for Channel 2  
Serial Data Output for Channel 1  
Analog Ground for Channel 1  
Negative Output for Channel 1  
Positive Output for Channel 1  
Analog Supply Pin for Channel 1  
Chip Enable Pin for Channel 1  
Analog Ground for Channel 1  
External Bias Setting Resistor Connection for Channel 1  
Reference Voltage for Channel 1  
Positive Input for Channel 1  
IPC1  
INC1  
Negative Input for Channel 1  
DGD1  
EPAD  
Digital Ground for Channel 1  
Exposed Pad. The exposed pad should be connected to AGD1 and AGD2.  
Rev. C | Page 7 of 16  
AD8372  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 5 V, TA = 25°C, ZS = 150 Ω, ZL = 250 ꢀ, 1 V p-p differential output, both channels enabled, unless otherwise noted.  
20  
19  
18  
17  
16  
15  
40  
30  
20  
+25°C  
10  
+85°C  
–40°C  
0
–10  
–20  
–30  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
1M  
10M  
100M  
1G  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 8. P1dB, Maximum Gain  
Figure 5. Gain vs. Frequency by Gain Code (All Codes),  
Differential In, Differential Out  
180  
9
8
7
6
5
4
3
2
1
0
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
160  
140  
120  
100  
80  
HD2  
HD3  
60  
40  
20  
0
0
50  
100  
150  
200  
250  
300  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 6. 2nd and 3rd Harmonic Distortion  
Figure 9. Input Equivalent Parallel Impedance  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
OIP2 – A = 32  
V
OIP2 – A = 10  
V
OIP2 – A = –9  
V
OIP3 – A = 10  
OIP3 – A = 32  
V
V
OIP3 – A = –9  
V
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 10. CMRR vs. Frequency  
Figure 7. OIP2 and OIP3  
Rev. C | Page 8 of 16  
Data Sheet  
AD8372  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
A
= 0dB  
V
A
= 10dB  
= 20dB  
V
A
V
V
A
= 32dB  
0
20ns/DIV  
0
20  
40  
60  
80  
100 120 140 160 180 200  
FREQUENCY (MHz)  
Figure 11. Noise Figure vs. Frequency  
Figure 13. AD8372 Response to 6 dB Step Change in Gain (Gain Register  
Setting 36 to Setting 42); Falling Edge Shown is Serial Clock Input Edge  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 12. Isolation, Input to Opposite Output at Maximum Gain  
(To calculate output to output gain, subtract 29 dB from this plot)  
Rev. C | Page 9 of 16  
AD8372  
Data Sheet  
THEORY OF OPERATION  
The AD8372 is a dual differential variable gain amplifier. Each  
amplifier consists of a 150 Ω digitally controlled 6 dB attenuator  
followed by a 1 dB vernier and a fixed gain transconductance  
amplifier.  
primarily to the use of differential signaling techniques to  
cancel various distortion components in the device. In addition,  
all ac characterization is done using differential signal paths.  
Using this device with either the input or the output in a single-  
ended circuit significantly degrades the overall performance of  
the AD8372.  
The differential output on each amplifier consists of a pair of  
open-collector transistors. It is recommended that each open-  
collector output be biased to +5 V with a high value inductor.  
A 33 μH inductor, such as the Coilcraft® 1812LS-333XJL, is an  
excellent choice for this component. A 250 Ω resistor should be  
placed across the differential outputs to provide a current-to-  
voltage conversion and as a source impedance for passive  
filtering, post AD8372.  
PASSIVE FILTER TECHNIQUES  
The AD8372 has a 100 Ω differential input impedance. For  
optimal performance, the differential output load should be  
250 Ω. When designing passive filters around the AD8372,  
these impedances must be taken into account.  
DIGITAL GAIN CONTROL  
The gain for each side is based on a 250 Ω differential load and  
varies as the RLOAD changes per the following equations:  
The digital gain control interface consists of the following pins:  
SDI, SDO, CLK, and LATCH. The interface is active when the  
LATCH pin is shifted low. Gain words are written into the  
AD8372 via the SDI pin, and read back from the SDO pin. The  
first bit clocked into the data input pin determines whether the  
interface is in write or read mode. The second bit is a don’t care  
bit, while the remaining six bits program the gain. In read  
mode, the SDO pin clocks out the 6-bit gain word, LSB to MSB.  
The gain can be programmed between −9 dB and 32 dB in 1 dB  
steps. Timing details are given in Figure 2 and Figure 3. The  
gain code is given in Table 2.  
Gain = 20log(RLOAD/250), for voltage gain  
Gain = 10log(RLOAD/250), for power gain  
The dependency of the gain on the load is due to the open-  
collector output stage that is biased using external chokes. The  
inductance of the chokes and the resistance of the load deter-  
mine the low frequency pole of the amplifier. The high frequency  
pole is set by the parasitic capacitance of the chokes and outputs  
in parallel with the output resistance.  
The total supply current of 106 mA per side consists of 70 mA  
for the combined outputs and about 36 mA through the power  
supply pins. Each side has an external resistor (REXT) to ground  
to set the transconductance of the output stage. For optimum  
distortion, 106 mA total current per side is recommended,  
making the REXT value about 2.0 kΩ. Each side has a 2.4 V  
reference pin and that same common-mode voltage appears on  
the inputs. This reference should be decoupled using a 0.1 μF  
capacitor. The part can be powered down to less than 2.6 mA by  
setting the ENB pin low for the appropriate side.  
DRIVING ANALOG-TO-DIGITAL CONVERTERS  
The AD8372 is designed with the intention of driving high  
speed, high dynamic range ADCs. The circuit in Figure 14  
represents a simplified front end of one-half of the AD8372 dual  
VGA driving an AD9445 14-bit, 125 MHz analog-to-digital  
converter (ADC). The input of the AD8372 is driven  
differentially using a 1:3 impedance ratio transformer, which  
also matches the 150 Ω input resistance to a 50 Ω source. The  
open-collector outputs are biased through the 33 μH inductors  
and are ac-coupled from the 142 Ω load resistors that, in  
parallel with the 2 kΩ input resistance of the ADC, provide a  
250 Ω load for gain accuracy.  
The noise figure of the AD8372 is 7.8 dB at maximum gain and  
increases as the gain is reduced. The increase in noise figure is  
equal to the reduction in gain.  
The ADC is ac-coupled from the 142 Ω resistors to negate a dc  
effect on the input common-mode voltage of the AD9445.  
Including the series 33 Ω resistors improves the isolation of the  
AD8372 from the switching currents caused by the ADC input  
sample and hold. The AD9445 represents a 2 kΩ differential  
load and requires a 2 V p-p signal when VREF = 1 V for a full-  
scale output. This circuit provides variable gain, isolation, and  
source matching for the AD9445. Using this circuit with the  
AD8372 in a gain of 32 dB (maximum gain), an SFDR  
The linearity of the part measured at the output is first-order  
independent of the gain setting.  
Layout considerations should include minimizing capacitance  
on the outputs by avoiding ground planes under the chokes, and  
equalizing the output line lengths for phase balance.  
SINGLE-ENDED AND DIFFERENTIAL SIGNALS  
The AD8372 is designed to be used by applying differential  
signals to the inputs and using the differential output drive of  
the device to drive the next device in the signal chain. The  
excellent distortion performance of the AD8372 is due  
performance of 74.5 dBc is achieved at 85 MHz (see Figure 15).  
Rev. C | Page 10 of 16  
Data Sheet  
AD8372  
5V  
5V  
33µH  
142  
0.1µF  
0.1µF 0.1µF  
33Ω  
33Ω  
1:3  
VIN+  
VIN–  
½
14  
AD9445  
14-BIT ADC  
AD8372  
VGA  
50Ω  
0.1µF  
0.1µF 0.1µF  
AC  
33µH  
142Ω  
5V  
Figure 14. AD8372 Driving an AD9445 ADC  
0
–10  
1
FUND: –1.053dBFS  
SNR: 58.12dBc  
2ND: –74.55dBc  
3RD: –86.45dBc  
4TH: –91.35dBc  
5TH: –89.57dBc  
6TH: –91.15dBc  
SNRFS: 59.18dBc  
THD: –73.99dBc  
–20  
SINAD: 58.01dBc  
SFDR: 74.73dBc  
WO SPUR: –85.5dBc  
NOISE FLOOR: –101.3dB  
–30  
–40  
–50  
–60  
2
–70  
–80  
3
5
6
4
–90  
–100  
–110  
–120  
–130  
–140  
–150  
ENCODE: 105MHz  
SAMPLES: 32768  
FUND LEAK: 100  
HARM LEAK: 3  
DC LEAK: 6  
ANALOG: 19.8766MHz  
0
5.25 10.50 15.75 21.00 26.25 31.50 36.75 42.00 47.25 52.50  
FREQUENCY (MHz)  
Figure 15. 74.5 dBc SFDR Performance of the AD8372 Driving the AD9445 ADC  
Rev. C | Page 11 of 16  
AD8372 CHAR BD  
AGND  
AGND  
R11  
R12  
R15  
H1-1  
TBD  
R0603  
0
H1-7  
R0603  
0
R0603  
C21  
50 OHMS  
C8  
H1-15  
0.1UF  
R47  
1NF  
C0603  
AGND  
AGND  
AGND  
C0603  
50 OHMS  
T2  
0.1UF  
C17  
AGND  
TBD  
C0603  
R44  
R31  
TBD  
R32  
TBD  
R0603  
DGND  
DGND  
24.9_1%  
R2  
2K  
R0603  
R0603  
R0603  
R9  
0
1:3  
75 OHMS  
W2  
H1-3  
R0603  
R0603  
100 OHMS  
100 OHMS  
R29  
0
R0603  
R35  
R0603  
0
C6  
75 OHMS  
R39  
R0603  
AGND  
R16  
AGND  
113  
C0603  
TBD  
R40  
T4  
C0603  
0.1UF  
C27  
C0603  
1NF  
3
2
1
4
6
0
TBD  
10K  
R18  
0.1UF  
C11  
OPC1  
C0603  
DGND  
R0603  
R21  
R0603  
R0603  
DGND  
R10  
0
AGND  
AGND  
TBD  
H1-15  
H1-4  
50 OHMS  
SEC  
PRI  
C0603  
R0603  
C0603  
C16  
R0603  
C0603  
AGND  
0.1UF  
C26  
H1-15  
0.1UF  
C25  
0.1UF  
C32  
100 OHMS  
C7  
R36  
113  
R30  
0
ONC1  
TBD  
75 OHMS  
R0603  
R0603  
C0603  
L1  
33UH  
AGND  
100 OHMS  
R43  
C15  
50 OHMS  
1812  
DGND  
C0603  
L2  
33UH  
DGND  
75 OHMS  
0.1UF  
C18  
R8  
0
C0603  
1812  
0.1UF  
DGND  
AGND  
H1-5  
24.9_1%  
R0603  
32 31 30 29 28 27 26 25  
R22  
R0603  
C5  
0
R23  
AGND  
TBD  
R0603  
C0603  
0
100 OHMS  
R0603  
1
24  
23  
22  
21  
20  
19  
18  
17  
DGND  
DVS1  
LCH1  
SDI1  
OPC1  
DGND  
R7  
2
3
4
5
6
7
8
ONC1  
AGD1  
SDO1  
SDO2  
AGD2  
ONC2  
OCP2  
H1-11  
AGND  
SDO1  
SDO2  
AGND  
100 OHMS  
R0603  
0
C4  
Z1  
CLK1  
CLK2  
SDI2  
AD8372  
TBD  
C0603  
100 OHMS  
DGND  
LCH2  
DVS2  
DGND  
R6  
AGND  
R0603  
100 OHMS  
SDO1  
R46  
H1-10  
H1-9  
H1-1  
C0603  
R0603  
R14  
0
0
0
24.9_1%  
0.1UF  
C28  
R37  
R0603  
C3  
R25  
R28  
0
R0603  
H1-6  
R0603  
0
R0603  
9
10 11 12 13 14 15 16  
TBD  
C10  
100 OHMS  
C0603  
R24  
TBD  
DGND  
R0603  
AGND  
C0603  
DGND  
DGND  
75 OHMS  
C24  
L4  
33UH  
113  
AGND  
50 OHMS  
75 OHMS  
R5  
0
AGND  
T3  
1812  
C0603  
L3  
33UH  
3
2
1
4
6
ONC2  
R0603  
R26  
TBD  
0.1UF  
C29  
R13  
0
1812  
C22  
0.1UF  
C2  
SEC  
PRI  
R0603  
0.1UF  
H1-12  
SDO2  
TBD  
C0603  
R0603  
C19  
0.1UF  
AGND  
C0603  
C0603  
H1-15  
R38  
113  
C9  
R27  
0
C0603  
C23  
0.1UF  
DGND  
OPC2  
TBD  
DGND  
R0603  
R0603  
R41  
R42  
C0603  
H1-15  
R4  
C0603  
AGND  
0
0
AGND  
AGND  
100 OHMS  
50 OHMS  
R0603  
R0603  
75 OHMS  
R0603  
0.1UF  
C14  
0
C0603  
R45  
C20  
0.1UF  
75 OHMS  
C1  
24.9_1%  
R34  
TBD  
1NF  
C0603  
R33  
TBD  
T1  
1:3  
R0603  
C0603  
C12  
R17  
R0603  
R49  
0
R1  
2K  
R0603  
AGND  
AGND  
DGND  
DGND  
R0603  
C0603  
H1-7  
H1-13  
AGND  
10K  
R0603  
AGND  
1NF  
R0603  
W1  
50 OHMS  
R20  
AGND  
R3  
50 OHMS  
0
0.1UF  
C13  
AGND  
R0603  
C0603  
R19  
VDD  
VSS  
T
R48  
TE S TLOOP  
E S TLOOP  
0
0
TBD  
AGND  
DGND  
R0603  
ORANGE  
C34  
RED  
R0603  
R0603  
AGND  
C33  
AGND  
P1  
P1  
P1  
P1  
P1  
P1  
P1  
P1  
P1  
1
2
3
4
5
6
7
8
9
H1-13  
AGND  
L6  
TBD  
3528  
L5  
H1-3  
H1-4  
H1-5  
H1-6  
H1-12  
H1-11  
H1-10  
H1-9  
H1-15  
3528  
TBD  
C1206  
P2 B11  
P2 B12  
P2 B13  
P2 B14  
P2 B15  
P2 B16  
P2 B17  
P2 B18  
P2 B19  
P2 B20  
H1-13  
10UF  
C1206  
P2 A1  
P2 A11  
P2 A12  
P2 A13  
P2 A14  
P2 A15  
P2 A16  
P2 A17  
P2 A18  
P2 A19  
P2 A20  
H1-13  
H1-14  
H1-6  
P2 B1  
P2 B2  
P2 B3  
P2 B4  
P2 B5  
P2 B6  
P2 B7  
P2 B8  
P2 B9  
P2 B10  
AGND  
10UF  
DGND  
AGND  
H1-14  
H1-6  
H1-15  
AGND  
P2 A2  
P2 A3  
P2 A4  
P2 A5  
P2 A6  
P2 A7  
P2 A8  
P2 A9  
P2 A10  
H1-1  
H1-1  
P1 14  
P1 15  
P1 16  
P1 17  
P1 18  
P1 19  
DGND  
H1-1  
H1-12  
H1-6  
H1-5  
H1-5  
H1-4  
H1-9  
H1-4  
H1-9  
P1 20  
H1-3  
H1-10  
H1-11  
H1-12  
H1-7  
H1-3  
H1-10  
H1-11  
H1-12  
H1-7  
P1 21  
P1 22  
P1 23  
P1 24  
P1 25  
H1-15  
H1-16  
H1-15  
H1-16  
P1 10  
P1 11  
P1 12  
P1 13  
AGND  
H1-8  
H1-8  
H1-6  
AGND  
H1-12  
Data Sheet  
AD8372  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
25  
32  
INDIC ATOR AREA OPTIONS  
(SEE DETAIL A)  
24  
1
0.50  
BSC  
3.25  
3.10 SQ  
2.95  
EXPOSED  
PAD  
17  
8
9
16  
0.50  
0.40  
0.30  
0.25 MIN  
BOTTOM VIEW  
TOP VIEW  
SIDE VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD  
Figure 17. 32-Lead Lead Frame Chip Scale Package [LFCSP]  
5 mm × 5 mm Body and 0.75 mm Package Height  
(CP-32-7)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Package  
Option  
Ordering  
Quantity  
Model1  
Package Description  
AD8372ACPZ-WP  
AD8372ACPZ-R7  
−40°C to +85°C  
−40°C to +85°C  
32-Lead Lead Frame Chip Scale Package [LFCSP], Waffle Pack  
CP-32-7  
CP-32-7  
36  
32-Lead Lead Frame Chip Scale Package [LFCSP], 7Tape  
and Reel  
1,500  
AD8372-EVALZ  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. C | Page 13 of 16  
AD8372  
NOTES  
Data Sheet  
Rev. C | Page 14 of 16  
Data Sheet  
NOTES  
AD8372  
Rev. C | Page 15 of 16  
AD8372  
NOTES  
Data Sheet  
©2007–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07051-0-9/17(C)  
Rev. C | Page 16 of 16  

相关型号:

AD8375

24dB Range, 1dB Step Size Programmable VGA
ADI

AD8375-EVALZ

24dB Range, 1dB Step Size Programmable VGA
ADI

AD8375ACPZ-R7

Ultralow Distortion IF VGA
ADI

AD8375ACPZ-REEL7

24dB Range, 1dB Step Size Programmable VGA
ADI

AD8375ACPZ-WP

24dB Range, 1dB Step Size Programmable VGA
ADI

AD8375_1

Ultralow Distortion IF VGA
ADI

AD8376

Ultra Low Distortion IF Dual VGA
ADI

AD8376-EVALZ

Ultra Low Distortion IF Dual VGA
ADI

AD8376ACPZ-R7

Ultralow Distortion IF Dual VGA
ADI

AD8376ACPZ-REEL7

Ultra Low Distortion IF Dual VGA
ADI

AD8376ACPZ-WP

Ultra Low Distortion IF Dual VGA
ADI

AD8376_1

Ultralow Distortion IF Dual VGA
ADI