AD8397ARDZ-REEL [ADI]

Rail-to-Rail, High Output Current Amplifier; 轨到轨,高输出电流放大器
AD8397ARDZ-REEL
型号: AD8397ARDZ-REEL
厂家: ADI    ADI
描述:

Rail-to-Rail, High Output Current Amplifier
轨到轨,高输出电流放大器

放大器
文件: 总16页 (文件大小:432K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Rail-to-Rail, High Output Current Amplifier  
AD8397  
PIN CONFIGURATION  
FEATURES  
OUT1  
–IN1  
+IN1  
1
2
3
4
8
7
6
5
+V  
S
Dual operational amplifier  
Voltage feedback  
Wide supply range: from 3 V to 24 V  
Rail-to-rail output  
OUT2  
–IN2  
+IN2  
–V  
S
Figure 1. 8-Lead SOIC  
Output swing to within 0.5 V of supply rails  
High linear output current  
310 mA peak into 32 Ω on 12 V supplies while maintaining  
−80 dBc SFDR  
Low noise  
4.5 nV/√Hz voltage noise density @ 100 kHz  
1.5 pA/√Hz current noise density @ 100 kHz  
High speed  
69 MHz bandwidth (G = 1, −3 dB)  
53 V/µs slew rate (RLOAD = 25 Ω)  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
–0.25  
–0.50  
–0.75  
–1.00  
–1.25  
–1.50  
APPLICATIONS  
Twisted-pair line drivers  
Audio applications  
General-purpose high current amplifiers  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TIME (µs)  
GENERAL DESCRIPTION  
Figure 2. Output Swing, VS = 1.5 V, RL = 25 Ω  
The AD8397 has two voltage feedback operational amplifiers  
capable of driving heavy loads with excellent linearity. The  
common-emitter, rail-to-rail output stage surpasses the output  
voltage capability of typical emitter-follower output stages and  
can swing to within 0.5 V of either rail while driving a 25 Ω  
load. The low distortion, high output current, and wide output  
dynamic range make the AD8397 ideal for applications that  
require a large signal swing into a heavy load.  
12  
9
6
3
0
Fabricated with ADIs high speed eXtra Fast Complementary  
Bipolar High Voltage (XFCB-HV) process, the high bandwidth  
and fast slew rate of the AD8397 keep distortion to a minimum  
while also dissipating minimum power. The AD8397 is available  
in a standard 8-lead SOIC package and, for higher power appli-  
cations, a thermally enhanced 8-lead SOIC EPAD package. Both  
packages can operate from −40°C to +85°C.  
–3  
–6  
–9  
–12  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TIME (µs)  
Figure 3. Output Swing, VS = 12 V, RL = 100 Ω  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
AD8397  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Power Supply and Decoupling ................................................. 11  
Layout Considerations............................................................... 11  
Unity-Gain Output Swing......................................................... 11  
Capacitive Load Drive ............................................................... 12  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 13  
Absolute Maximum Ratings............................................................ 7  
Maximum Power Dissipation ..................................................... 7  
ESD Caution.................................................................................. 7  
Typical Performance Characteristics ............................................. 8  
General Description....................................................................... 11  
REVISION HISTORY  
1/05—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
AD8397  
SPECIFICATIONS  
VS = 1.5 V or +3 V (@ TA = 25°C, G = +1, RL = 25 Ω, unless otherwise noted).  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
0.1 dB Flatness  
Large Signal Bandwidth  
Slew Rate  
VOUT = 0.1 V p-p  
VOUT = 0.1 V p-p  
VOUT = 2.0 V p-p  
VOUT = 0.8 V p-p  
50  
3.6  
9
MHz  
MHz  
MHz  
V/µs  
32  
NOISE/DISTORTION PERFORMANCE  
Distortion (Worst Harmonic)  
Input Voltage Noise  
Input Current Noise  
DC PERFORMANCE  
Input Offset Voltage  
fC = 100 kHz, VOUT = 1.4 V p-p, G = +2  
f = 100 kHz  
f = 100 kHz  
−90  
4.5  
1.5  
dBc  
nV/√Hz  
pA/√Hz  
1.0  
2.5  
1.0  
200  
1.3  
50  
2.5  
mV  
mV  
mV  
nA  
µA  
nA  
dB  
TMIN − TMAX  
Input Offset Voltage Match  
Input Bias Current  
2.0  
900  
TMIN − TMAX  
VOUT 0.5 V  
f = 100 kHz  
∆VCM 1 V  
Input Offset Current  
Open-Loop Gain  
300  
=
81  
88  
INPUT CHARACTERISTICS  
Input Resistance  
87  
1.4  
−80  
kΩ  
pF  
dB  
Input Capacitance  
Common-Mode Rejection  
OUTPUT CHARACTERISTICS  
Output Resistance  
+Swing  
−Swing  
+Swing  
−Swing  
Maximum Output Current  
POWER SUPPLY  
=
−71  
0.2  
RLOAD = 25 Ω  
RLOAD = 25 Ω  
RLOAD = 100 Ω  
RLOAD = 100 Ω  
+1.39  
+1.45  
+1.43  
−1.4  
+1.48  
−1.47  
170  
VP  
VP  
VP  
VP  
mA  
−1.37  
−1.44  
SFDR ≤ −70 dBc, f = 100 kHz, VOUT = 0.7 VP, RLOAD = 4.1 Ω  
Operating Range (Dual Supply)  
Supply Current  
Power Supply Rejection  
1.5  
6
−70  
12.0  
8.5  
V
7
−82  
mA/Amp  
dB  
∆VS = 0.5 V  
Rev. 0 | Page 3 of 16  
 
AD8397  
VS = 2.5V or +5 V (@ TA = 25°C, G = +1, RL = 25 Ω, unless otherwise noted).  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
0.1 dB Flatness  
Large Signal Bandwidth  
Slew Rate  
VOUT = 0.1 V p-p  
VOUT = 0.1 V p-p  
VOUT = 2.0 V p-p  
VOUT = 2.0 V p-p  
60  
4.8  
14  
53  
MHz  
MHz  
MHz  
V/µs  
NOISE/DISTORTION PERFORMANCE  
Distortion (Worst Harmonic)  
Input Voltage Noise  
Input Current Noise  
DC PERFORMANCE  
Input Offset Voltage  
fC = 100 kHz, VOUT = 2 V p-p, G = +2  
f = 100 kHz  
f = 100 kHz  
−98  
4.5  
1.5  
dBc  
nV/√Hz  
pA/√Hz  
1.0  
2.5  
1.0  
200  
1.3  
50  
2.4  
mV  
mV  
mV  
nA  
µA  
nA  
dB  
TMIN − TMAX  
Input Offset Voltage Match  
Input Bias Current  
2.0  
900  
TMIN − TMAX  
VOUT 1.0 V  
f = 100 kHz  
∆VCM 1 V  
Input Offset Current  
Open-Loop Gain  
300  
=
85  
90  
INPUT CHARACTERISTICS  
Input Resistance  
87  
1.4  
−80  
kΩ  
pF  
dB  
Input Capacitance  
Common-Mode Rejection  
OUTPUT CHARACTERISTICS  
Output Resistance  
+Swing  
=
−76  
0.2  
VP  
RLOAD = 25 Ω  
+2.37 +2.42  
−Swing  
RLOAD = 25 Ω  
−2.37 −2.32 VP  
+Swing  
RLOAD = 100 Ω  
+2.45 +2.48  
VP  
−Swing  
RLOAD = 100 Ω  
−2.46 −2.42 VP  
Maximum Output Current  
POWER SUPPLY  
SFDR ≤ −70 dBc, f = 100 kHz, VOUT = 1.0 VP, RLOAD = 4.3 Ω  
230  
mA  
Operating Range (Dual Supply)  
Supply Current  
Power Supply Rejection  
1.5  
12.6  
12  
V
7
9
−85  
mA/Amp  
dB  
∆VS = 0.5 V  
−75  
Rev. 0 | Page 4 of 16  
AD8397  
VS = 5 V or +10 V (@ TA = 25°C, G = +1, RL = 25 Ω, unless otherwise noted).  
Table 3.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
0.1 dB Flatness  
Large Signal Bandwidth  
Slew Rate  
VOUT = 0.1 V p-p  
VOUT = 0.1 V p-p  
VOUT = 2.0 V p-p  
VOUT = 4.0 V p-p  
66  
6.5  
14  
53  
MHz  
MHz  
MHz  
V/µs  
NOISE/DISTORTION PERFORMANCE  
Distortion (Worst Harmonic)  
Input Voltage Noise  
Input Current Noise  
DC PERFORMANCE  
Input Offset Voltage  
fC = 100 kHz, VOUT = 6 V p-p, G = +2  
f = 100 kHz  
f = 100 kHz  
−94  
4.5  
1.5  
dBc  
nV/√Hz  
pA/√Hz  
1.0  
2.5  
1.0  
200  
1.3  
50  
2.5  
mV  
mV  
mV  
nA  
µA  
nA  
dB  
TMIN − TMAX  
Input Offset Voltage Match  
Input Bias Current  
2.0  
900  
TMIN − TMAX  
VOUT 2.0 V  
f = 100 kHz  
∆VCM 1 V  
Input Offset Current  
Open-Loop Gain  
300  
=
85  
94  
INPUT CHARACTERISTICS  
Input Resistance  
87  
1.4  
−94  
kΩ  
pF  
dB  
Input Capacitance  
Common-Mode Rejection  
OUTPUT CHARACTERISTICS  
Output Resistance  
+Swing  
−Swing  
+Swing  
−Swing  
Maximum Output Current  
POWER SUPPLY  
=
−84  
0.2  
RLOAD = 25 Ω  
RLOAD = 25 Ω  
RLOAD = 100 Ω  
RLOAD = 100 Ω  
+4.7  
+4.82  
−4.74  
+4.96  
−4.92  
250  
VP  
VP  
VP  
VP  
mA  
−4.65  
−4.88  
+4.92  
SFDR ≤ −80 dBc, f = 100 kHz, VOUT = 3 VP, RLOAD = 12 Ω  
Operating Range (Dual Supply)  
Supply Current  
Power Supply Rejection  
1.5  
7
−76  
12.6  
12  
V
9
−85  
mA/Amp  
dB  
∆VS = 0.5 V  
Rev. 0 | Page 5 of 16  
AD8397  
VS = 12 V or +24 V (@ TA = 25°C, G = +1, RL = 25 Ω, unless otherwise noted).  
Table 4.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
0.1 dB Flatness  
Large Signal Bandwidth  
Slew Rate  
VOUT = 0.1 V p-p  
VOUT = 0.1 V p-p  
VOUT = 2.0 V p-p  
VOUT = 4.0 V p-p  
69  
7.6  
14  
53  
MHz  
MHz  
MHz  
V/µs  
NOISE/DISTORTION PERFORMANCE  
Distortion (Worst Harmonic)  
Input Voltage Noise  
Input Current Noise  
DC PERFORMANCE  
Input Offset Voltage  
fC = 100 kHz, VOUT = 20 V p-p, G = +5  
f = 100 kHz  
f = 100 kHz  
−84  
4.5  
1.5  
dBc  
nV/√Hz  
pA/√Hz  
1.0  
2.5  
1.0  
200  
1.3  
50  
3.0  
mV  
mV  
mV  
nA  
µA  
nA  
dB  
TMIN − TMAX  
Input Offset Voltage Match  
Input Bias Current  
2.0  
900  
TMIN − TMAX  
Input Offset Current  
Open-Loop Gain  
300  
90  
96  
VOUT = ±3.0 V  
f = 100 kHz  
INPUT CHARACTERISTICS  
Input Resistance  
87  
1.4  
−96  
kΩ  
pF  
dB  
Input Capacitance  
Common-Mode Rejection  
OUTPUT CHARACTERISTICS  
Output Resistance  
+Swing  
ꢀVCM  
=
1 V  
−85  
0.2  
VP  
RLOAD = 100 Ω  
+11.82 +11.89  
−Swing  
RLOAD = 100 Ω  
−11.83 −11.77 VP  
Maximum Output Current  
POWER SUPPLY  
SFDR ≤ −80 dBc, f = 100 kHz, VOUT = 10 VP, RLOAD = 32 Ω  
310  
mA  
Operating Range (Dual Supply)  
Supply Current  
Power Supply Rejection  
1.5  
8.5  
−76  
12.6  
15  
V
11  
−86  
mA/Amp  
dB  
ꢀVS = 0.5 V  
Rev. 0 | Page 6 of 16  
AD8397  
ABSOLUTE MAXIMUM RATINGS  
MAXIMUM POWER DISSIPATION  
The maximum power that can be dissipated safely by  
Table 5.  
the AD8397 is limited by the associated rise in junction  
temperature. The maximum safe junction temperature for  
plastic encapsulated devices is determined by the glass  
transition temperature of the plastic, approximately 150°C.  
Temporarily exceeding this limit may cause a shift in  
parametric performance due to a change in the stresses  
exerted on the die by the package.  
Parameter  
Rating  
Supply Voltage  
26.4 V  
Power Dissipation1  
Storage Temperature  
Operating Temperature Range  
See Figure 4  
−65°C to +125°C  
−40°C to +85°C  
300°C  
Lead Temperature Range  
(Soldering 10 sec)  
Junction Temperature  
150°C  
4.5  
T
= 150°C  
J
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational sec-  
tion of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
8-LEAD SOIC EPAD  
8-LEAD SOIC  
1 Thermal resistance for standard JEDEC 4-layer board:  
8-lead SOIC: θJA = 157.6°C/W  
8-Lead SOIC EPAD: θJA = 47.2°C/W  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
AMBIENT TEMPERATURE (°C)  
Figure 4. Maximum Power Dissipation vs. Temperature  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate  
on the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy elec-  
trostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation  
or loss of functionality.  
Rev. 0 | Page 7 of 16  
 
 
 
AD8397  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
V
OUT  
80  
60  
40  
V
IN  
OUT 1  
20  
0
OUT 2  
–20  
–40  
–60  
–80  
–100  
0
20  
40  
60  
80  
100 120 140 160 180 200  
TIME (ns)  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
Figure 5. Small Signal Pulse Response (G = +1, VS = 5 V, RL = 25 Ω)  
Figure 8. Common-Mode Rejection vs. Frequency  
(VS = 5 V, RL = 25 Ω)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
5
4
V
V
OUT  
IN  
3
2
OUT 1  
1
OUT 2  
0
–1  
0.01  
0.1  
1
10  
100  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
FREQUENCY (MHz)  
TIME (µs)  
Figure 9. Output-to-Output Crosstalk vs. Frequency  
(VS = 5 V, VO = 1 V p-p, RL = 25 Ω)  
Figure 6. Large Signal Pulse Response (0 V to 4 V, VS = 5 V, RL = 25 Ω)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
6
0.3  
0.2  
V
IN  
V
OUT  
5
4
0.1  
3
2
0
V
= 100mV p-p  
O
1
–0.1  
–0.2  
–0.3  
0
–0.5  
–1.0  
–1  
–2  
0
40  
80  
120 160 200 240 280 320 360 400  
TIME (ns)  
0.1  
1
10  
FREQUENCY (MHz)  
Figure 7. Output Overdrive Recovery  
(VS = 5 V, Gain = +2, RL = 25 Ω)  
Figure 10. 0.1 dB Flatness  
(VS = 5 V, VO = 0.1 V p-p, Gain = +1, RL = 25 Ω)  
Rev. 0 | Page 8 of 16  
 
 
AD8397  
10  
0
10  
0
G = +1  
G = +1  
G = +2  
G = +2  
–10  
–20  
–30  
–40  
–10  
–20  
–30  
–40  
G = +10  
G = +10  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 11. Small Signal Frequency Response for Various Gains  
(VS = 5 V, VO = 0.1 V p-p, RL = 25 Ω)  
Figure 14. Large Signal Frequency Response for Various Gains  
(VS = 5 V, VO = 2 V p-p, RL = 25 Ω)  
10  
20  
12V  
10  
0
5V  
0
–10  
–20  
–10  
12V  
–20  
2.5V  
–30  
–30  
2.5V  
5V  
–40  
0.01  
–40  
0.01  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. Small Signal Frequency Response for Various Supplies  
(Gain = +1, VO = 0.1 V p-p, RL = 25 Ω)  
Figure 15. Large Signal Frequency Response for Various Supplies  
(Gain = +1, VO = 2 V p-p, RL = 25 Ω)  
0
–10  
–20  
–30  
100  
80  
135  
90  
PHASE  
60  
45  
40  
0
GAIN  
–40  
+PSRR  
20  
–45  
–90  
–135  
–180  
–50  
–PSRR  
0
–60  
–20  
–40  
–70  
–80  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 13. Open Loop Gain and Phase vs. Frequency  
(VS = 5 V, RL = 25 Ω)  
Figure 16. Power Supply Rejection  
(VS = 5 V, RL = 25 Ω)  
Rev. 0 | Page 9 of 16  
AD8397  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–40  
–50  
–60  
–70  
–80  
–90  
SECOND  
HARMONIC  
SECOND  
HARMONIC  
–100  
–110  
–120  
THIRD  
HARMONIC  
THIRD  
HARMONIC  
–120  
0.01  
0.1  
FREQUENCY (MHz)  
1
10  
0
1
2
3
4
5
6
7
8
9
10  
OUTPUT VOLTAGE (V p-p)  
Figure 17. Distortion vs. Frequency  
(VS = 5 V, VO = 2 V p-p, G = +2, RL = 25 Ω)  
Figure 20. Distortion vs. Output Voltage @ 100 kHz,  
(VS = 5 V, G = +2, RL = 25 Ω)  
–40  
–50  
–40  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
SECOND  
HARMONIC  
SECOND  
HARMONIC  
–90  
–90  
–100  
–110  
–100  
–110  
–120  
THIRD  
THIRD  
HARMONIC  
HARMONIC  
–120  
0
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75  
OUTPUT VOLTAGE (V p-p)  
0
2
4
6
8
10 12 14 16 18 20 22 24  
OUTPUT VOLTAGE (V p-p)  
Figure 18. Distortion vs. Output Voltage @ 100 kHz,  
(VS = 1.5 V, G = +2, RL = 25 Ω)  
Figure 21. Distortion vs. Output Voltage @ 100 kHz,  
(VS = 12 V, G = +5, RL = 50 Ω)  
–40  
–50  
–60  
–70  
–80  
–90  
SECOND  
HARMONIC  
–100  
–110  
–120  
THIRD  
HARMONIC  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
OUTPUT VOLTAGE (V p-p)  
Figure 19. Distortion vs. Output Voltage @ 100 kHz,  
(VS = 2.5 V, G = +2, RL = 25 Ω)  
Rev. 0 | Page 10 of 16  
AD8397  
GENERAL DESCRIPTION  
The AD8397 is a voltage feedback operational amplifier which  
features an H-bridge input stage and common-emitter, rail-to-  
rail output stage. The AD8397 can operate from a wide supply  
range, 1.5 V to 12 V. When driving light loads, the rail-to-rail  
output is capable of swinging to within 0.2 V of either rail. The  
output can also deliver high linear output current when driving  
heavy loads, up to 310 mA into 32 Ω while maintaining −80 dBc  
SFDR. The AD8397 is fabricated on Analog Devices’ proprietary  
eXtra Fast Complementary Bipolar High Voltage process  
(XFCB-HV).  
When the AD8397 is configured as a differential driver, as in  
some line driving applications, a symmetrical layout should be  
provided to the extent possible in order to maximize balanced  
performance. When running differential signals over a long  
distance, the traces on the PCB should be close together or  
any differential wiring should be twisted together to minimize  
the area of the inductive loop that is formed. This reduces the  
radiated energy and makes the circuit less susceptible to RF  
interference. Adherence to stripline design techniques for  
long signal traces (greater than approximately 1 inch) is  
recommended.  
POWER SUPPLY AND DECOUPLING  
UNITY-GAIN OUTPUT SWING  
The AD8397 can be powered with a good quality, well-  
regulated, low noise supply from 1.5 V to 12 V. Careful  
attention should be paid to decoupling the power supply. High  
quality capacitors with low equivalent series resistance (ESR),  
such as multilayer ceramic capacitors (MLCCs), should be used  
to minimize the supply voltage ripple and power dissipation. A  
0.1 µF MLCC decoupling capacitor(s) should be located no  
more than 1/8 inch away from the power supply pin(s). A large  
tantalum 10 µF to 47 µF capacitor is recommended to provide  
good decoupling for lower frequency signals and to supply  
current for fast, large signal changes at the AD8397 outputs.  
When operating the AD8397 in a unity-gain configuration,  
the output does not swing to the rails and is constrained by  
the H-bridge input. This can be seen by comparing the output  
overdrive recovery in Figure 7 and the input overdrive recovery  
in Figure 22. To avoid overdriving the input and to realize the  
full swing afforded by the rail-to-rail output stage, the amplifier  
should be used in a gain of two or greater.  
7
6
INPUT  
5
4
LAYOUT CONSIDERATIONS  
As with all high speed applications, careful attention should be  
paid to printed circuit board (PCB) layout in order to prevent  
associated board parasitics from becoming problematic. The  
PCB should have a low impedance return path (or ground) to  
the supply. Removing the ground plane from all layers in the  
immediate area of the amplifier helps to reduce stray capacitan-  
ces. The signal routing should be short and direct in order to  
minimize the parasitic inductance and capacitance associated  
with these traces. Termination resistors and loads should be  
located as close as possible to their respective inputs and  
outputs. Input traces should be kept as far apart as possible  
from the output traces to minimize coupling (crosstalk) though  
the board.  
OUTPUT  
3
2
1
0
–1  
0
80  
160 240 320 400 480 560 640 720 800  
TIME (ns)  
Figure 22. Unity-Gain Input Overdrive Recovery  
Rev. 0 | Page 11 of 16  
 
 
AD8397  
CAPACITIVE LOAD DRIVE  
When driving capacitive loads, many high speed operational  
amplifiers exhibit peaking in their frequency response. In a  
gain-of-two circuit, Figure 23 shows that the AD8397 can drive  
capacitive loads up to 270 pF with only 3 dB of peaking. For  
amplifiers with more limited capacitive load drive, a small series  
resistor (RS) is generally used between the amplifier output and  
the capacitive load in order to minimize peaking and ensure  
device stability. Figure 24 shows that the use of a 2.2 Ω series  
resistor can further extend the capacitive load drive of the  
AD8397 out to 470 pF, while keeping the frequency response  
peaking to within 3 dB.  
5
0
470pF  
390pF  
270pF  
–5  
330pF  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
5
270pF  
220pF  
0.01  
0.1  
1
10  
100  
0
–5  
FREQUENCY (MHz)  
Figure 24. Capacitive Load Peaking with 2.2 Ω Series Resistor  
150pF  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
100pF  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
Figure 23. Capacitive Load Peaking Without Series Resistor  
Rev. 0 | Page 12 of 16  
 
 
 
AD8397  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 25. 8-Lead Standard Small Outline Package [SOIC]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
5.00 (0.197)  
4.90 (0.193)  
4.80 (0.189)  
3.098 (0.122)  
2.41 (0.095)  
4.00 (0.157)  
3.90 (0.154)  
3.80 (0.150)  
8
5
6.20 (0.244)  
6.00 (0.236)  
5.80 (0.228)  
TOP VIEW  
1
4
BOTTOM VIEW  
(PINS UP)  
1.27 (0.05)  
BSC  
0.50 (0.020)  
0.25 (0.010)  
× 45  
1.75 (0.069)  
1.35 (0.053)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
1.27 (0.050)  
0.40 (0.016)  
0.51 (0.020)  
0.31 (0.012)  
0.25 (0.0098)  
0.17 (0.0068)  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETER; INCHES DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 26. 8-Lead Standard Small Outline Package with Exposed Pad [SOIC_N_EP]  
Narrow Body (RD-8-2)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
AD8397ARZ1  
Temperature Package  
Package Description  
8-Lead SOIC  
8-Lead SOIC  
Package Outline  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
R-8  
R-8  
R-8  
RD-8-2  
RD-8-2  
RD-8-2  
AD8397ARZ-REEL1  
AD8397ARZ-REEL71  
AD8397ARDZ1  
AD8397ARDZ-REEL1  
AD8397ARDZ-REEL71  
8-Lead SOIC  
8-Lead SOIC-EPAD  
8-Lead SOIC-EPAD  
8-Lead SOIC-EPAD  
1 Z = Pb-free part.  
Rev. 0 | Page 13 of 16  
 
 
 
AD8397  
Rev. 0 | Page 14 of 16  
AD8397  
NOTES  
Rev. 0 | Page 15 of 16  
AD8397  
NOTES  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05069–0–1/05(0)  
Rev. 0 | Page 16 of 16  

相关型号:

AD8397ARDZ-REEL7

Rail-to-Rail, High Output Current Amplifier
ADI

AD8397ARZ

Rail-to-Rail, High Output Current Amplifier
ADI

AD8397ARZ-REEL

Rail-to-Rail, High Output Current Amplifier
ADI

AD8397ARZ-REEL7

Rail-to-Rail, High Output Current Amplifier
ADI

AD8398

VDSL, Dual Line Driver with Shutdown
ADI

AD8398A

Single Port VDSL2 Line Driver with Shutdown
ADI

AD8398AACPZ-R2

Single Port VDSL2 Line Driver with Shutdown
ADI

AD8398AACPZ-R7

Single Port VDSL2 Line Driver with Shutdown
ADI

AD8398AACPZ-R7

DUAL LINE DRIVER, QCC16, 4 X 4 MM, ROHS COMPLIANT, MO-220-WGGD, LFCSP-16
ROCHESTER

AD8398AACPZ-RL

Single Port VDSL2 Line Driver with Shutdown
ADI

AD8398AACPZ-RL

DUAL LINE DRIVER, QCC16, 4 X 4 MM, ROHS COMPLIANT, MO-220-WGGD, LFCSP-16
ROCHESTER

AD8398ACPZ-R2

VDSL, Dual Line Driver with Shutdown
ADI