AD8420BRMZ [ADI]

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier; 宽电源电压范围,轨到轨输出仪表放大器
AD8420BRMZ
型号: AD8420BRMZ
厂家: ADI    ADI
描述:

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
宽电源电压范围,轨到轨输出仪表放大器

仪表放大器 放大器电路 光电二极管
文件: 总10页 (文件大小:247K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Wide Supply Range, Rail-to-Rail Output  
Instrumentation Amplifier  
Preliminary Technical Data  
AD8420  
FEATURES  
PIN CONFIGURATION  
Gain set with 2 external resistors  
Gain range: 1 to 1000  
NC  
1
2
3
4
8
7
6
5
V
OUT  
Input voltage goes below ground  
Very wide power supply range  
Single supply: 2.7V to 36V  
Dual supply: +/-2.7V to+/-18V  
Bandwidth (G=100): 2.5 kHz  
Input noise: 50 nV/√Hz  
Max supply current: 90 µA  
Max offset voltage: 200 uV  
Max differential input voltage: 1V  
Min CMRR: 100 dB  
+IN  
–IN  
FB  
REF  
–V  
S
+V  
S
AD8420  
TOP VIEW  
(Not to Scale)  
Figure 1.  
Table 1. Instrumentation Amplifiers by Category1  
MSOP-8 package  
General  
Purpose  
AD8221/2  
AD8220/4  
AD8228  
Zero  
Drift  
Military  
Grade  
Low  
Power  
AD8420  
AD8235/6 AD8251  
AD627 AD8253  
AD8226/7 AD8231  
AD623  
AD8223  
Digital  
Gain  
AD8250  
APPLICATIONS  
Bridge amplifiers  
Pressure Measurement  
Medical instrumentation  
Portable data acquisition  
Multichannel systems  
AD8231 AD620  
AD8290 AD621  
AD8293 AD524  
AD8553 AD526  
AD8556 AD624  
AD8557  
AD8295  
1 See www.analog.com for the latest instrumentation amplifiers.  
GENERAL DESCRIPTION  
The AD8420 can operate off both single or dual supplies. It  
works well for a portable system with a limited single supply  
voltage and equally well for a system using large dual supplies.  
The AD8420 is a low cost, wide supply range amplifier that uses  
two resistors to set any gain between 1 and 1000. It is optimized  
to amplify small differential voltages in the presence of large  
common mode signals.  
Gain is set using the ratio of two resistors. A reference pin  
allows the user to offset the output voltage. This feature is useful  
when the output signal needs to be centered around a specific  
voltage, such as mid-supply.  
The AD8420 is based on a current mode architecture that gives  
it excellent input common mode range. Unlike conventional  
instrumentation amplifiers, the AD8420 can easily amplify  
signals at or even slightly below ground without requiring dual  
supplies. The AD8420 has a full rail to rail output, and the  
output voltage is completely independent of the input common  
mode voltage.  
The AD8420 is available in an 8 pin MSOP package.  
Performance is specified over the full temperature range of  
−40°C to +85°C. Part is operational from −40°C to +125°C  
Rev. PrD  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
AD8420  
Preliminary Technical Data  
SPECIFICATIONS  
+VS = +5V, VS = 0V, V REF = 0 V, VIN+=0V, VIN-=0V, TA = 25°C, G = 1 to 1000, RL = 20 kΩ, specifications referred to input, unless  
otherwise noted  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
COMMON-MODE REJECTION RATIO (CMRR)  
CMRR DC to 60 Hz  
CMRR at 1 kHz  
VCM = 0 V to 2.7 V  
100  
dB  
dB  
NOISE  
Voltage Noise  
Spectral Density  
Peak to Peak  
f = 1 kHz, VDIFF ≤100 mV  
f = 0.1 Hz to 10 Hz, VDIFF ≤ 100 mV  
50  
1.5  
nV/√Hz  
µV p-p  
Current Noise  
Spectral Density  
Peak to Peak  
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
fA/√Hz  
pA p-p  
VOLTAGE OFFSET  
Offset  
200  
1
µV  
µV/°C  
dB  
Average Temperature Coefficient  
Offset RTI vs. Supply (PSR)  
INPUTS  
TA = −40°C to +85°C  
Valid for REF & FB pair, as well as +IN & -IN  
TA = +25°C  
TA = +85°C  
TA = −40°C  
TA = −40°C to +85°C  
TA = +25°C  
Input Bias Current1  
25  
1
40  
nA  
nA  
nA  
pA/°C  
nA  
Average Temperature Coefficient  
Input Offset Current  
TA = +85°C  
nA  
TA = −40°C  
nA  
Average Temperature Coefficient  
Input Impedance  
TA = −40°C to +85°C  
pA/°C  
Differential  
130||2  
MΩ||pF  
Common Mode  
1000||2  
MΩ||pF  
Differential Input Operating Voltage  
Input Operating Voltage (+IN, -IN, or REF)  
TA = –40°C to +85°C  
TA = +25°C  
TA = +85°C  
-1  
1
V
V
V
V
−VS – 0.15  
−VS – 0.05  
−VS – 0.2  
+VS −2.2  
+VS – 1.8  
+VS – 2.7  
TA = –40°C  
DYNAMIC RESPONSE  
Small Signal –3 dB Bandwidth  
G = 1  
250  
25  
2.5  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G =1000  
0.25  
Settling Time 0.01%  
G = 10  
4 V step  
µs  
G = 100  
µs  
G = 1000  
µs  
Slew Rate  
Exceeds Bandwidth Limit  
V/µs  
Rev. PrD | Page 2 of 2  
Preliminary Technical Data  
AD8420  
GAIN2  
G = 1 + (R2/R1)  
Gain Range  
Gain Error  
Gain vs. Temperature  
OUTPUT  
1
1000  
0.05  
10  
V/V  
%
ppm/°C  
VOUT = 0.2V to 4.8V  
TA = −40°C to +85°C  
Output Swing  
RL = 10 kΩ to mid supply  
TA = +25°C  
TA = +85°C  
TA = –40°C  
−VS + 0.15  
−VS + 0.1  
+VS – 0.15  
+VS – 0.1  
V
V
V
RL = 100 kΩ to mid supply  
TA = +25°C  
TA = +85°C  
TA = –40°C  
V
V
V
Short-Circuit Current  
POWER SUPPLY  
Operating Range  
Quiescent Current  
10  
mA  
Single supply operation3  
TA = +25°C  
TA = –40°C  
TA = +85°C  
2.7  
36  
90  
V
75  
µA  
µA  
µA  
µA  
TA = +85°C  
100  
TEMPERATURE RANGE  
Specified  
Operational4  
−40  
−40  
+85  
+125  
°C  
°C  
1 The input stage uses pnp transistors, so input bias current always flows out of the part.  
2 For G>1, errors from external resistors R1 and R2 should be added to these specifications, including error from FB pin bias current.  
3 Minimum supply voltage indicated for V+IN, V-IN, VREF= 0V.  
.
4 See Typical Performance Curves for operation between 85°C and 125°C  
Rev. PrD | Page 3 of 3  
 
 
 
 
AD8420  
Preliminary Technical Data  
+VS = +15 V, VS = −15 V, VREF = 0 V, TA = 25°C, G = 1 to 1000, RL = 20 kΩ, specifications referred to input, unless otherwise noted  
Table 3.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
COMMON-MODE REJECTION RATIO (CMRR)  
VCM = –10 V to +10 V  
CMRR DC to 60 Hz  
CMRR at 1 kHz  
NOISE  
100  
dB  
dB  
Voltage Noise  
Spectral Density  
Peak to Peak  
f = 1 kHz, VDIFF ≤ 100 mV  
f = 0.1 Hz to 10 Hz, VDIFF ≤ 100 mV  
50  
1.5  
nV/√Hz  
µV p-p  
Current Noise  
Spectral Density  
Peak to Peak  
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
fA/√Hz  
pA p-p  
VOLTAGE OFFSET  
Offset  
VS = 5 V to 15 V  
TA = −40°C to +85°C  
200  
1
µV  
µV/°C  
dB  
Average Temperature Coefficient  
Offset RTI vs. Supply (PSR)  
INPUTS  
Valid for REF & FB pair, as well as +IN & -IN  
TA = +25°C  
TA = +85°C  
TA = −40°C  
TA = −40°C to +85°C  
TA = +25°C  
Input Bias Current1  
25  
40  
1
nA  
nA  
nA  
pA/°C  
nA  
Average Temperature Coefficient  
Input Offset Current  
TA = +85°C  
nA  
TA = −40°C  
nA  
Average Temperature Coefficient  
Input Impedance  
TA = −40°C to +85°C  
pA/°C  
Differential  
130||3  
MΩ||pF  
Common Mode  
1000||3  
MΩ||pF  
Differential Input Operating Voltage  
Input Operating Voltage (+IN, -IN, or REF)  
TA = –40°C to +85°C  
TA = +25°C  
TA = +85°C  
-1  
1
V
V
V
V
−VS – 0.15  
−VS – 0.05  
−VS – 0.2  
+VS −2.2  
+VS – 1.8  
+VS – 2.7  
TA = –40°C  
DYNAMIC RESPONSE  
Check voltage differential  
Small Signal –3 dB Bandwidth  
G = 1  
G = 10  
G = 100  
G =1000  
Settling Time 0.01%  
G = 1  
250  
25  
2.5  
kHz  
kHz  
kHz  
kHz  
0.25  
10 V step  
µs  
G = 10  
µs  
G = 100  
µs  
G = 1000  
Slew Rate  
µs  
V/µs  
Exceeds Bandwidth Limit  
Rev. PrD | Page 4 of 4  
Preliminary Technical Data  
AD8420  
GAIN2  
G = 1 + (R2/R1)  
Gain Range  
Gain Error  
1
1000  
0.05  
V/V  
%
VOUT 10 V  
Gain Nonlinearity  
G = 1 to 10  
VOUT = –10 V to +10 V  
RL 20 kΩ  
ppm  
G = 100  
ppm  
RL 20 kΩ  
G = 1000  
ppm  
RL 20 kΩ  
Gain vs. Temperature  
OUTPUT  
TA = −40°C to +85°C  
10  
ppm/°C  
Output Swing  
RL = 20 kΩ to ground  
TA = +25°C  
TA = +85°C  
TA = –40°C  
−VS + 0.15  
−VS + 0.1  
+VS – 0.15  
+VS – 0.1  
V
V
V
RL = 100 kΩ to ground  
TA = +25°C  
TA = +85°C  
TA = –40°C  
V
V
V
Short-Circuit Current  
POWER SUPPLY  
Operating Range  
Quiescent Current  
10  
mA  
Dual supply operation3  
TA = +25°C  
TA = –40°C  
TA = +85°C  
2.7  
18V  
90  
V
75  
µA  
µA  
µA  
100  
TEMPERATURE RANGE  
Specified  
Operational4  
−40  
−40  
+85  
+125  
°C  
°C  
1 The input stage uses pnp transistors, so input bias current always flows out of the part.  
2 For G>1, errors from external resistors R1 and R2 should be added to these specifications, including error from FB pin bias current  
3 Minimum positive supply voltage indicated for V+IN, V-IN, VREF= 0V. With V+IN, V-IN, VREF= -VS, minimum supply is 1.35V.  
4 See Typical Performance Curves for operation between 85°C and 125°C  
Rev. PrD | Page 5 of 5  
 
 
 
 
AD8420  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
THERMAL RESISTANCE  
θJA is specified for a device in free air.  
Parameter  
Rating  
Supply Voltage  
18 V  
Table 5.  
Output Short-Circuit Current  
Maximum Voltage at −IN or +IN  
Minimum Voltage at −IN or +IN  
Maximum Voltage at REF  
Minimum Voltage at REF  
Storage Temperature Range  
ESD  
Indefinite  
–Vs + 40V  
+Vs – 40V  
+Vs + 0.2V  
–Vs – 0.2V  
−65°C to +150°C  
Package  
θJA  
Unit  
8-Lead MSOP, 4-Layer JEDEC Board  
135  
°C/W  
ESD CAUTION  
Human Body Model  
Charge Device Model  
Machine Model  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. PrD | Page 6 of 6  
Preliminary Technical Data  
AD8420  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
NC  
1
2
3
4
8
7
6
5
V
OUT  
+IN  
–IN  
FB  
REF  
–V  
S
+V  
S
AD8420  
TOP VIEW  
(Not to Scale)  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
NC  
This pin not connected internally. For best CMRR vs. frequency and leakage performance, connect this pin to  
negative supply.  
2
3
4
5
6
7
8
+IN  
−IN  
−VS  
+VS  
REF  
FB  
Positive Input.  
Negative Input  
Negative Supply.  
Positive Supply.  
Reference.  
Feedback.  
Output.  
VOUT  
Rev. PrD | Page 7 of 7  
AD8420  
Preliminary Technical Data  
THEORY OF OPERATION  
VOUT  
A3  
R2  
+VS  
VBIAS  
ESD AND  
OVERVOLTAGE  
PROTECTION  
FB  
+IN  
–IN  
–VS  
+VS  
V
I
R1  
V
I
ESD AND  
OVERVOLTAGE  
PROTECTION  
REF  
A1  
A2  
–VS  
Figure 3. Simplified Schematic  
ARCHITECTURE  
Table 7. Suggested Resistors for Various Gains - 1% Resistors  
R1 (kΩ)  
R2 (kΩ)  
short  
49.9  
80.6  
90.9  
95.3  
97.6  
100  
Gain  
1.00  
2.00  
5.03  
10.09  
20.06  
49.8  
101  
The AD8420 consists of three amplifiers: two matched  
transconductance amplifiers that convert voltage to current and  
one integrator amplifier that converts current to voltage.  
none  
49.9  
20  
10  
5
2
1
1
1
1
The AD8420 works as follows: assume a differential voltage is  
applied across inputs +IN and -IN. This input voltage is  
converted into a current by Amplifier A1. This will create a  
difference in current between A1 and A2, which is fed into A3.  
A3s output voltage will change until A2 sinks all the current A1  
is generating. Because the gain of A1 and A2 are matched, this  
means the differential input voltage across A1 will appear across  
the inputs of A2. Gain is set by the ratio of R2 to R1.  
200  
499  
1000  
201  
500  
1001  
While the ratio of R2 to R1 sets the gain, the absolute value of  
the resistors is up to the designer. Larger values reduce power  
consumption and output loading; smaller values limit FB input  
bias current error.  
Because the AD8420 converts the input differential signals to a  
current, there are no internal headroom issues as with  
traditional instrumentation amplifier architectures. This is  
particularly important when amplifying a signal with a  
common mode voltage near one of the supply rails.  
A method that allows large value feedback resistors while  
limiting FB bias current error is to place a resistor of value  
R1||R2 in series with the REF terminal as shown in Figure 4. At  
higher gains, this resistor can simply be the same value as R1.  
To improve robustness and ease of use, the AD8420 includes  
overvoltage protection on its inputs. This protection scheme  
allows input voltages well beyond the supply rails (as well as  
wide differential input voltages) without damaging the part.  
AD8420  
VOUT  
R2  
FB  
SETTING THE GAIN  
+IN  
R1  
The transfer function of the AD8420 is  
–IN  
REF  
VOUT = G(VIN+ VIN−) + VREF  
R1||R2  
where:  
VREF  
R2  
R1  
R2  
G = 1+  
G = 1 +  
R1  
Figure 4. Cancelling Out Error from FB Input Bias Current  
Rev. PrD | Page 8 of 8  
 
Preliminary Technical Data  
AD8420  
INPUT VOLTAGE RANGE  
DRIVING THE REFERENCE PIN  
Unlike traditional instrumentation amplifier architectures, the  
allowed input range of the AD8420 is simplicity itself. For the  
AD8420s transfer function to be valid, the input voltage should  
follow two rules:  
Traditional instrumentation amplifier architectures require the  
reference pin to be driven with a low impedance source. In  
traditional architectures, impedance at the reference pin  
degrades both CMRR and gain accuracy. With the AD8420  
architecture, resistance at the reference pin has no effect on  
CMRR.  
1) Keep differential input voltage within 1V.  
2) Keep voltage on +IN, -IN, and REF pins in specified  
input voltage range  
AD8420  
VOUT  
No hexagonal figures. No complicated formulas.  
R2  
FB  
INPUT PROTECTION  
+IN  
R1  
The AD8420 has very robust inputs and typically does not  
need additional input protection. Input voltages can be up to  
40 V from the opposite supply rail. For example, with a +5 V  
positive supply and a −8 V negative supply, the part can safely  
withstand voltages from −35 V to 32 V. The part can handle  
large differential input voltages, even when the part is in high  
gain, without damage.  
–IN  
REF  
RREF  
VREF  
R2+RREF  
R1  
G = 1+  
Figure 5. Calculating Gain with Reference Resistance  
The rest of the AD8420 terminals should be kept within the  
supplies. All terminals of the AD8426 are protected against ESD.  
Resistance at the reference pin does affect the AD8420s gain,  
but if this resistance is constant, the gain setting resistors can be  
adjusted to compensate. For example, the AD8420 can be  
driven with a voltage divider as shown in Figure 6.  
For applications that require protection beyond the AD8420s  
limits, place diodes at the AD8420 inputs to limit voltage and  
resistors in series with the inputs to limit the current into these  
diodes. To keep input bias current at minimum, low leakage  
diode clamps such as the BAV199 should be used. The AD8420  
also combines well with TVS diodes such as the PTVSxS1UR.  
AD8420  
VOUT  
R2  
FB  
+IN  
–IN  
VS  
R3  
R1  
REF  
Optional  
capacitor  
filters noise  
from Vs  
R4  
R2+R3||R4  
R1  
G = 1+  
Figure 6. Using Resistor Divider to Set Reference Voltage  
Rev. PrD | Page 9 of 9  
 
AD8420  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 7. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package  
MSOP  
MSOP  
MSOP  
MSOP  
MSOP  
MSOP  
Branding  
Y3Y  
Y3Y  
Y3Y  
Y3Z  
AD8420ARMZ  
AD8420ARMZ-R7  
AD8420ARMZ-RL  
AD8420BRMZ  
AD8420BRMZ-R7  
AD8420BRMZ-RL  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Standard grade, tube  
Standard grade, 7 inch Tape and Reel  
Standard grade, 13 inch Tape and Reel  
High performance grade, tube  
High performance grade, 7 inch Tape and Reel  
High performance grade, 13 inch Tape and Reel  
Y3Z  
Y3Z  
1 Z = RoHS Compliant Part.  
Rev. PrD | Page 10 of 10  
 

相关型号:

AD8420BRMZ-R7

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8420BRMZ-RL

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8420_12

Wide Supply Range, Micropower,
ADI

AD8421

3 nV/√Hz, Low Power
ADI

AD8421-KGD-WP

3 nV /√Hz, Low Power Instrumentation Amplifier
ADI

AD8421ARMZ

3 nV/√Hz, Low Power
ADI

AD8421ARMZ-R7

3 nV/√Hz, Low Power
ADI

AD8421ARMZ-RL

3 nV/√Hz, Low Power
ADI

AD8421ARZ

3 nV/√Hz, Low Power
ADI

AD8421ARZ-R7

3 nV/√Hz, Low Power
ADI

AD8421ARZ-RL

3 nV/√Hz, Low Power
ADI

AD8421BRMZ

3 nV/√Hz, Low Power
ADI