AD8432ACPZ-RL [ADI]

Dual-Channel Ultralow Noise Amplifier with Selectable Gain and Input Impedance; 双通道超低噪声放大器,具有可选择的增益和输入阻抗
AD8432ACPZ-RL
型号: AD8432ACPZ-RL
厂家: ADI    ADI
描述:

Dual-Channel Ultralow Noise Amplifier with Selectable Gain and Input Impedance
双通道超低噪声放大器,具有可选择的增益和输入阻抗

运算放大器 放大器电路
文件: 总28页 (文件大小:723K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual-Channel Ultralow Noise Amplifier with  
Selectable Gain and Input Impedance  
AD8432  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
ENB  
VPS1  
VPS2  
COMM  
Low noise  
Input voltage noise: 0.85 nV/√Hz  
Current noise: 2.0 pA/√Hz  
Excellent ac specifications  
200 MHz bandwidth (G = 12.04 dB)  
295 V/μs slew rate  
Selectable gain  
G = 12.04 dB (×4)  
G = 18.06 dB (×8)  
BIAS  
AD8432  
INH1  
IND1  
OPH1  
OPL1  
LNA1  
GMH1  
GOH1  
GOL1  
GML1  
INL1  
INH2  
IND2  
G = 21.58 dB (×12)  
G = 24.08 dB (×16)  
OPH2  
OPL2  
LNA2  
Active input impedance matching  
Integrated input clamp diodes  
Single-ended input, differential output  
Supply range: 4.5 V to 5.5 V  
Low power: 60 mW/channel  
GMH2  
GOH2  
GOL2  
GML2  
INL2  
Figure 1.  
APPLICATIONS  
CW Doppler ultrasound front ends  
Low noise preamplification  
Predriver for I/Q demodulators and phase shifters  
Wideband analog-to-digital drivers  
GENERAL DESCRIPTION  
The AD8432 is a dual-channel, low power, ultralow noise  
amplifier with selectable gain and active impedance matching.  
Each amplifier has a single-ended input, differential output, and  
integrated input clamps. By pin strapping the gain setting pins, four  
accurate gains of G = 12.04 dB, 18.06 dB, 21.58 dB, and 24.08 dB  
(×4, ×8, ×12, and ×16) are possible. A bandwidth of 200 MHz at  
G = 12.04 dB makes this amplifier well suited for many high speed  
applications.  
The AD8432 achieves 0.85 nV/√Hz input referred voltage noise for  
a gain of 12.04 dB. The AD8432s ultralow noise, low distortion,  
excellent gain accuracy, and channel-to-channel matching are ideal  
for high performance ultrasound systems and for processing I/Q  
demodulator signals.  
The AD8432 operates on a single supply of 5 V at 24 mA. It is  
available in a 4 mm × 4 mm, 24-lead LFSCP. The LFCSP features  
an exposed paddle that provides a low thermal resistance path to  
the PCB, which enables more efficient heat transfer and increases  
reliability. The operating temperature range is −40°C to +85°C.  
The exceptional noise performance of the AD8432 is made  
possible by the active impedance matching. Using a feedback  
network, the input impedance of the amplifiers can be adjusted  
to match the signal source impedance without compromising  
the noise performance. Impedance matching and low noise of  
the AD8432 allow designers to create wider dynamic range  
systems that are able to detect even very low level signals.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
AD8432  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Low Noise Amplifier (LNA) ..................................................... 18  
Gain Setting Technique ............................................................. 18  
Active Input Resistance Matching............................................ 19  
Applications Information.............................................................. 21  
Typical Setup............................................................................... 21  
I/Q Demodulation Front End................................................... 23  
Differential-to-Single-Ended Conversion............................... 24  
Evaluation Board ............................................................................ 25  
Gain Setting................................................................................. 25  
Power Supply............................................................................... 27  
Input Termination...................................................................... 27  
Output.......................................................................................... 27  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 28  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
Maximum Power Dissipation ..................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Test Circuits..................................................................................... 16  
Theory of Operation ...................................................................... 18  
REVISION HISTORY  
10/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
AD8432  
SPECIFICATIONS  
VS = 5 V, TA = 25°C, RS = RIN = 50 Ω, RFB =150 ꢀ, CSH = 47 pF, RSH = 15 ꢀ, RL = 500 Ω (per SE output), CL = 5 pF (per SE output),  
G = 12.04 dB (single-ended input to differential output), f = 1 MHz, unless otherwise specified.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Gain Range  
Input to differential output (selectable gain)  
Input to single output (selectable gain)  
12.04  
6.02  
24.08  
18.06  
1
dB  
dB  
dB  
Gain Error  
0.1  
−3 dB Small Signal Bandwidth  
RIN unterminated, RFB = ∞, CSH = 0 pF, RSH = 0 Ω  
G = 12.04 dB  
200  
90  
50  
32  
42  
295  
170  
10  
MHz  
MHz  
MHz  
MHz  
MHz  
V/μs  
V/μs  
ns  
G = 18.06 dB  
G = 21.58 dB  
G = 24.08 dB  
VOUT = 2 V p-p  
VOUT = 2 V p-p, f = 10 MHz  
VOUT = 2 V p-p, f = 10 MHz  
−3 dB Large Signal Bandwidth  
Slew Rate (Rising Edge)  
Slew Rate (Falling Edge)  
Overdrive Recovery Time  
DISTORTION/NOISE PERFORMANCE  
Input Voltage Noise  
RFB = ∞  
RFB = ∞  
0.85  
2.0  
nV/√Hz  
pA/√Hz  
Input Current Noise  
Noise Figure  
Unterminated  
Active Termination  
RS = 50 Ω, RFB = ∞  
2.8  
4.8  
4.2  
3.2  
2.1  
2.3  
3.4  
6.8  
10.2  
13.6  
dB  
dB  
dB  
dB  
dB  
dB  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
RS = RIN = 50 Ω, RFB = 150 Ω  
RS = 50 Ω, RFB = 226 Ω, RIN = 75 Ω  
RS = 50 Ω, RFB = 301 Ω, RIN = 100 Ω  
RS = 50 Ω, RFB = 619 Ω, RIN = 200 Ω  
RS = 50 Ω, RFB = 3.57 kΩ, RIN = 1 kΩ  
G = 12.04 dB, RFB = ∞  
G = 18.06 dB, RFB = ∞  
G = 21.58 dB, RFB = ∞  
G = 24.08 dB, RFB = ∞  
Output Referred Noise  
Harmonic Distortion  
1 MHz (VOUT = 1 V p-p)  
HD2  
−67  
−74  
−103  
−106  
−65  
−72  
−103  
−92  
−66  
−62  
−78  
−73  
−60  
−56  
−72  
−65  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
HD2, RS = 50 Ω, RIN unterminated  
HD3  
HD3, RS = 50 Ω, RIN unterminated  
HD2  
HD2, RS = 50 Ω, RIN unterminated  
HD3  
HD3, RS = 50 Ω, RIN unterminated  
HD2  
HD2, RS = 50 Ω, RIN unterminated  
HD3  
HD3, RS = 50 Ω, RIN unterminated  
HD2  
HD2, RS = 50 Ω, RIN unterminated  
HD3  
1 MHz (VOUT = 2 V p-p)  
10 MHz (VOUT = 1 V p-p)  
10 MHz (VOUT = 2 V p-p)  
HD3, RS = 50 Ω, RIN unterminated  
Rev. 0 | Page 3 of 28  
 
AD8432  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Two-Tone IMD3 Distortion  
10 MHz  
RS = 50 Ω, RIN unterminated  
VOUT = 1 V p-p, f1 = 9.5 MHz, f2 = 10.5 MHz  
VOUT = 2 V p-p, f1 = 9.5 MHz, f2 = 10.5 MHz  
VOUT = 1 V p-p, f1 = 0.9 MHz, f2 = 1.1 MHz  
VOUT = 2 V p-p, f1 = 0.9 MHz, f2 = 1.1 MHz  
f = 1 MHz  
−89.1  
−66.0  
−88.9  
−73.7  
7.5  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
1 MHz  
Input 1dB Compression Point  
f = 10 MHz  
7.7  
Output Third-Order Intercept  
1 MHz  
VOUT = 1 V p-p of composite tones  
VOUT = 2 V p-p of composite tones  
VOUT = 1 V p-p of composite tones  
VOUT = 2 V p-p of composite tones  
VOUT = 1 V p-p of composite tones, reference to 50 Ω  
VOUT = 2 V p-p of composite tones, reference to 50 Ω  
VOUT = 1 V p-p of composite tones, reference to 50 Ω  
VOUT = 2 V p-p of composite tones, reference to 50 Ω  
VOUT = 1 V p-p, f = 1 MHz  
29.7  
28.2  
23.2  
24.2  
42.7  
41.2  
36.2  
37.2  
102  
dBV rms  
dBV rms  
dBV rms  
dBV rms  
dBm  
dBm  
dBm  
dBm  
dB  
10 MHz  
1 MHz  
10 MHz  
Crosstalk  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift  
INPUT CHARACTERISTICS  
Input Voltage Range  
Input Resistance  
−6.25  
+1  
300  
+6.25  
mV  
μV/°C  
AC-coupled  
RFB = 150 Ω  
1.2  
50  
V p-p  
Ω
RFB = 226 Ω  
75  
Ω
RFB = 301 Ω  
RFB = 619 Ω  
RFB = 3.57 kΩ  
RFB = ∞, f = 100 kHz  
100  
200  
1
6.2  
6
Ω
Ω
kΩ  
kΩ  
pF  
V
Input Capacitance  
Input Common Mode Voltage  
OUTPUT CHARACTERISTCS  
Output Common-Mode Voltage  
Output Offset Voltage  
Output Voltage Swing  
Output Resistance  
Output Resistance in Shutdown Mode  
Output Short-Circuit Current  
Enable Response Time  
3.25  
2.5  
+4  
4.8  
<0.1  
2.5  
77  
V
−25  
+25  
mV  
V p-p  
Ω
kΩ  
mA  
μs  
Single-ended, either output  
Single-ended, either output  
RL = 10 Ω differential  
ENBON (enable high to output on)  
ENBOFF (enable low to output off)  
200  
200  
μs  
POWER SUPPLY  
Supply Voltage  
4.5  
5
5.5  
V
Quiescent Current  
Over Temperature  
All channels enabled  
TA = −40°C  
TA = +85°C  
24  
21  
27  
50  
120  
−82  
mA  
mA  
mA  
μA  
mW  
dB  
Supply Current in Shutdown Mode  
Power Dissipation  
PSRR  
ENB = GND  
100  
G = 24.08 dB, f = 100 kHz, no bypass capacitors  
Rev. 0 | Page 4 of 28  
AD8432  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
MAXIMUM POWER DISSIPATION  
The maximum safe power dissipation for the AD8432 is limited  
by the associated rise in junction temperature (TJ) on the die. At  
approximately 150°C, which is the glass transition temperature,  
the properties of the plastic change. Even temporarily exceeding  
this temperature limit may change the stresses that the package  
exerts on the die, permanently shifting the parametric performance  
of the amplifiers. Exceeding a temperature of 150°C for an  
extended period can cause changes in silicon devices, potentially  
resulting in a loss of functionality.  
Parameter  
Rating  
Voltage  
Supply Voltage  
Input Voltage  
Power Dissipation  
5.5 V  
0 V to VPS  
120 mW  
Temperature  
Operating Temperature  
Storage Temperature  
Package Glass Transition Temperature (TG)  
Lead Temperature (Soldering, 60 sec)  
–40°C to +85°C  
–65°C to +150°C  
150°C  
300°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages. The θJA  
values in Table 3 assume a 4-layer JEDEC standard board with  
zero airflow.  
Table 3. Thermal Resistance1  
Parameter  
θJA  
θJC  
θJB  
ΨJT  
Unit  
40-Lead LFCSP  
57.9  
11.2  
35.9  
1.1  
°C/W  
1 4-Layer JEDEC board (2S2P).  
Rev. 0 | Page 5 of 28  
 
 
AD8432  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
18 GOL1  
OPL1  
INH1  
INL1 2  
17  
AD8432  
TOP VIEW  
(Not to Scale)  
16 COM1  
15 COM2  
3
IND1  
COMM 4  
5
6
INL2  
INH2  
14  
13  
L2  
OP  
GOL2  
NOTES  
1. EXPOSED PAD MUST BE CONNECTED  
TO GROUND.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
INH1  
INL1  
LNA1 Noninverting Input.  
LNA1 Inverting Input (AC-Coupled to Ground).  
3, 7  
4
5
6
8
IND1, IND2 Integrated Input Clamping Back-to-Back Diodes.  
COMM  
INL2  
Input Ground.  
LNA2 Inverting Input (AC-Coupled to Ground).  
LNA2 Noninverting Input.  
5 V Supply for LNA2.  
INH2  
VPS2  
9
OPH2  
GOH2  
GMH2  
GML2  
GOL2  
OPL2  
COM2  
COM1  
OPL1  
GOL1  
GML1  
GMH1  
GOH1  
OPH1  
VPS1  
Noninverting Output of LNA2.  
Gain Setting Pin for LNA2.  
Gain Setting Pin for LNA2.  
Gain Setting Pin for LNA2.  
Gain Setting Pin for LNA2.  
Inverting Output of LNA2.  
LNA2 Output Ground.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
LNA1 Output Ground.  
Inverting Output of LNA1.  
Gain Setting Pin for LNA1.  
Gain Setting Pin for LNA1.  
Gain Setting Pin for LNA1.  
Gain Setting Pin for LNA1.  
Noninverting Output of LNA1.  
5 V Supply of LNA1 .  
ENB  
Enable.  
EPAD  
Exposed pad must be connected to ground.  
Rev. 0 | Page 6 of 28  
 
AD8432  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 5 V, TA = 25°C, RS = RIN = 50 Ω, RFB =150 ꢀ, CSH = 47 pF, RSH = 15 ꢀ, RL =500 Ω (per SE output), CL = 5 pF (per SE output),  
G = 12.04 dB (single-ended input to differential output), f = 1 MHz, unless otherwise specified.  
30  
24  
18  
15  
12  
9
24  
18  
12  
6
0
–6  
–12  
–18  
–24  
–30  
6
G = 24.08dB  
G = 21.58dB  
G = 18.06dB  
G = 12.04dB  
R
R
R
R
UNTERMINATED  
= 200  
IN  
IN  
IN  
IN  
3
= 100Ω  
= 50Ω  
0
1
10  
100  
1k  
1
10  
100  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 3. Small Signal Differential Gain vs. Frequency, RIN Unterminated  
Figure 6. Small Signal Frequency Response vs. RIN, G = 21.58 dB  
24  
21  
18  
15  
12  
9
27  
24  
21  
18  
15  
12  
9
6
3
0
–3  
6
R
R
R
R
UNTERMINATED  
= 200Ω  
R
R
R
R
UNTERMINATED  
= 200  
IN  
IN  
IN  
IN  
–6  
–9  
IN  
IN  
IN  
IN  
3
0
= 100Ω  
= 100Ω  
= 50Ω  
= 50Ω  
–12  
1
10  
100  
500  
1
10  
100  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 4. Small Signal Frequency Response vs. RIN, G = 12.04 dB  
Figure 7. Small Signal Frequency Response vs. RIN, G = 24.08 dB  
24  
21  
18  
15  
12  
9
27  
G = 24.08dB  
24  
G = 21.58dB  
21  
G = 18.06dB  
18  
15  
G = 12.04dB  
12  
9
6
3
6
0
R
R
R
R
UNTERMINATED  
= 200Ω  
IN  
IN  
IN  
IN  
–3  
–6  
–9  
3
0
= 100Ω  
= 50Ω  
1
10  
100  
500  
1
10  
100  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 8. Differential Gain vs. Frequency, VOUT = 1 V p-p, RIN = 50 Ω  
Figure 5. Small Signal Frequency Response vs. RIN, G = 18.06 dB  
Rev. 0 | Page 7 of 28  
 
AD8432  
30  
24  
18  
12  
6
240  
230  
220  
210  
200  
190  
180  
170  
160  
0
–6  
–12  
–18  
G = 24.08dB  
G = 21.58dB  
G = 18.06dB  
G = 12.04dB  
G = 24.08dB  
G = 21.58dB  
G = 18.06dB  
G = 12.04dB  
–24  
1
10  
100  
1k  
0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 9. Differential Gain vs. Frequency, VOUT = 2 V p-p , RIN = 50Ω  
Figure 12. Input Impedance RIN vs. Frequency, 200 Ω Active Termination  
55  
54  
53  
52  
51  
50  
49  
48  
10  
1
47  
G = 24.08dB  
G = 24.08dB  
G = 21.58dB  
G = 18.06dB  
G = 21.58dB  
46  
G = 18.06dB  
G = 12.04dB  
G = 12.04dB  
45  
0.1  
0.1  
0.1  
1
10  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 10. Input Impedance RIN vs. Frequency, 50 Ω Active Termination  
Figure 13. Input Impedance RIN vs. Frequency, Unterminated  
115  
110  
105  
100  
95  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
90  
85  
G = 24.08dB  
G = 21.58dB  
G = 18.06dB  
G = 12.04dB  
0.1  
1
10  
0.1  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
Figure 11. Input Impedance RIN vs. Frequency, 100 Ω Active Termination  
Figure 14. Output Impedance vs. Frequency  
Rev. 0 | Page 8 of 28  
AD8432  
100  
10  
1
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.1  
0.1  
1
10  
FREQUENCY (MHz)  
100  
–50  
–30  
–10  
10  
30  
50  
70  
90  
TEMPERATURE (°C)  
Figure 15. Output Impedance vs. Frequency in Disable Mode  
Figure 18. Input Voltage Noise vs. Temperature  
10  
16  
14  
12  
10  
8
f = 1MHz  
G = 24.08dB  
G = 21.58dB  
G = 18.06dB  
G = 12.04dB  
1
R
THERMAL  
S
NOISE ALONE  
6
4
2
–50  
0.1  
1
10  
100  
1000  
–30  
–10  
10  
30  
50  
70  
90  
SOURCE RESISTANCE ()  
TEMPERATURE (°C)  
Figure 16. Input-Referred Voltage Noise vs. Source Resistance (RS)  
Figure 19. Output Voltage Noise vs. Temperature  
100  
1.6  
f = 1MHz  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
G = 24.08dB  
G = 21.58dB  
10  
G = 18.06dB  
G = 12.04dB  
G = 24.08dB  
G = 21.58dB  
G = 18.06dB  
G = 12.04dB  
1
0.01  
0.1  
1
10  
100  
1
10  
100  
1000  
FREQUENCY (MHz)  
SOURCE RESISTANCE ()  
Figure 17. Output-Referred Voltage Noise vs. Source Resistance (RS)  
Figure 20. Input Voltage Noise vs. Frequency  
Rev. 0 | Page 9 of 28  
AD8432  
20  
18  
16  
14  
12  
10  
8
–40  
–50  
G = 24.08dB  
G = 21.58dB  
G = 18.06dB  
G = 12.04dB  
HD2, 10MHz  
HD2, 1MHz  
HD3, 10MHz  
HD3, 1MHz  
MEASUREMENT  
LIMIT  
–60  
–70  
–80  
6
–90  
4
–100  
–110  
2
0
0.01  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
0.1  
1
10  
100  
100  
100  
V
(V p-p)  
FREQUENCY (MHz)  
OUT  
Figure 21. Output Voltage Noise vs. Frequency  
Figure 24. Harmonic Distortion vs. Differential Output Voltage, G = 12.04 dB  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–40  
–50  
–60  
–70  
LOW TONE  
HIGH TONE  
HD2, 10MHz  
HD2, 1MHz  
–80  
–90  
HD3, 10MHz  
HD3, 1MHz  
MEASUREMENT  
LIMIT  
–100  
–110  
–100  
1
10  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
FREQUENCY (MHz)  
V
(V p-p)  
OUT  
Figure 22. IMD3 vs. Frequency  
Figure 25. Harmonic Distortion vs. Differential Output Voltage, G = 24.08 dB  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
–50  
–60  
–70  
–80  
G = 24.08dB  
G = 12.04dB  
HD2, 10MHz, 2V p-p  
HD2, 10MHz, 1V p-p  
HD3, 10MHz, 2V p-p  
HD3, 10MHz, 1V p-p  
HD2, 1MHz, 1V p-p  
HD2, 1MHz, 2V p-p  
HD3, 1MHz, 2V p-p  
HD3, 1MHz, 1V p-p  
–90  
–100  
–110  
0
1
10  
0
5
10  
15  
20  
25  
FREQUENCY (MHz)  
C
(pF)  
L
Figure 23. Output Third-Output Intercept vs. Frequency  
Figure 26. Harmonic Distortion vs. Capacitive Load (CL), G = 12.04 dB  
Rev. 0 | Page 10 of 28  
AD8432  
–40  
–50  
–50  
–60  
HD2, 10MHz, 2V p-p  
HD2, 1MHz, 2V p-p  
HD2, 10MHz, 1V p-p  
–60  
HD3, 10MHz, 2V p-p  
–70  
–70  
HD2, 1MHz, 1V p-p  
HD3, 10MHz, 1V p-p  
–80  
–80  
–90  
HD3, 1MHz, 2V p-p  
–90  
–100  
–110  
–120  
HD2, 10MHz, 2V p-p  
HD2, 10MHz, 1V p-p  
HD3, 10MHz, 2V p-p  
HD3, 10MHz, 1V p-p  
HD2, 1MHz, 1V p-p  
HD2, 1MHz, 2V p-p  
HD3, 1MHz, 2V p-p  
HD3, 1MHz, 1V p-p  
–100  
–110  
HD3, 1MHz, 1V p-p  
0
5
10  
15  
20  
(pF)  
25  
30  
35  
2
4
6
8
10  
12  
14  
16  
18  
C
GAIN (V/V)  
L
Figure 30. Harmonic Distortion vs. Gain  
Figure 27. Harmonic Distortion vs. Capacitive Load (CL), G = 24.08 dB  
–70  
–75  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–80  
–85  
–90  
–95  
–100  
–105  
–110  
–115  
–120  
HD2, 10MHz, 2V p-p  
HD2, 10MHz, 1V p-p  
HD3, 10MHz, 2V p-p  
HD3, 10MHz, 1V p-p  
HD2, 1MHz, 1V p-p  
HD2, 1MHz, 2V p-p  
HD3, 1MHz, 2V p-p  
HD3, 1MHz, 1V p-p  
–85  
–90  
–95  
0.1  
1
10  
FREQUENCY (MHz)  
100  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
()  
R
L
Figure 31. Channel Crosstalk vs. Frequency  
Figure 28. Harmonic Distortion vs. Resistive Load (RL), G = 12.04 dB  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
HD2, 10MHz, 2V p-p  
HD2, 10MHz, 1V p-p  
HD3, 10MHz, 2V p-p  
HD3, 10MHz, 1V p-p  
HD2, 1MHz, 1V p-p  
HD2, 1MHz, 2V p-p  
HD3, 1MHz, 2V p-p  
HD3, 1MHz, 1V p-p  
100ns/DIV  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
()  
R
L
Figure 29. Harmonic Distortion vs. Resistive Load (RL), G = 24.08 dB  
Figure 32. Overdrive Recovery, G = 12.04 dB  
Rev. 0 | Page 11 of 28  
AD8432  
C
C
C
= 15pF  
= 10pF  
= 5pF  
L
L
L
100ns/DIV  
10ns/DIV  
Figure 36. Small Signal Transient Response vs. Capacitive Load (CL), G = 12.04 dB  
Figure 33. Overdrive Recovery, G = 24.08 dB  
C
C
C
C
C
= 5pF  
L
L
L
L
L
G = 24.08dB  
= 10pF  
= 15pF  
= 20pF  
= 30pF  
G = 21.58dB  
G = 18.06dB  
G = 12.04dB  
10ns/DIV  
10ns/DIV  
Figure 37. Small Signal Transient Response vs. Capacitive Load (CL), G = 24.08 dB  
Figure 34. Small Signal Transient Response vs. Gain, VIN = 100 mV p-p  
R
R
R
R
R
= 499  
= 249ꢀ  
= 24.9ꢀ  
= 15ꢀ  
L
L
L
L
L
= 10ꢀ  
10ns/DIV  
10ns/DIV  
Figure 38. Small Signal Transient Response vs. Resistive Load (RL), G = 12.04 dB  
Figure 35. Small Signal Transient Response, G = 12.04 dB  
Rev. 0 | Page 12 of 28  
AD8432  
R
R
R
R
R
= 499ꢀ  
= 249ꢀ  
= 24.9ꢀ  
= 15ꢀ  
C
C
C
C
= 20pF  
L
L
L
L
L
L
L
L
L
= 15pF  
= 10pF  
= 5pF  
= 10ꢀ  
10ns/DIV  
10ns/DIV  
Figure 39. Small Signal Transient Response vs. Resistive Load (RL), G = 24.08 dB  
Figure 42. Large Signal Transient Response vs. Capacitive Load (CL), G = 12.04 dB  
C
C
C
C
C
= 30pF  
= 20pF  
= 15pF  
= 10pF  
= 5pF  
L
L
L
L
L
G = 18.06dB  
G = 12.04dB  
G = 21.58dB  
G = 24.08dB  
10ns/DIV  
10ns/DIV  
Figure 40. Small Signal Transient Response vs. Gain, VOUT = 200 mV p-p  
Figure 43. Large Signal Transient Response vs. Capacitive Load (CL), G = 24.08 dB  
R
R
R
R
= 499  
= 249ꢀ  
= 24.9ꢀ  
= 15ꢀ  
L
L
L
L
G = 24.08dB  
G = 21.58dB  
G = 18.06dB  
G = 12.04dB  
10ns/DIV  
10ns/DIV  
Figure 41. Large Signal Transient Response vs. Gain, VIN = 125 mV p-p  
Figure 44. Large Signal Transient Response vs. Resistive Load (RL), G = 12.04 dB  
Rev. 0 | Page 13 of 28  
AD8432  
30  
28  
26  
24  
22  
20  
R
R
R
R
R
= 499ꢀ  
= 249ꢀ  
= 24.9ꢀ  
= 15ꢀ  
L
L
L
L
L
= 10ꢀ  
10ns/DIV  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
Figure 48. Supply Current vs. Temperature  
Figure 45. Large Signal Transient Response vs. Resistive Load (RL), G = 24.08 dB  
140  
120  
100  
80  
G = 12.04dB  
G = 21.58dB  
G = 18.06dB  
G = 24.08dB  
60  
40  
20  
0
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
10ns/DIV  
TEMPERATURE (°C)  
Figure 46. Large Signal Transient Response vs. Gain, VOUT = 2 V p-p  
Figure 49. Supply Current vs. Temperature in Disable Mode  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
G = 24.08dB  
NO BYPASS CAPS  
–90  
–100  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
Figure 47. PSRR vs. Frequency  
Rev. 0 | Page 14 of 28  
AD8432  
ENB  
5V/DIV  
ENB  
5V/DIV  
1
1
OUTPUT  
50mV/DIV  
OUTPUT  
500mV/DIV  
2
2
TIME (100µs/DIV)  
TIME (100µs/DIV)  
Figure 50. Small Signal Enable Response  
Figure 51. Large Signal Enable Response  
Rev. 0 | Page 15 of 28  
AD8432  
TEST CIRCUITS  
0.1µF  
R
FB  
1MHz  
SPECTRUM  
ANALZYER  
(10MHz LPF)  
DUAL FILTER  
HP  
0.1µF  
0.1µF  
INH  
INH  
INL  
OPL  
475  
56.2ꢀ  
R
L
R
SH  
50ꢀ  
LP  
INL  
0.1µF  
AD8432  
0.1µF  
1MHz  
(10MHz)  
LNA1  
C
AD8130  
SH  
1.7MHz  
(10.7MHz)  
50ꢀ  
G = 1  
R
L
Figure 52. Harmonic Distortion vs. Resistive Load (RL) Measurements  
0.1µF  
DUAL FILTER  
R
FB  
50  
SPECTRUM  
ANALYZER  
LP  
1MHz  
(10MHz LPF)  
0.1µF  
0.1µF  
0.1µF  
50ꢀ  
OPL  
HP  
487ꢀ  
IN  
INH  
INL  
1:1  
C
26.1ꢀ  
L
487ꢀ  
0.1µF  
OPH  
R
1.7MHz  
(10.7MHz)  
SH  
1MHz  
(10MHz)  
C
AD8432  
SH  
LNA1  
26.1ꢀ  
L
C
L
R
Figure 53. Harmonic Distortion vs. Capacitive Load (CL) Measurements  
NETWORK  
ANALYZER  
50ꢀ  
OUT  
50ꢀ  
IN  
5pF  
499ꢀ  
0.1µF  
OPL  
R
FB  
DIFF  
PROBE  
0.1µF  
0.1µF  
INH  
INL  
OPH  
R
SH  
AD8432  
0.1µF  
499ꢀ  
LNA1  
C
SH  
0.1µF  
5pF  
Figure 54. Frequency Response Measurements  
SPECTRUM  
ANALYZER  
0.1µF  
0.1µF  
OPL  
INH  
INL  
50ꢀ  
1kꢀ  
OPH  
AD8129  
G = 10  
AD8432  
1kꢀ  
0.1µF  
0.1µF  
LNA1  
Figure 55. Voltage Noise Measurements  
Rev. 0 | Page 16 of 28  
 
 
AD8432  
5pF  
0.1µF  
R
FB  
10MHz  
499ꢀ  
499ꢀ  
DIFF  
PROBE  
X
MULTIPLIER  
0.1µF  
OSCILLOSCOPE  
CH1  
0.1µF  
INH  
R
Y
SH  
INL  
C
SH  
AD8432  
0.1µF  
5pF  
LNA1  
1MHz  
0.1µF  
Figure 56. Overdrive Recovery Measurements  
499ꢀ  
5pF  
0.1µF  
R
FB  
NETWORK  
ANALYZER  
0.1µF  
0.1µF  
50ꢀ  
OPL  
OPH  
OUT  
INH  
INL  
0.1µF  
R
SH  
C
SH  
499ꢀ  
5pF  
AD8432  
0.1µF  
LNA1  
Figure 57. Input Impedance vs. Frequency Measurements  
0.1µF  
R
FB  
NETWORK  
ANALYZER  
0.1µF  
0.1µF  
50ꢀ  
OPL  
OPH  
INH  
INL  
0.1µF  
R
SH  
C
SH  
499ꢀ  
AD8130  
LNA1  
0.1µF  
Figure 58. Output Impedance vs. Frequency Measurements  
0.1µF  
R
FB  
SPECTRUM  
ANALYZER  
0.1µF  
0.1µF  
0.1µF  
+IN  
–IN  
OPL1  
INH1  
50ꢀ  
1kꢀ  
1kꢀ  
R
OUT  
S
OPH1  
AD8129  
G = 10  
INL1  
AD8432  
0.1µF  
LNA1  
Figure 59. Noise Figure Measurements  
Rev. 0 | Page 17 of 28  
AD8432  
THEORY OF OPERATION  
Clamping the inputs ensures quick recovery from large input  
voltages. The input back-to-back diodes, which are integrated  
inside the die (IND1 and IND2), should be used for the lowest gain  
configuration (12.04 dB) to protect the input from overdriving.  
They should be connected after the source resistance or before  
the INH coupling capacitor.  
LOW NOISE AMPLIFIER (LNA)  
The AD8432 is a dual-channel, ultralow noise amplifier with  
integrated pin-strappable, gain-setting resistors. The resistors  
can be externally connected to achieve differential gains of  
12.04 dB, 18.06 dB, 21.58 dB, and 24.08 dB (×4, ×8, ×12, and  
×16). A simplified schematic of a LNA is shown in Figure 60.  
The use of a fully differential topology and negative feedback  
minimizes distortion. A differential signal enables smaller swings at  
each output, which results in reduction of third-order distortion.  
The LNA is driven with a single-ended input and measured  
differentially at the output. The inverting input INL must be  
ac-coupled to ground through a capacitor for proper operation.  
The LNA cannot be driven differentially due to the asymmetry  
of the internal gain setting resistors. The gain from the inverting  
input INL to the single-ended output (OPH or OPL) does not  
match the gain from the noninverting input INH to the single-  
ended output.  
The AD8432 is a voltage feedback amplifier. Due to gain band-  
width product (GBW), a decrease in bandwidth should be  
expected as the gain increases. Table 5 displays the values of −3 dB  
bandwidth for each gain with unterminated input impedance.  
GAIN SETTING TECHNIQUE  
The AD8432 inputs have a dc bias voltage of 3.25 V, which is  
generated internally. The inputs must be ac-coupled through a  
series capacitor to maintain the dc bias level of the inputs. Likewise,  
the AD8432 outputs have a dc bias voltage of 2.5V. An ac coupling  
capacitor in series with each connection is recommended to  
prevent improper loading of the outputs.  
Pin strapping is used to set the gain of the amplifier. Gain setting  
resistors are integrated in the LNA and are accessible externally  
through the GOH, GMH, GML, and GOL pins. By externally  
shorting these pins, and thereby shorting or connecting the  
internal resistors, the AD8432 can be configured for four different  
gains. Table 5 shows which pins must be connected to achieve  
the desired gain.  
The AD8432 supports a differential output voltage of 4.8 V p-p  
for the common-mode output voltage of 2.5 V. Therefore, for a  
differential gain G = 12.04 dB, the maximum input voltage allowed  
is 1.2 V p-p.  
C
FB  
R
FB  
VPS  
I
I
OPL  
INL  
OPH  
INH  
Q1  
Q2  
CINH  
RG4  
48ꢀ  
RG3  
24ꢀ  
RG2  
12ꢀ  
RG1  
12ꢀ  
RG5  
24ꢀ  
RG6  
24ꢀ  
RG7  
48ꢀ  
RSH  
CSH  
CINL  
GND  
I
I
RS  
GOH  
GMH  
GML  
GOL  
GND  
VS  
GND  
Figure 60. Simplified Schematic of LNA  
Table 5. Gain Setting Using Pin-Strapping Technique and −3 dB Bandwidth for Each Gain Configuration  
Differential  
Gain (dB)  
Single −3 dB  
Gain (dB) BW (MHz)  
RG1 (Ω) RG2 (Ω) RG3 (Ω)  
RG4 (Ω)  
RG5 (Ω) RG6 (Ω)  
RG7 (Ω)  
12.04  
18.06  
21.58  
24.08  
6.02  
200  
90  
12  
12  
12  
12  
12  
12  
12  
12  
Connect  
GMH to GOH  
Connect  
GOH to OPH  
24  
24  
24  
24  
Connect  
GML to GOL  
Connect  
GOL to OPL  
12.04  
15.56  
18.06  
24  
Connect  
GOH to OPH  
24  
Connect  
GOL to OPL  
50  
Connect  
GMH to GOH  
48  
48  
Connect  
GML to GOL  
48  
48  
32  
24  
24  
Rev. 0 | Page 18 of 28  
 
 
 
 
AD8432  
The single-ended gain from INH to OPH (see Figure 60) is  
defined as  
To achieve this active impedance match, connect a feedback  
resistor RFB between the INH and OPL (see Figure 61). RIN is  
given in Equation 1, where G/2 is the single-ended gain.  
R
G1 + RG2 + RG3 + RG4  
GOPHINH  
=
RFB  
RG1  
RIN  
=
(1)  
G
1+  
The single-ended gain from INH to OPL is defined as  
2
RG5 + RG6 + RG7  
In addition, to further reduce the input resistance, there is an  
internal resistance of 6.2 kꢀ in parallel with the source resistance,  
GOPLINH = −  
RG1  
such that  
The values of the seven gain resistors were chosen so that both  
single-ended gains are equal. For example, to set a gain of  
12.04 dB (G = ×4) differentially, the gain from INH to each  
output (OPH, OPL) should be 6.02 dB (G = ×2).  
RFB  
RIN  
=
RINTERNAL  
(2)  
G
1+  
2
INH to OPH: For RG1 = RG2 = RG, then  
Equation 3 should be used to calculate RFB accurately for a desired  
input resistance and single-ended gain. Refer to Table 6 for  
calculated results for RFB for several input resistance and gain  
combinations.  
2 × RG  
R
G1 + RG2  
GOPHINH  
=
=
= 2  
RG1  
RG  
INH to OPL: For RG1 = RG and RG5 = 2 × RG, then  
G
RIN 1+  
2 ×RG  
RG5  
RG1  
2
RIN  
GOPLINH = −  
= −  
= −2  
RFB  
=
, RINTERNAL = 6.2 kꢀ  
(3)  
RG  
1−  
RINTERNAL  
ACTIVE INPUT RESISTANCE MATCHING  
8
7
6
5
4
3
2
1
The AD8432 reduces noise and optimizes signal power transfer  
by using active input termination to perform signal source  
resistance matching.  
The primary purpose of input impedance matching is to optimize  
the input signal power transfer. With resistive termination, the  
input noise increases due to the thermal noise of the terminating  
resistor and the increased contribution of the input voltage noise  
generator of the LNA. With active impedance matching, however,  
the contributions of both are smaller than they would be for  
resistive termination by a factor of 1/(1 + ½LNA Gain). The  
noise figure (NF) for the three terminating schemes are shown  
in Figure 62.  
RESISTIVE TERMINATION  
(R = R  
)
IN  
S
ACTIVE IMPEDANCE  
MATCH  
UNTERMINATED  
(SIMULATED RESULTS)  
100  
0
50  
1000  
R
R
()  
IN  
S
R
INH  
S
V
Figure 62. Noise Figure vs. RS for Resistive, Active Match, and  
Unterminated Inputs  
LNA  
OUT  
V
IN  
UNTERMINATED  
18  
16  
14  
12  
10  
8
R
R
R
R
R
R
= 1kꢀ  
IN  
IN  
IN  
IN  
IN  
IN  
= 200ꢀ  
= 100ꢀ  
= 75ꢀ  
= 50ꢀ  
R
IN  
R
INH  
S
V
LNA  
OUT  
= UNTERMINATED  
R
S
V
IN  
RESISTIVE  
TERMINATION  
R
FB  
R
IN  
6
R
INH  
S
V
LNA  
OUT  
4
V
IN  
ACTIVE  
IMPEDANCE MATCH  
2
(SIMULATED RESULTS)  
100  
0
50  
Figure 61. Input Resistance Matching  
1k  
R
()  
S
Figure 63. Noise Figure vs. RS for Various Values of RIN, Actively Matched  
Rev. 0 | Page 19 of 28  
 
 
 
AD8432  
The user must determine the level of matching accuracy desired  
and adjust RFB accordingly. The RFB and CFB network presents a  
load to OPL that OPH does not see. The user may add an identical  
load on OPH, to improve slightly the distortion caused by this  
imbalance.  
The unterminated bandwidth (RFB = ∞) is 200 MHz. The AD8432  
has a low input referred voltage noise of 0.85 nV/√Hz at the  
lowest gain, 12.04 dB (unterminated configuration). To achieve  
such low noise, the dual amplifier consumes 24 mA, resulting in  
a power consumption of 120 mW.  
There is a feedback capacitor (CFB) in series with RFB (see Figure 60)  
because the dc levels of the positive output and the positive input  
are different. At higher frequencies, the value of the feedback  
capacitor needs to be considered.  
Table 6. Feedback Resistance for Several RIN and Gain Combinations  
Single-Ended Gain,  
G/2 (V/V)  
Exact RFB (Ω),  
Equation 2  
Actual RIN (Ω),  
Equation 2  
Desired RIN (Ω)  
Differential Gain (V/V)  
RFB (Ω), 1% Standard Value  
50  
75  
4
4
4
4
4
8
8
12  
12  
16  
16  
2
2
2
2
2
4
4
6
6
8
8
151.2  
227.8  
304.9  
620  
3.58 k  
252  
508.2  
352.9  
711.5  
453.7  
914.8  
150  
226  
301  
619  
3.57 k  
250  
511  
357  
715  
453  
909  
49.6  
74.4  
98.7  
100  
200  
1 k  
50  
100  
50  
100  
50  
100  
199.7  
998.4  
49.6  
100.5  
50.6  
100.5  
49.9  
99.4  
Rev. 0 | Page 20 of 28  
 
AD8432  
APPLICATIONS INFORMATION  
The AD8432 LNA provides precision gain and ultralow noise  
performance with minimal external components. Because it is  
a high performance part, care must be taken to ensure that it is  
configured optimally to attain the best performance and dynamic  
range for the system.  
The unterminated input impedance of the AD8432 is 6.2 kꢀ.  
Any input resistance between 50 ꢀ and 6.2 kꢀ can be synthesized  
using active impedance matching.  
At the lowest gain (12.04 dB), the gain response exhibits some  
peaking at higher frequencies. An RC shunt network at the input  
(see RSHx and CSHx in Figure 64) is recommended to reduce gain  
peaking and enhance stability at higher frequencies.  
TYPICAL SETUP  
The internal bias circuitry of the AD8432 sets the input bias  
voltage at 3.25 V and the output bias voltage at 2.5 V. It is important  
to ac-couple the inputs through a capacitor to maintain the internal  
dc bias levels. When active input termination is used (RFB), a  
decoupling capacitor (CFB) is required to isolate the input and  
output bias voltages of the LNA. A typical value for CFB is 0.1 μF, but  
a smaller value capacitor is more appropriate at higher frequencies.  
Table 7 shows the recommended values of RFB, CSH, and RSH for  
all four gains and several input impedance combinations. The  
values for the CSH and RSH network are determined empirically  
and can be customized as needed to optimize performance. As  
RIN increases, the value of CSH diminishes, and for higher input  
impedance values, no capacitor may be required.  
C
FB1  
0.1µF  
R
FB1  
FB  
120nH  
G = 12dB  
0.1µF  
0.1µF  
ENB  
VPS1  
COMM  
VPS2  
BIAS  
FB  
120nH  
0.1µF  
0.1µF  
INH1  
IND1  
OPH1  
IN1  
OUT1+  
OUT1–  
R
SH1  
15ꢀ  
R
L
C
LNA1  
L
OPL1  
C
SH1  
47pF  
0.1µF  
GMH1  
GOH1  
GOL1  
GML1  
INL1  
0.1µF  
0.1µF  
FB  
120nH  
0.1µF  
INH2  
IND2  
OPH2  
OPL2  
IN2  
OUT2+  
OUT2–  
R
SH2  
15ꢀ  
R
L
C
LNA2  
L
C
SH2  
0.1µF  
47pF  
0.1µF  
C
GMH2  
GOH2  
GOL2  
GML2  
INL2  
AD8432  
FB2  
0.1µF  
R
FB2  
Figure 64. Typical AD8432 Setup, G = 12.04 dB  
Rev. 0 | Page 21 of 28  
 
 
AD8432  
Table 7. External Components Selections for Common Input Impedance  
RIN (Ω)  
Gain (dB)  
RFB (Ω)  
150  
249  
357  
453  
226  
383  
536  
681  
301  
511  
715  
909  
619  
1.02 k  
1.43 k  
1.87 k  
3.57 k  
5.9 k  
8.25 k  
10.7 k  
CSH (pF)  
RSH (Ω)  
15  
15  
None  
None  
15  
None  
None  
None  
15  
None  
None  
None  
15  
None  
None  
None  
10  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
−3 dB BW (MHz)  
50  
12  
18  
21  
24  
47  
30  
176  
116  
117  
87  
None  
None  
36  
None  
None  
None  
30  
None  
None  
None  
18  
None  
None  
None  
10  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
75  
12  
18  
21  
24  
167  
144  
100  
72  
100  
12  
18  
21  
24  
164  
134  
90  
63  
200  
12  
18  
21  
24  
164  
116  
74  
51  
1 k  
12  
18  
21  
24  
160  
99  
61  
43  
Unterminated, RS = 50 Ω  
Unterminated, RS = 0 Ω  
12  
18  
21  
24  
178  
95  
59  
40  
12  
18  
21  
24  
210  
96  
55  
38  
Rev. 0 | Page 22 of 28  
 
AD8432  
resistors. The 4LOP and 4LON pins of the AD8339 are driven by  
a differential clock signal, which has a frequency 4× that of the  
RF inputs. The AD8339 downconverts the RF signals, generates  
quadrature, and phase-shifts the resultant I and Q signals.  
I/Q DEMODULATION FRONT END  
The AD8432 low noise amplifiers can be used to drive the  
differential RF inputs of the dual AD8333 or the quad AD8339  
I/Q demodulators. The primary application for the AD8339 is  
phased array beamforming in medical ultrasound, specifically  
in CW Doppler processing. Other applications include phased  
array radar and smart antennas for mobile communications.  
The I and Q outputs of the AD8339 are current outputs. A  
transimpedance amplifier, such as the AD8021, processes the  
outputs and performs several functions, including the following:  
AD8021  
Current-to-voltage conversion  
Summation amplifier for multiple channels  
Active low-pass filter  
Q1  
0.1µF  
20ꢀ  
787ꢀ  
RF1P  
Q1OP  
I1OP  
2.2nF  
2.2nF  
787ꢀ  
AD8339  
AD8432  
In beamforming applications, the I and Q outputs of a number  
of receiver channels are summed, which increases the system  
dynamic range by 10 log10 (N), N being the number of channels  
being summed. The external RC feedback network of the  
AD8021 is a 100 kHz low-pass filter as shown in Figure 65.  
Refer to the AD8333 and AD8339 datasheets for more details  
on implementing I/Q demodulators.  
RF1N  
20ꢀ  
0.1µF  
4LOP  
0.1µF  
I1  
AD8021  
Figure 65. Block Diagram of AD8432 + AD8339 Application for  
Ultrasound Beamforming  
Evaluation boards are available for the AD8432 and the AD8339  
to facilitate system level design and test. A detailed reference  
schematic of the setup is shown in Figure 66. The AD8432 is  
shown in this configuration with a gain of 12.04 dB, with  
unterminated inputs. If active termination is preferred, use an  
RFB and CFB network as discussed in the Theory of Operation.  
Clamping diodes IND1/IND2 can be connected to IN1/IN2 to  
protect the LNA input from being overdriven.  
Because of its low output noise and low distortion, the AD8432  
ensures minimal degradation in dynamic range while amplifying  
the RF input signal. At the lowest gain of 12.04 dB, the AD8432  
contributes only 3.4 nV/√Hz output voltage noise.  
Figure 65 shows a simplified block diagram of one channel of  
the AD8432 driving the AD8339. The AD8432 outputs can be  
connected directly to the AD8339 RF inputs through 20 ꢀ  
4LO  
0.1µF  
+5V  
5V  
+5V  
787ꢀ  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
2.2nF  
ENB VPS1  
VPS2 COMM  
BIAS  
VPOS  
VNEG 4LOP  
2
7
0ꢀ  
6
0.1µF  
IN1  
Q1 + Q2  
INH1  
IND1  
AD8021  
20ꢀ  
20ꢀ  
RF1P  
RF1N  
Q1OP  
I1OP  
OPH1  
+
4
R
15ꢀ  
3
LNA1  
SH1  
OPL1  
C
47pF  
0.1µF  
GMH1  
GOH1  
GOL1  
SH1  
5V  
INL1  
+5V  
0.1µF  
GML1  
IN2  
787ꢀ  
INH2  
IND2  
20ꢀ  
20ꢀ  
Q2OP  
I2OP  
OPH2  
OPL2  
RF2P  
RF2N  
0.1µF  
2
0.1µF  
0.1µF  
2.2nF  
LNA2  
R
SH2  
15ꢀ  
7
GMH2  
GOH2  
GOL2  
C
SH2  
47pF  
0ꢀ  
6
I1 + I2  
AD8339  
INL2  
AD8021  
+
4
GML2  
G = –1.3dB  
3
AD8432  
LPF  
fC = 100kHz  
0.1µF  
G = 12dB  
5V  
Figure 66. Schematic of AD8432 (G = 12.04 dB) + AD8339 Application for Ultrasound Beamforming  
Rev. 0 | Page 23 of 28  
 
 
 
AD8432  
A transformer or balun can also be used to convert the differential  
output of the AD8432 to a single-ended output. Transformers  
have lower distortion; however, care must be taken to properly  
match the impedance of the transformer. The test circuit for  
distortion measurements in Figure 53 uses an ADTT1-1  
transformer to perform differential-to-single-ended conversion.  
DIFFERENTIAL-TO-SINGLE-ENDED CONVERSION  
Some applications require the low noise and high dynamic  
range of the AD8432; however, they may also require a single-  
ended output, rather than a differential output. The AD8129  
and AD8130 differential receiver amplifier can be used for the  
differential-to-single-ended conversion of the AD8432 output,  
as shown in Figure 67.  
The AD8129 is a low noise, high gain (10 or greater) amplifier  
intended for applications over very long cables, where signal  
attenuation is significant. The AD8130 is stable at a gain of 1  
and can be used for applications where lower gains are required.  
The AD8129 and AD8130 have user-adjustable gain, set by the  
ratio of two resistors, to help compensate for losses in the  
transmission line.  
0.1µF  
0.1µF  
ENB VPS1  
VPS2 COMM  
BIAS  
+V  
SERIES R IF DRIVING  
HIGH CAP LOAD  
AC-COUPLING CAPS  
(AD8432 HAS 2.5V  
OUTPUT BIAS)  
S
0.1µF  
IN1  
INH1  
IND1  
20  
20ꢀ  
0.1µF  
0.1µF  
1
8
OPH1  
OPL1  
7
2
+
R
LNA1  
SH1  
V
OUT1  
6
15ꢀ  
4
5
C
GMH1  
GOH1  
GOL1  
GML1  
SH1  
499ꢀ  
499ꢀ  
+
47pF  
INL1  
AD8130  
0.1µF  
R’S PROVIDE BIAS CURRENT  
PATH AND TERMINATION  
IF NECESSARY  
G = 12 dB  
–V  
S
Figure 67. AD8432 Differential-to-Single-Ended Conversion Using the AD8129/AD8130 with Unity Gain  
Rev. 0 | Page 24 of 28  
 
 
AD8432  
EVALUATION BOARD  
Figure 68 shows the AD8432 evaluation board, and the schematic  
diagram is shown in Figure 69. Using the board is a convenient  
and fast way to verify system design and assess the performance of  
the AD8432 under the user-specific operating conditions. The  
board provides access to all LNA inputs, outputs, and gain setting  
pins. The board is shipped in a typical G = 12.04 dB configuration  
but is designed to allow customization of the setup as required.  
Table 8 outlines which resistors or headers need to be installed or  
shorted for each gain configuration.  
Table 8. Gain Setting Using Resistors or Headers  
Gain (V/V)  
LNA1  
W5  
LNA2  
W9  
4
8
12  
16  
R1  
R2  
R3  
R4  
R9  
X1  
X1  
X1  
X1  
X1  
W6  
W7  
W8  
R10  
R11  
R12  
W10  
W11  
W12  
X1  
X1  
The AD8432-EVALZ requires a single 5 V power supply. An  
on-board switch (S1) allows VPS to drive the enable (ENB) input.  
X1  
GAIN SETTING  
1 X = shorting the indicated header or resistor.  
Headers (W5 to W12) are provided across the gain setting pins  
and can be shorted using jumpers to allow gain setting quickly  
and easily. Alternately, it is recommended to short the gain setting  
pins using surface-mount (0402), 0 ꢀ resistors (R1 to R4, R9 to  
R12) that eliminate the small parasitic capacitances from longer  
trace lengths to the headers. As shipped, the evaluation board is  
configured for G = 12.04 dB with these 0 Ω resistors.  
Figure 68. Evaluation Board  
Rev. 0 | Page 25 of 28  
 
 
 
 
AD8432  
SCHEMATIC  
2
0 4 1 - 3 4 0 8  
12  
11  
10  
9
GML1 19  
GMH1 20  
GOH1 21  
OPH1 22  
VPS1 23  
ENB 24  
GML2  
GMH2  
GOH2  
OPH2  
VPS2  
IND2  
8
7
Figure 69. Schematic  
Rev. 0 | Page 26 of 28  
 
AD8432  
OUTPUT  
POWER SUPPLY  
The AD8432 evaluation board provides the space to configure  
the output loading conditions required by the user, by populating  
the given footprints (for example, RL1, RL2, C7, and C8). SMA  
connectors are available at the outputs, and space for a transformer  
is also available for differential-to-single-ended conversion.  
The AD8432 should be powered by a single 5 V supply connected  
to the VPOS terminal. Separate supplies can be used for VPS1,  
VPS2, and ENB, or they can all be tied to VPOS by shorting  
the W3 and W4 headers and the S1 switch. Ferrite beads and  
decoupling capacitors are installed for isolation, protection, and  
power supply noise reduction.  
The 4-pin headers, PRB3 and PRB4, are placed close to the AD8432,  
and they provide a way for monitoring the differential output or  
the single-ended output using a high impedance differential probe.  
The two inner pins of the headers are connected to OPL/OPH,  
and the two outer pins of the headers are connected to ground.  
INPUT TERMINATION  
Active input impedance matching can be realized by installing  
a feedback resistor (RFB), the value of which is determined by  
the gain and source impedance, as described in the Theory of  
Operation section. CFB provides the necessary ac coupling  
between the input and output when using active termination;  
a 0.1 μF capacitor value is recommended. The RFB and CFB network  
presents a load to OPL, and an equivalent load at OPH can be  
used to balance the differential output.  
There are several footprints provided to install ac coupling  
capacitors at the outputs (C7 to C14). The AD8432 outputs are  
biased internally at 2.5 V. To maintain the dc bias level, use coupling  
capacitors between the outputs and the load.  
Input clamping diodes (IND1 and IND2) can be connected to the  
inputs, by shorting the connection on the W1 and W2 headers.  
The diodes provide overvoltage protection to the input and  
enable faster overdrive recovery times, especially at the lowest  
gain (12.04 dB).  
Rev. 0 | Page 27 of 28  
 
AD8432  
OUTLINE DIMENSIONS  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
19  
18  
24  
0.50  
BSC  
1
2.65  
2.50 SQ  
2.45  
EXPOSED  
PAD  
13  
12  
BOTTOM VIEW  
6
7
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD.  
Figure 70. 24-Lead Lead Frame Chip Scale Package [LFSCP_WQ]  
4 mm × 4 mm, Very Very Thin Quad  
(CP-24-7)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD8432ACPZ-R71  
AD8432ACPZ-RL1  
AD8432ACPZ-WP1  
AD8432-EVALZ1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CP-24-7  
CP-24-7  
24-Lead LFCSP_WQ, 7”Tape and Reel  
24-Lead LFCSP_WQ, 13”Tape and Reel  
24-Lead LFCSP_WQ, Waffle Pack  
Evaluation Board  
CP-24-7  
1 Z = RoHS Compliant Part.  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08341-0-10/09(0)  
Rev. 0 | Page 28 of 28  
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY