AD8436BARQZ-RL [ADI]

Low Cost, Low Power, True RMS-to-DC Converter; 低成本,低功耗,真RMS至DC转换器
AD8436BARQZ-RL
型号: AD8436BARQZ-RL
厂家: ADI    ADI
描述:

Low Cost, Low Power, True RMS-to-DC Converter
低成本,低功耗,真RMS至DC转换器

转换器
文件: 总24页 (文件大小:747K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, Low Power,  
True RMS-to-DC Converter  
AD8436  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
CAVG CCF  
Delivers true rms or average rectified value of ac waveform  
Fast settling at all input levels  
Accuracy: 10 μV 0.25% of reading (B grade)  
Wide dynamic input range  
100 μV rms to 3 V rms (8.5 V p-p) full-scale input range  
Larger inputs with external scaling  
Wide bandwidth:  
VCC  
AD8436  
100kΩ  
SUM  
IGND  
100kΩ  
8kΩ  
RMS CORE  
10pF  
RMS  
VEE  
OGND  
OUT  
16kΩ  
1 MHz for −3 dB (300 mV)  
65 kHz for additional 1% error  
Zero converter dc output offset  
No residual switching products  
Specified at 300 mV rms input  
Accurate conversion with crest factors up to 10  
Low power: 300 µA typical at 2.4 V  
High-Z FET separately powered input buffer  
RIN ≥ 1012 Ω, CIN 2 pF  
10kΩ  
10kΩ  
IBUFGN  
IBUFIN–  
IBUFIN+  
IBUFOUT  
FET OP AMP  
+
OBUFIN+  
OBUFIN–  
+
DC BUFFER  
OBUFOUT  
16kΩ  
Precision dc output buffer  
Wide power supply voltage range  
Dual: 2.4 V to 18 V; single: 4.8 V to 36 V  
4 mm × 4 mm LFCSP and 8 mm × 6 mm QSOP packages  
ESD protected  
Figure 1.  
GENERAL DESCRIPTION  
The AD8436 is a new generation, translinear precision, low  
power, true rms-to-dc converter loaded with options. It  
computes a precise dc equivalent of the rms value of ac wave-  
forms, including complex patterns such as those generated by  
switch mode power supplies and triacs. Its accuracy spans a  
wide range of input levels (see Figure 2) and temperatures.  
The ensured accuracy of 0.5% and 10 µV output offset  
result from the latest Analog Devices, Inc., technology. The  
crest factor error is <0.5% for CF values between 1 and 10.  
The precision dc output buffer minimizes errors when driving  
low impedance loads with extremely low offset voltages, thanks  
to internal bias current cancellation. Unlike digital solutions, the  
AD8436 has no switching circuitry limiting performance at high or  
low amplitudes (see Figure 2). A usable response of <100 µV and  
>3 V extends the dynamic range with no external scaling,  
accommodating demanding low level signal conditions and  
allowing ample overrange without clipping  
.
GREATER INPUT DYNAMIC RANGE  
The AD8436 delivers true rms results at less cost than  
misleading peak, averaging, or digital solutions. There is no  
programming expense or processor overhead to consider, and  
the 4 mm × 4 mm package easily fits into tight applications.  
On-board buffer amplifiers enable the widest range of options  
for any rms-to-dc converter available, regardless of cost. For  
minimal applications, only a single external averaging capacitor  
is required. The built-in high impedance FET buffer provides  
an interface for external attenuators, frequency compensation,  
or driving low impedance loads. A matched pair of internal  
resistors enables an easily configurable gain-of-two or more,  
extending the usable input range even lower. The low power,  
precision input buffer makes the AD8436 attractive for use in  
portable multi-meters and other battery-powered applications.  
AD8436  
ΔΣ SOLUTION  
100µV  
1mV  
10mV  
100mV  
1V  
3V  
Figure 2. Usable Dynamic Range of the AD8436 vs. ∆Σ  
The AD8436 operates from single or dual supplies of 2.4 V  
(4.8 V) to 18 V (36 V). A and J grades are available in a  
compact 4 mm × 4 mm, 20-lead chip-scale package; A and B  
grades are available in a 20-lead QSOP package. The operating  
temperature ranges are −40°C to 125°C for A and B grades and  
0°C to 70°C for J grade.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2011–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD8436  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Test Circuits........................................................................................9  
Theory of Operation ...................................................................... 10  
Overview ..................................................................................... 10  
Applications Information .............................................................. 12  
Using the AD8436....................................................................... 12  
AD8436 Evaluation Board ............................................................. 17  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 21  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
REVISION HISTORY  
1/13—Rev. A to Rev. B  
Changes to Table 1.............................................................................3  
Changes to Table 2.............................................................................4  
Changes to Table 3 and added Figure 4 and added Table 4;  
Renumbered Sequentially ................................................................5  
Changes to Equation 1 and change to Column One Heading  
in Table 5.......................................................................................... 10  
Changes to Averaging Capacitor Considerations—RMS  
Accuracy and to Post Conversion Ripple Reduction Filter  
and changes to Figure 27 Caption................................................ 12  
Changes to Figure 30 to Figure 32................................................ 13  
Changes to Using the FET Input Buffer Section and Using the  
Output Buffer Section.................................................................... 14  
Changes to Figure 38 and Figure 41 and added Converting  
to Rectified Average Value Section .............................................. 15  
Changes to Figure 41...................................................................... 16  
Changes to Figure 42 to Figure 46................................................ 17  
Changes to Figure 47 and Figure 48 ............................................ 18  
Updated Outline Dimensions....................................................... 19  
Changes to Ordering Guide.......................................................... 20  
Added B Grade Throughout .............................................Universal  
Changes to Figure 1 and changes to General Description.......... 1  
Changes to Table 1............................................................................ 3  
Changes to Figure 3 ......................................................................... 5  
Changes to Figure 9 and Figure 10................................................. 6  
Changes to FET Input Buffer Section .......................................... 11  
Changes to Averaging Capacitor Considerations—RMS  
Accuracy Section and changes to Figure 28................................ 12  
Deleted Capacitor Construction Section; added CAVG  
Capacitor Styles Section................................................................. 13  
Added Converting to Average Rectified Value Section............. 15  
Changes to Figure 41...................................................................... 16  
Changes to Evaluation Board Section.......................................... 17  
Changes to Figure 48...................................................................... 19  
Changes to Outline Dimensions................................................... 20  
Changes to Ordering Guide .......................................................... 21  
7/12—Rev. 0 to Rev. A  
Added 20-Lead QSOP........................................................Universal  
Changes to Features Section and General Description Section . 1  
7/11—Revision 0: Initial Version  
Rev. B | Page 2 of 24  
 
Data Sheet  
AD8436  
SPECIFICATIONS  
eIN = 300 mV (rms), frequency = 1 kHz sinusoidal, ac-coupled, VS = 5 V, TA = 25°C, CAVG = 10 µF, unless otherwise specified.  
Table 1.  
AD8436A, AD8436J  
AD8436B  
Typ  
Parameter  
Conditions  
Min  
Typ  
Max  
Min  
10 − 0.25  
Max  
Units  
RMS CORE  
Conversion Error  
Vs. Temperature  
Vs. Rail Voltage  
Input VOS  
Default conditions  
−40°C < T < 125 C  
2.4 V to 18 V  
10 − 0.5  
0
0
10 + 0.5  
0
0
10 + 0.25 μV/% rdg  
0.006  
0.013  
0.006  
0.013  
0
0
0.3  
0
%/°C  
%/V  
DC-coupled  
−500  
−1.5  
0
0
0.3  
0
+500  
+1.5  
−250  
−1.0  
+250  
μV  
V
Output VOS  
AC-coupled input  
−40 C < T < 125°C  
DC-coupled, VIN = 300 mV  
eIN = 2 mV to 500 mV ac  
(Additional)  
Vs. Temperature  
DC Reversal Error  
Nonlinearity  
Crest Factor Error  
1 < CF < 10  
μV/°C  
%
+1.0  
0.2  
0.2  
%
CCF = 0.1 μF  
−0.5  
+0.5  
−0.5  
+0.5  
+VS + 0.7  
8.08  
%
V
kΩ  
Peak Input Voltage  
Input Resistance  
Response  
−VS − 0.7  
7.92  
+VS + 0.7  
8.08  
−VS − 0.7  
7.92  
8
8
VIN = 300 mV rms  
(Additional)  
1% Error  
65  
1
65  
1
kHz  
3 dB Bandwidth  
Settling Time  
0.1%  
MHz  
Rising/falling  
Rising/falling  
148/341  
158/350  
16  
148/341  
158/350  
16  
ms  
ms  
kΩ  
μA  
0.01%  
Output Resistance  
Supply Current  
INPUT BUFFER  
Voltage Swing  
Input  
15.68  
16.32  
365  
15.68  
16.32  
365  
No input  
325  
325  
G = 1  
AC- or dc-coupled  
AC-coupled to Pin RMS  
−VS  
−VS + 0.2  
−1  
+VS  
+VS − 0.2  
+1  
−VS  
−VS + 0.2  
−0.5  
+VS  
V
Output  
+VS − 0.2  
+0.5  
50  
mV  
mV  
pA  
Offset Voltage  
Input Bias Current  
Input Resistance  
Response  
0
0
50  
1012  
1012  
(Frequency)  
0.1 dB  
950  
2.1  
160  
+10  
950  
2.1  
160  
+10  
kHz  
MHz  
μA  
kΩ  
%
3 dB Bandwidth  
Supply Current  
Optional Gain Resistor  
Gain Error  
100  
−9.9  
200  
+10.1  
0.05  
100  
−9.9  
200  
+10.1  
0.05  
G = ×1  
OUTPUT BUFFER  
Offset Voltage  
Input Current (IB)  
Output Swing  
Output Drive Current  
Gain Error  
Supply Current  
SUPPLY VOLTAGE  
Dual  
RL =  
Connected to Pin OUT  
−200  
0
2
+200  
51  
+VS − 1  
−150  
0
2
+150  
51  
+VS − 1  
+15 (source) mA  
%
70  
μV  
nA  
V
(Voltage)  
−VS + 50e-6  
−0.5 (sink)  
0.003  
−VS + 50e-6  
+15 (source) −0.5 (sink)  
0.01  
40  
0.003  
0.01  
40  
70  
μA  
2.4  
4.8  
18  
36  
2.4  
4.8  
18  
36  
V
V
Single  
1IB max measured at power up. Settles to typical value in <15 seconds.  
Rev. B | Page 3 of 24  
 
 
 
AD8436  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Voltage  
Supply  
Input  
18 V  
VS  
Differential Input  
Power Dissipation  
CP-20-10 LFCSP Without Thermal Pad  
CP-20-10 LFCSP With Thermal Pad  
RQ Package  
+VS and −VS  
1.2 W  
2.1 W  
1.1 W  
θ
JA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
ESD CAUTION  
Output Short-Circuit Duration  
Temperature  
Indefinite  
Operating Range  
Storage Range  
Lead Soldering (60 sec)  
θJA  
−40°C to +125°C  
−65°C to +125°C  
300°C  
CP-20-10 LFCSP Without Thermal Pad  
CP-20-10 LFCSP With Thermal Pad  
RQ-20 Package  
86°C/W  
48°C/W  
95°C/W  
2 kV  
ESD Rating  
Rev. B | Page 4 of 24  
 
 
Data Sheet  
AD8436  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
SUM  
CAVG  
CCF  
VCC  
IBUFV+  
20  
16  
1
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
SUM  
DNC  
CAVG  
15  
DNC  
RMS  
OBUFV+  
OBUFOUT  
OBUFIN–  
OBUFIN+  
IGND  
CCF  
3
RMS  
VCC  
PIN 1  
INDICATOR  
AD8436  
TOP VIEW  
(Not to Scale)  
4
IBUFOUT  
IBUFIN–  
IBUFIN+  
IBUFGN  
DNC  
IBUFV+  
OBUFV+  
OBUFOUT  
OBUFIN–  
OBUFIN+  
IGND  
5
AD8436  
6
TOP VIEW  
IBUFOUT  
IBUFIN–  
IBUFIN+  
(Not to Scale)  
7
8
9
OGND  
OUT  
10  
VEE  
NOTES  
5
11  
1. DNC = DO NOT CONNECT.  
DO NOT CONNECT TO THIS PIN.  
6
10  
IBUFGN DNC  
OGND  
OUT  
VEE  
NOTES  
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN.  
2. THE EXPOSED PAD CONNECTION IS OPTIONAL.  
Figure 4. Pin Configuration, RQ-20  
Figure 3. Pin Configuration, Top View, CP-20-10  
Table 3. Pin Function Descriptions, CP-20-10  
Table 4. Pin Function Descriptions, RQ-20  
Pin No. Mnemonic Description  
Pin No. Mnemonic Description  
1
2
3
4
5
6
7
8
DNC  
RMS  
Do Not Connect. Used for factory test.  
AC Input to the RMS Core.  
FET Input Buffer Output Pin.  
FET Input Buffer Inverting Input Pin.  
FET Input Buffer Noninverting Input Pin.  
Optional 10 kΩ Precision Gain Resistor.  
Do Not Connect. Used for factory test.  
Internal 16 kΩ I-to-V Resistor.  
1
2
3
4
5
6
7
8
SUM  
DNC  
RMS  
Summing Amplifier Input Pin.  
Do Not Connect. Used for factory test.  
AC Input to the RMS Core.  
IBUFOUT  
IBUFIN–  
IBUFIN+  
IBUFGN  
DNC  
OGND  
OUT  
VEE  
IBUFOUT  
IBUFIN–  
IBUFIN+  
IBUFGN  
DNC  
OGND  
OUT  
VEE  
FET Input Buffer Output Pin.  
FET Input Buffer Inverting Input Pin.  
FET Input Buffer Noninverting Input Pin.  
Optional 10 kΩ Precision Gain Resistor.  
Do Not Connect. Used for factory test.  
Internal 16 kΩ I-to-V Resistor.  
RMS Core Voltage or Current Output.  
Negative Supply Rail.  
Half Supply Node.  
Output Buffer Noninverting Input Pin.  
Output Buffer Inverting Input Pin.  
Output Buffer Output Pin.  
Power Pin for the Output Buffer.  
Power Pin for the Input Buffer.  
Positive Supply Rail for the RMS Core.  
Connection for Crest Factor Capacitor.  
Connection for Averaging Capacitor.  
9
RMS Core Voltage or Current Output.  
Negative Supply Rail.  
Half Supply Node.  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
EP  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
IGND  
OBUFIN+  
OBUFIN−  
OBUFOUT  
OBUFV+  
IBUFV+  
VCC  
CCF  
CAVG  
SUM  
DNC  
Output Buffer Noninverting Input Pin.  
Output Buffer Inverting Input Pin.  
Output Buffer Output Pin.  
Power Pin for the Output Buffer.  
Power Pin for the Input Buffer.  
Positive Supply Rail for the RMS Core.  
Connection for Crest Factor Capacitor.  
Connection for Averaging Capacitor.  
Summing Amplifier Input Pin.  
IGND  
OBUFIN+  
OBUFIN−  
OBUFOUT  
OBUFV+  
IBUFV+  
VCC  
CCF  
CAVG  
Exposed Pad Connection to Ground  
Pad Optional.  
Rev. B | Page 5 of 24  
 
AD8436  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = 5 V, CAVG = 10 µF, 1 kHz sine wave, unless otherwise indicated.  
5V  
5V  
1V  
1V  
100mV  
10mV  
1mV  
100mV  
10mV  
1mV  
−3dB BW  
−3dB BW  
V
= 4.8V  
1M  
100µV  
50µV  
S
100µV  
50µV  
50 100  
1k  
10k  
100k  
5M  
50 100  
1k  
10k  
100k  
1M  
5M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 5. RMS Core Frequency Response (See Figure 21)  
Figure 8. RMS Core Frequency Response with VS = +4.8 V (See Figure 22)  
5V  
15  
eIN = 3.5mV rms  
12  
1V  
100mV  
10mV  
1mV  
9
GAIN = 6dB  
6
3
GAIN = 0dB  
0
–3  
–6  
−3dB BW  
–9  
–12  
V
= ±2.4V  
100µV  
50µV  
S
–15  
50 100  
1k  
10k  
100k  
1M  
5M  
100  
1k  
10k  
100k  
1M  
5M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 6. RMS Core Frequency Response with VS = 2.4 V (See Figure 21)  
Figure 9. Input Buffer, Small Signal Bandwidth at 0 dB and 6 dB Gain  
15  
5V  
1V  
eIN = 300mV rms  
12  
9
GAIN = 6dB  
6
100mV  
3
GAIN = 0dB  
0
10mV  
–3  
–6  
−3dB BW  
1mV  
–9  
–12  
–15  
V
= ±15V  
1M  
100µV  
50µV  
S
100  
1k  
10k  
100k  
1M  
5M  
50 100  
1k  
10k  
100k  
5M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 7. RMS Core Frequency Response with VS = 15 V (See Figure 21)  
Figure 10. Input Buffer, Large Signal Bandwidth at 0 dB and 6 dB Gain  
Rev. B | Page 6 of 24  
 
 
 
Data Sheet  
AD8436  
10  
5
15  
eIN = 3.5mV rms  
P
= 100µs  
W
12  
9
6
CAVG = 10µF  
CCF = 0.1µF  
3
0
0
–3  
–6  
–9  
–12  
–15  
CAVG = 10µF  
−5  
−10  
100  
1k  
10k  
100k  
1M  
5M  
0
2
4
6
8
10  
CREST FACTOR RATIO  
FREQUENCY (Hz)  
Figure 14. Crest Factor Error vs. Crest Factor for CAVG and CAVG and CCF  
Capacitor Combinations  
Figure 11. Output Buffer, Small Signal Bandwidth  
1.00  
0.75  
0.50  
0.25  
0
0.5  
0.4  
CAVG = 10µF  
8 SAMPLES  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
−0.25  
−0.50  
−0.75  
−1.00  
–50  
–25  
0
25  
50  
75  
100  
125  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (±V)  
Figure 15. Additional Conversion Error vs. Temperature  
Figure 12. Additional Error vs. Supply Voltage  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.6  
1.2  
0.8  
0.4  
0
V
= ±15V  
S
V
= ±5V  
S
V
= ±2.4V  
S
0
0.5  
1.0  
INPUT VOLTAGE (V rms)  
1.5  
2.0  
0
16  
2
4
6
8
10  
12  
14  
18  
SUPPLY VOLTAGE (±V)  
Figure 16. RMS Core Supply Current vs. Input for VS = 2.4 V, 5 V, and 15 V  
Figure 13. Core Input Voltage for 1% Error vs. Supply Voltage  
Rev. B | Page 7 of 24  
 
AD8436  
Data Sheet  
250  
200  
150  
100  
50  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
−50  
−100  
−150  
−200  
−250  
−10  
−50  
−50  
−25  
0
25  
50  
75  
100  
125  
−25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. FET Input Buffer Bias Current vs. Temperature  
Figure 19. Output Buffer VOS vs. Temperature  
1000  
CAVG = 10µF  
1kHz 300mV rms BURST INPUT  
750  
500  
0V  
250  
0
300mV DC OUT  
−250  
−500  
−750  
−1000  
0V  
0V  
1kHz 1mV rms BURST INPUT  
1mV DC OUT  
−50  
−25  
0
25  
50  
75  
100  
125  
0V  
TEMPERATURE (°C)  
TIME (50ms/DIV)  
Figure 18. Input Offset Voltage of FET Buffer vs. Temperature  
Figure 20. Transition Times with 1 kHz Burst at Two Input Levels  
(See Theory of Operation Section)  
Rev. B | Page 8 of 24  
 
Data Sheet  
AD8436  
TEST CIRCUITS  
SIGNAL SOURCE  
10µF +5V  
VCC  
CAV  
4.7µF  
RMS  
100kΩ  
RMS CORE  
IGND  
AC-IN MONITOR  
PRECISION DMM  
100kΩ  
16kΩ  
OUT  
OGND  
VEE  
–5V  
PRECISION DMM  
Figure 21. Core Response Test Circuit Using Dual Supplies  
SIGNAL SOURCE  
10µF 4.80V  
CAV  
VCC  
4.7µF  
RMS  
100kΩ  
100kΩ  
RMS CORE  
IGND  
AC-IN MONITOR  
PRECISION DMM  
4.7µF  
16kΩ  
OUT  
OGND  
VEE  
PRECISION DMM  
Figure 22. Core Response Test Circuit Using a Single Supply  
10µF +5V  
FUNCTION GENERATOR  
CAV  
VCC  
4.7µF  
RMS  
100kΩ  
100kΩ  
RMS CORE  
IGND  
AC-IN MONITOR  
PRECISION DMM  
16kΩ  
OGND  
VEE  
OUT  
–5V  
PRECISION DMM  
Figure 23. Crest Factor Test Circuit  
Rev. B | Page 9 of 24  
 
 
 
AD8436  
Data Sheet  
THEORY OF OPERATION  
OVERVIEW  
For additional information, select Section I of the 2nd edition of  
The AD8436 is an implicit function rms-to-dc converter that  
renders a dc voltage dependent on the rms (heating value) of an  
ac voltage. In addition to the basic converter, this highly integrated  
functional circuit block includes two fully independent, optional  
amplifiers, a standalone FET input buffer amplifier and a precision  
dc output buffer amplifier (see Figure 1). The rms core includes  
a precision current responding full-wave rectifier and a log-antilog  
transistor array for current squaring and square rooting to imple-  
ment the classic expression for rms (see Equation 1). For basic  
applications, the converter requires only an external capacitor, for  
averaging (see Figure 31). The optional on-board amplifiers  
offer utility and flexibility in a variety of applications without  
incurring additional circuit board footprint. For lowest power,  
the amplifier supply pins are left unconnected.  
the Analog Devices RMS-to-DC Applications Guide.  
RMS Core  
The core consists of a voltage-to-current converter (precision  
resistor), absolute value, and translinear sections. The translinear  
section exploits the properties of the bipolar transistor junctions  
for squaring and root extraction (see Figure 24). The external  
capacitor (CAVG) provides for averaging the product. Figure 20  
shows that there is no effect of signal input on the transition times,  
as seen in the dc output. Although the rms core responds to input  
voltages, the conversion process is current sensitive. If the rms  
input is ac-coupled, as recommended, there is no output offset  
voltage, as reflected in Table 1. If the rms input is dc-coupled, the  
input offset voltage is reflected in the output and can be calibrated  
as with any fixed error.  
Why RMS?  
V+  
The rms value of an ac voltage waveform is equal to the dc voltage  
providing the same heating power to a load. A common measure-  
ment technique for ac waveforms is to rectify the signal in a  
straightforward way using a diode array of some sort, resulting in  
the average value. The average value of various waveforms (sine,  
square, and triangular, for example) varies widely; true rms is  
the only metric that achieves equivalency for all ac waveforms.  
See Table 5 for non-rms-responding circuit errors.  
+
OUT  
5kΩ CAVG  
AC IN  
V-TO-I  
ABSOLUTE  
VALUE  
CIRCUIT  
V+  
16kΩ  
The acronym “rms” means root-mean-square and reads as follows:  
“the square root of the average of the sum of the squaresof the  
peak values of any waveform. RMS is shown in the following  
equation:  
V–  
1 T  
T 0  
Figure 24. RMS Core Block Diagram  
erms  
=
V(t)2dt  
(1)  
Table 5. General AC Parameters  
Reading of an Average Value Circuit  
Calibrated to an RMS Sine Wave  
Waveform Type (1 V Peak)  
Crest Factor  
RMS Value  
0.707  
1.00  
0.577  
0.333  
0.5  
Error (%)  
Sine  
1.414  
1.00  
1.73  
3
2
10  
0.707  
1.11  
0.555  
0.295  
0.278  
0.011  
0
11.0  
−3.8  
Square  
Triangle  
Noise  
Rectangular  
Pulse  
SCR  
DC = 50%  
DC = 25%  
−11.4  
−44  
−89  
−28  
−30  
0.1  
2
4.7  
0.495  
0.212  
0.354  
0.150  
Rev. B | Page 10 of 24  
 
 
 
 
Data Sheet  
AD8436  
The 16 kΩ resistor in the output converts the output current to  
a dc voltage that can be connected to the output buffer or to the  
circuit that follows. The output appears as a voltage source in  
series with 16 kΩ. If a current output is desired, the resistor  
connection to ground is left open and the output current is  
applied to a subsequent circuit, such as the summing node of  
a current summing amplifier. Thus, the core has both current  
and voltage outputs, depending on the configuration. For a  
voltage output with 0 Ω source impedance, use the output  
buffer. The offset voltage of the buffer is 25 μV or 50 μV,  
depending on the grade.  
The output buffer can be configured as a single or two-pole low-  
pass filter using circuits shown in the Applications Information  
section. Residual output ripple is reduced, without affecting the  
converted dc output. As the response approaches the low  
frequency end of the bandwidth, the ripple rises, dependent on  
the value of the averaging capacitor. Figure 27 shows the effects of  
four combinations of averaging and filter capacitors. Although  
the filter capacitor reduces the ripple for any given frequency, the  
dc error is unaffected. Of course, a larger value averaging  
capacitor can be selected, at a larger cost. The advantage of using  
a low-pass filter is that a small value of filter capacitor, in  
conjunction with the 16 kΩ output resistor, reduces ripple and  
permits a smaller averaging capacitor, effecting a cost savings.  
The recommended capacitor values for operation to 40 Hz are  
10 µF for averaging and 3.3 µF for filter.  
FET Input Buffer  
Because the V-to-I input resistor value of the AD8436 rms core  
is 8 kΩ, a high input impedance buffer is often used between  
rms-dc converters and finite impedance sources. The optional  
JFET input op amp minimizes attenuation and uncouples  
common input amenities, such as resistive voltage dividers or  
resistors used to terminate current transformers. The wide  
bandwidth of the FET buffer is well matched to the rms core  
bandwidth so that no information is lost due to serial band-  
width effects. Although the input buffer consumes little current,  
the buffer supply is independently accessible and can be  
disconnected to reduce power.  
Dynamic Range  
The AD8436 is a translinear rms-to-dc converter with exceptional  
dynamic range. Although accuracy varies slightly more at the  
extreme input values, the device still converts with no spurious  
noise or dropout. Figure 25 is a plot of the rms/dc transfer function  
near zero voltage. Unlike processor or other solutions, residual  
errors at very low input levels can be disregarded for most  
applications.  
30  
Optional matched 10 kΩ input and feedback resistors are provided  
on chip. Consult the Applications Information section to learn  
how these resistors can be used. The 3 dB bandwidth of the input  
buffer is 2.7 MHz at 10 mV rms input and approximately 1.5 MHz  
at 1 V rms. The amplifier gain and bandwidth are sufficient for  
applications requiring modest gain or response enhancement to  
a few hundred kilohertz (kHz), if desired. Configurations of the  
input buffer are discussed in the Applications Information  
section.  
ΔΣ OR OTHER DIGITAL  
SOLUTIONS CANNOT  
WORK AT ZERO  
VOLTS  
20  
10  
0
AD8436  
SOLUTION  
–30  
–20  
–10  
0
10  
20  
30  
Precision Output Buffer  
INPUT VOLTAGE (mV DC)  
Figure 25. DC Transfer Function near Zero  
The precision output buffer is a bipolar input amplifier, laser  
trimmed to cancel input offset voltage errors. As with the input  
buffer, the supply current is very low (<50 μA, typically), and the  
power can be disconnected for power savings if the buffer is not  
needed. Be sure that the noninverting input is also disconnected  
from the core output (OUT) if the buffer supply pin is discon-  
nected. Although the input current of the buffer is very low,  
a laser-trimmed 16 kΩ resistor, connected in series with the  
inverting input, offsets any self-bias offset voltage.  
Rev. B | Page 11 of 24  
 
AD8436  
Data Sheet  
APPLICATIONS INFORMATION  
Ripple is reduced by increasing the value of the averaging capacitor,  
or by postconversion filtering. Ripple reduction following  
conversion is far more efficient because the ripple average value  
has been converted to its rms value. Capacitor values for post-  
conversion filtering are significantly less than the equivalent  
averaging capacitor value for the same level of ripple reduction.  
This approach requires only a single capacitor connected to the  
OUT pin (see Figure 26). The capacitor value correlates to the  
simple frequency relation of ½ π R-C, where R is fixed at 16 kΩ.  
USING THE AD8436  
This section describes the power supply and feature options,  
as well as the function and selection of averaging and filter  
capacitor values. Averaging and filtering options are shown  
graphically and apply to all circuit configurations.  
Averaging Capacitor Considerations—RMS Accuracy  
Typical AD8436 applications require only a single external  
capacitor (CAVG) connected to the CAVG pin (see Figure 31).  
The function of the averaging capacitor is to compute the mean  
(that is, average value) of the sum of the squares. Averaging  
(that is, integration) follows the rms core, where the input  
current is squared. The mean value is the average value of the  
squared input voltage over several input waveform periods.  
The rms error is directly affected by the number of periods  
averaged, as is the resultant peak-to-peak ripple.  
OUT  
CORE  
DC OUTPUT  
CLPF  
9
16kΩ  
OGND  
8
Figure 26. Simple One-Pole Post Conversion Filter  
The result of the conversion process is a dc component and a  
ripple component whose frequency is twice that of the input. The  
rms conversion accuracy depends on the value of CAVG, so the  
value selected need only be large enough to average enough periods  
at the lowest frequency of interest to yield the required rms  
accuracy.  
As seen in Figure 27, CAVG alone determines the rms error,  
and CLPF serves purely to reduce ripple. Figure 27 shows a  
constant rms error for CLPF values of 0.33 µF and 3.3 µF; only  
the ripple is affected.  
1
CAVG = 10µF  
CLPF = 0.33µF OR 3.3µF  
0
Figure 28 is a plot of rms error vs. frequency for various averaging  
capacitor values. To use Figure 28, simply locate the frequency  
of interest and acceptable rms error on the horizontal and  
vertical scales, respectively. Then choose or estimate the next  
highest capacitor value adjacent to where the frequency and  
error lines intersect (for an example, see the orange circle in  
Figure 28).  
–1  
–2  
–3  
–4  
–5  
–6  
Post Conversion Ripple Reduction Filter  
CAVG = 1µF  
–7  
–8  
CLPF = 0.33µF OR 3.3µF  
Input rectification included in the AD8436 introduces a residual  
ripple component that is dependent on the value of CAVG and  
twice the input signal frequency for symmetrical input wave-  
forms. For sampling applications such as a high resolution ADC,  
the ripple component may cause one or more LSBs to cycle, and  
low value display numerals to flash.  
–9  
–10  
10  
100  
1k  
FREQUENCY (Hz)  
Figure 27. RMS Error vs. Frequency for Two Values of CAVG and CLPF  
(Note that only CAVG value affects rms error; CLPF has no effect.)  
0
–0.5  
–1.0  
–1.5  
–2.0  
SEE  
TEXT  
CAVG = 0.22µF  
2
10  
100  
1k  
FREQUENCY (Hz)  
Figure 28. Conversion Error vs. Frequency for Various Values of CAVG  
Rev. B | Page 12 of 24  
 
 
 
 
 
Data Sheet  
AD8436  
For simplicity, Figure 29 shows ripple vs. frequency for four  
combinations of CAVG and CLPF  
Basic Core Connections  
Many applications require only a single external capacitor for  
averaging. A 10 µF capacitor is more than adequate for acceptable  
rms errors at line frequencies and below.  
The signal source sees the input 8 kΩ voltage-to-current conversion  
resistor at Pin RMS; thus, the ideal source impedance is a  
voltage source (0 Ω source impedance). If a non-zero signal source  
impedance cannot be avoided, be sure to account for any series  
connected voltage drop.  
1
AC INPUT = 300mV rms  
CAVG = 1µF, CLPF = 0.33µF  
CAVG = 1µF, CLPF = 3.3µF  
CAVG = 10µF, CLPF = 0.33µF  
CAVG = 10µF, CLPF = 3.3µF  
0.1  
0.01  
0.001  
0.0001  
An input coupling capacitor must be used to realize the near-zero  
output offset voltage feature of the AD8436. Select a coupling  
capacitor value that is appropriate for the lowest expected  
operating frequency of interest. As a rule of thumb, the input  
coupling capacitor can be the same as or half the value of the  
averaging capacitor because the time constants are similar. For  
a 10 μF averaging capacitor, a 4.7 μF or 10 μF tantalum capacitor  
is a good choice (see Figure 31).  
10  
100  
INPUT FREQUENCY (Hz)  
1k  
Figure 29. Residual Ripple Voltage for Various Filter Configurations  
Figure 30 shows the effects of averaging and post-rms filter  
capacitors on transition and settling times using a 10-cycle,  
50 Hz, 1 second period burst signal input to demonstrate time-  
domain behavior. In this instance, the averaging capacitor value  
was 10 µF, yielding a ripple value of 6 mV rms. A postconversion  
capacitor (CLPF) of 0.68 μF reduced the ripple to 1 mV rms. An  
averaging capacitor value of 82 μF reduced the ripple to 1 mV  
but extended the transition time (and cost) significantly.  
+5V  
CAVG  
+*  
10µF  
19  
17  
CAVG  
VCC  
4.7µF  
OR 10µF  
+*  
2
9
RMS AD8436 OUT  
IGND VEE OGND  
INPUT  
50Hz 10 CYCLE BURST  
400mv/DIV  
11  
10  
8
–5V  
*FOR POLARIZED CAPACITOR STYLES.  
CAVG = 10µF FOR BOTH PLOTS,  
BUT RED PLOT HAS NO LOW-PASS FILTER,  
GREEN PLOT HAS CLPF = 0.68µF  
10mV/DIV  
Figure 31. Basic Applications Circuit  
Using a Capacitor for High Crest Factor Applications  
The AD8436 contains a unique feature to reduce large crest  
factor errors. Crest factor is often overlooked when considering  
the requirements of rms-to-dc converters, but it is very  
important when working with signals with spikes or high peaks.  
The crest factor is defined as the ratio of peak voltage to rms.  
See Table 5 for crest factors for some common waveforms.  
CAVG = 82µF  
TIME (100ms/DIV)  
+5V  
Figure 30. Effects of Various Filter Options on Transition Times  
CAVG  
+*  
CAVG Capacitor Styles  
CCF  
10µF  
When selecting a capacitor style for CAVG there are certain  
tradeoffs.  
0.1µF  
19  
18  
17  
CAVG CCF  
VCC  
4.7µF  
For general usage, such as most DMM or power measurement  
applications where input amplitudes are typically greater than  
1 mV, surface mount tantalums are the best overall choice for  
space, performance, and economy.  
OR 10µF  
+*  
2
9
RMS AD8436 OUT  
IGND VEE OGND  
11  
10  
8
For input amplitudes less than around a millivolt, low dc leakage  
capacitors, such as film or X8L MLCs, maintain rms conversion  
accuracy. Metalized polyester or similar film styles are best, as  
long as the temperature range is appropriate. X8L grade MLCs are  
rated for high temperatures (125°C or 150°C), but are available only  
up to 10 μF. Never use electrolytic capacitors, or X7R or lower grade  
ceramics.  
–5V  
*FOR POLARIZED CAPACITOR STYLES.  
Figure 32. Connection for Additional Crest Factor Performance  
Crest factor performance is mostly applicable for unexpected  
waveforms such as switching transients in switchmode power  
supplies. In such applications, most of the energy is in these  
peaks and can be destructive to the circuitry involved, although  
the average ac value can be quite low.  
Rev. B | Page 13 of 24  
 
 
 
AD8436  
Data Sheet  
Figure 14 shows the effects of an additional crest factor  
capacitor of 0.1 μF and an averaging capacitor of 10 μF. The  
larger capacitor serves to average the energy over long spaces  
between pulses, while the CCF capacitor charges and holds the  
energy within the relatively narrow pulse.  
Because the 10 kΩ resistors are closely matched and trimmed to  
a high tolerance, the input buffer gain can be increased to several  
hundred with an external resistor connected to Pin IBUFIN−.  
The bandwidth diminishes at the typical rate of a decade per 20 dB  
of gain, and the output voltage range is constrained. The small  
signal response, shown in Figure 9, serves as a guide. For example,  
suppose one wanted to detect small input signals at power line  
frequencies? An external 10 Ω resistor connected from IBUFIN− to  
ground sets the gain to 101 and the 3 dB bandwidth to ~30 kHz,  
which is more than adequate for amplifying power line frequencies.  
Using the FET Input Buffer  
The on-chip FET input buffer is an uncommitted FET input  
op amp used for driving the 8 kΩ I-to-V input resistor of the  
rms core. Pin IBUFOUT, Pin IBUFIN−, and Pin IBUFIN+ are  
the I/O, Pin IBUFINGN is an optional connection for gain in  
the input buffer, and Pin IBUFV+ connects power to the  
buffer. Connecting Pin IBUFV+ to the positive rail is the  
only power connection required because the negative rail is  
internally connected. Because the input stage is a FET and  
the input impedance must be very high to prevent loading  
of the source, a large value (10 MΩ) resistor is connected from  
midsupply at Pin IGND to Pin IBUFIN+ to prevent the input  
gate from floating high.  
Using the Output Buffer  
The AD8436 output buffer is a precision op amp optimized for  
high dc accuracy. Figure 34 shows a block diagram of the basic  
amplifier and I/O pins. The amplifier is often configured as a unity  
gain follower but is easily configured for gain, as a Sallen-Key low-  
pass filter (in conjunction with the built-in 16 kΩ I-to-V resistor).  
Note that an additional 16 kΩ on-chip precision resistor in series  
with the inverting input of the amplifier balances output offset  
voltages resulting from the bias current from the noninverting  
amplifier. The output buffer is disconnected from Pin OUT for  
precision core measurements.  
For unity gain, connect the IBUFOUT pin to the IBUFIN− pin.  
For a gain of 2×, connect the IBUFGN pin to ground. See Figure 9  
and Figure 10 for large and small signal responses at the two  
built-in gain options.  
As with the input FET buffer, the amplifier positive supply is  
disconnected when not needed. In normal circumstances, the  
buffers are connected to the same supply as the core. Figure 35  
shows the signal connections to the output buffer. Note that  
the input offset voltage contribution by the bias currents are  
balanced by equal value series resistors, resulting in near zero  
offset voltage.  
The offset voltage of the input buffer is ≤500 μV, depending on  
grade. A capacitor connected between the buffer output pin  
(IBUFOUT) and the RMS pin is recommended so that the  
input buffer offset voltage does not contribute to the overall  
error. Select the capacitor value for least minimum error at the  
lowest operating frequency. Figure 33 is a schematic showing  
internal components and pin connections.  
OUTPUT BUFFER  
OBUFIN+  
OBUFIN–  
+
16  
OBUFOUT  
16kΩ  
2
RMS  
IBUFV+  
10µF  
IBUFOUT  
IBUFIN–  
IBUFIN+  
Figure 34. Output Buffer Block Diagram  
3
4
5
0.47µF  
IBIAS  
OUT  
OBUFIN+  
+
CORE  
OBUFOUT  
9
12  
13  
10kΩ  
+
14  
16kΩ  
10MΩ  
16kΩ  
10pF  
OBUFIN–  
11 IGND  
OGND  
10kΩ  
8
6
Figure 35. Basic Output Buffer Connections  
IBUFGN  
Figure 33. Connecting the FET Input Buffer  
For applications requiring ripple suppression in addition to the  
single-pole output filter described previously, the output buffer  
is configurable as a two-pole Sallen-Key filter using two external  
resistors and two capacitors. At just over 100 kHz, the amplifier  
has enough bandwidth to function as an active filter for low  
frequencies such as power line ripple. For a modest savings in  
cost and complexity, the external 16 kΩ feedback resistor can be  
omitted, resulting in slightly higher VOS (80 μV).  
Capacitor coupling at the input and output of the FET buffer is  
recommended to avoid transferring the buffer offset voltage to  
the output. Although the FET input impedance is extremely high,  
the 10 MΩ centering resistor connected to IGND must be taken  
into account when selecting an input capacitor value. This is simply  
an impedance calculation using the lowest desired frequency,  
and finding a capacitor value based on the least attenuation desired.  
Rev. B | Page 14 of 24  
 
 
 
 
Data Sheet  
AD8436  
10µF  
2C  
16kΩ  
OBUFIN+  
OUT  
19  
17  
9
12  
13  
CORE  
+
CAV  
VCC  
14  
C
16kΩ  
16kΩ  
2
3
4
5
RMS  
AD8436  
OBUFOUT  
OUT  
9
4.7µF  
OBUFIN–  
OGND  
8
IBUFOUT  
IBUFIN–  
IBUFIN+  
16kΩ  
0.47µF  
IGND 11  
4.7µF  
Figure 36. Output Buffer Amplifier Configured as a Two-Pole, Sallen-Key  
Low-Pass Filter  
OGND  
VEE  
10  
10MΩ  
8
Configure the output buffer (see Figure 37) to invert dc output.  
OUT  
16kΩ  
CORE  
9
13  
12  
+
Figure 39. Connections for Single Supply Operation  
OBUFIN–  
14  
OBUFOUT  
16kΩ  
OBUFIN+  
Recommended Application  
OGND  
32.4kΩ  
8
Figure 40 shows a circuit for a typical application for frequencies  
as low as power line, and above. The recommended averaging,  
crest factor and LPF capacitor values are 10 μF, 0.1 μF and  
3.3 μF. Refer to the Using the Output Buffer section if additional  
low-pass filtering is required.  
Figure 37. Inverting Output Configuration  
Current Output Option  
If a current output is required, connect the current output,  
OUT, to the destination load. To maximize precision, provide a  
means for external calibration to replace the internal trimmed  
resistor, which is bypassed. This configuration is useful for conve-  
nient summing of the AD8436 result with another voltage, or  
for polarity inversion.  
VCC  
10µF  
0.1µF  
+
20 19  
18  
17  
16  
SUM CAVG CCF VCC IBUFV+  
15  
14  
13  
12  
11  
1
2
DNC  
OBUFV+  
CAVG  
CCF  
AD8436  
19  
18  
DC  
OUT  
RMS  
OBUFOUT  
OBUFIN–  
OBUFIN+  
10µF  
DIRECTION OF  
DC OUTPUT  
CURRENT  
3
4
5
2kΩ  
IBUFOUT  
IBUFIN–  
IBUFIN+  
(OPTIONAL)  
8kΩ  
OUT  
RMS  
2
9
CORE  
15kΩ  
+
0.47µF  
16kΩ  
IGND  
VEE  
AC IN  
INVERTED DC  
VOLTAGE  
OUTPUT  
10MΩ  
8
IBUFGN DNC OGND OUT  
32.4kΩ  
OGND  
DO NOT CONNECT FOR  
CURRENT OUTPUT  
6
7
8
9
10  
VEE  
Figure 38. Connections for Current Output Showing Voltage Inversion  
3.3µF  
Single Supply  
Figure 40. Typical Application Circuit  
Connections for single supply operation are shown in Figure 39  
and are similar to those for dual power supply when the device is  
ac-coupled. The analog inputs are all biased to half the supply  
voltage, but the output remains referred to ground because the  
output of the AD8436 is a current source. An additional bypass  
connection is required at IGND to suppress ambient noise.  
Converting to Average Rectified Value  
To configure the AD8436 for rectified average instead of rms  
conversion, simply reduce the value of CAVG to 470 pF (see  
Figure 41). To enable both modes of operation, insert a switch  
between capacitor CAVG and Pin CAVG.  
Rev. B | Page 15 of 24  
 
 
 
AD8436  
Data Sheet  
DISCONNECTING CAVG DEFAULTS THE  
COMPUTED RESULT TO AVERAGE-VALUE.  
A MINIMUM OF 470pF CAPACITANCE IS  
REQUIRED TO MAINTAIN STABILITY  
VCC  
CAPACITOR CAVG COMPUTES THE  
MEAN IN THE IMPLICIT RMS  
EXPRESSION. FOR SMALL VALUES  
OF CAVG, THE AC INPUT WAVEFORM  
WILL STILL BE FULLY RECTIFIED AND  
APPEAR AT THE OUTPUT.  
470pF 0.1µF  
+
CAVG  
10µF  
20 19  
18  
17  
16  
SUM CAVG CCF VCC IBUFV+  
15  
14  
13  
1
2
DNC  
OBUFV+  
AD8436  
DC  
OUT  
RMS  
OBUFOUT  
OBUFIN–  
OBUFIN+  
10µF  
3
IBUFOUT  
IBUFIN–  
IBUFIN+  
4
12  
11  
0.47µF  
5
IGND  
VEE  
AC IN  
IBUFGN DNC OGND OUT  
10MΩ  
6
7
8
9
10  
VEE  
CLPF  
3.3µF  
CAPACITOR CLPF, IN CONJUNCTION WITH  
THE INTERNAL 16kΩ OUTPUT RESISTOR  
FILTERS THE RECTIFIED OUTPUT, YIELDING  
THE AVERAGE-RECTIFIED VALUE.  
Figure 41. Configuration for Average Rectified Value  
Rev. B | Page 16 of 24  
 
Data Sheet  
AD8436  
AD8436 EVALUATION BOARD  
The AD8436-EVALZ provides a platform to evaluate AD8436  
performance. The board is fully assembled, tested, and ready to  
use after the power and signal sources are connected. Figure 47  
is a photograph of the board. Signal connections are located on the  
primary and secondary sides, with power and ground on the inner  
layers. Figure 42 to Figure 46 illustrate the various design details of  
the board, including basic layout and copper patterns. These  
figures are useful for reference for application designs.  
Table 6.  
Switch  
Function  
CORE_BUFFER  
Selects core or input buffer for the input  
signal  
Selects ac or dc coupling to the core  
Selects the output buffer or the core  
output at the DCOUT BNC.  
Enable or disables the input buffer  
Enable or disables the output buffer  
INCOUP  
SDCOUT  
IBUF_VCC  
OBUF_VCC  
A Word About Using the AD8436 Evaluation Board  
All the I/Os are provided with test points for easy monitoring  
with test equipment. The input buffer gain default is unity; for  
2× gain, install a 0603 0 Ω resistor at Position R5. For higher  
IBUF gains, remove the 0 Ω resistor at Position RFBH (there is  
an internal 10 kΩ resistor from the OBUF_OUT to IBUFIN−)  
and install a smaller value resistor in Position RFBL. A 100 Ω  
resistor establishes a gain of 100×.  
The AD8436-EVALZ offers many options, without sacrificing  
simplicity. The board is tested and shipped with a 10 μF averaging  
capacitor (CAVG), 3.3 μF low-pass filter capacitor (C8) and a  
0.1 μF (COPT) capacitor to optimize crest factor performance.  
To evaluate minimum cost applications, remove C8 and COPT.  
The functions of the five switches are listed in Table 6.  
Single supply operation requires removal of Resistor R6 and  
installing a 0.1 μF capacitor in the same position for noise  
decoupling.  
Rev. B | Page 17 of 24  
 
AD8436  
Data Sheet  
Figure 45. AD8436-EVALZ Power Plane  
Figure 42. Assembly of the AD8436-EVALZ  
Figure 43. AD8436-EVALZ Primary Side Copper  
Figure 44. AD8436-EVALZ Secondary Side Copper  
Figure 46. AD8436-EVALZ Ground Plane  
Rev. B | Page 18 of 24  
 
 
Data Sheet  
AD8436  
Figure 47. Photograph of the AD8436-EVALZ  
3
–V  
(GRN)  
+V  
(RED)  
3
C1  
GND1 GND2 GND3 GND4 GND5 GND6  
CAVG  
C2  
10µF  
CCF  
0.1µF  
X8R  
10µF  
+
10µF  
50V  
C4  
0.1µF  
TIBUFV+  
EN  
+
50V  
–40°C TO  
+125°C  
DIS  
+
TCAVG  
TCCF  
18  
–40°C TO +125°C  
TSUM  
VEE  
IBUF_VCC  
IBUFV+  
20  
SUM  
19  
17  
VCC  
16  
INCOUP  
CAVG  
CCF  
VCC  
TOBUFV+  
15  
EN  
DIS  
AC  
DC  
DNC  
OBUFV+  
1
2
CORE_BUF  
CORE  
OBUF_VCC  
CIN  
10µF  
AC_IN  
TOBFOUT  
14  
TRMSIN  
RMS  
OBUFOUT  
OBUFIN–  
OBUFIN+  
IGND  
+
R8  
0Ω  
BUF  
1
C6  
2.2µF  
TOBUFIN−  
13  
TIBUFOUT  
3
TACIN  
IBUFOUT  
IBUFIN–  
IBUFIN+  
AD8436  
TDCOUT  
BUF  
4
RFBH  
0Ω  
DC  
OUT  
TOBUFIN+  
12  
TIBFIN–  
4
C5  
0.47µF  
CORE  
5
RFBL  
SDCOUT  
DNI  
TIGND  
1
C7  
1.5µF  
TIBFIN+  
5
11  
1
BUF  
R3  
R1  
10MΩ  
GAIN  
DNC  
7
OGND  
8
OUT  
9
VEE  
10  
8.06kΩ  
2
R7  
6
0Ω  
TBUFGN  
TOGND  
3
3
R6  
0Ω  
C3  
0.1µF  
1
R4  
TOUT  
4
R5  
0Ω  
R2  
0Ω  
0Ω  
VEE  
CLPF  
3.3µF  
1
2
3
OPTIONAL COMPONENTS TO CONFIGURE IBUFOUT AS A FILTER.  
REMOVE R7 FOR CORE-ONLY TESTS.  
FOR SINGLE SUPPLY OPERATION, REMOVE R6, SHORT OR REPLACE C3 WITH A 0Ω RESISTOR AND CONNECT THE SUPPLY GROUND OR RETURN TO  
THE GREEN TEST LOOP –V.  
4
5
TO CONFIGURE THE FET INPUT BUFFER FOR GAIN OF 2, INSTALL 0Ω RESISTOR AT R5 AND REMOVE RFBH.  
RFBL IS USED TO CONFIGURE THE INPUT BUFFER FOR GAIN VALUES >2×.  
Figure 48. Evaluation Board Schematic  
Rev. B | Page 19 of 24  
 
AD8436  
Data Sheet  
OUTLINE DIMENSIONS  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
16  
15  
20  
0.50  
BSC  
1
EXPOSED  
PAD  
2.65  
2.50 SQ  
2.35  
5
11  
6
10  
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD.  
Figure 49. 20-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 × 4 mm Body, Very Very Thin Quad  
(CP-20-10)  
Dimensions shown in inches  
0.345 (8.76)  
0.341 (8.66)  
0.337 (8.55)  
20  
11  
10  
0.158 (4.01)  
0.154 (3.91)  
0.150 (3.81)  
0.244 (6.20)  
0.236 (5.99)  
0.228 (5.79)  
1
0.010 (0.25)  
0.006 (0.15)  
0.020 (0.51)  
0.010 (0.25)  
0.069 (1.75)  
0.053 (1.35)  
0.065 (1.65)  
0.049 (1.25)  
0.010 (0.25)  
0.004 (0.10)  
0.041 (1.04)  
REF  
SEATING  
PLANE  
8°  
0°  
0.025 (0.64)  
BSC  
0.050 (1.27)  
0.016 (0.41)  
COPLANARITY  
0.004 (0.10)  
0.012 (0.30)  
0.008 (0.20)  
COMPLIANT TO JEDEC STANDARDS MO-137-AD  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 50. 20-Lead Shrink Small Outline Package [QSOP]  
(RQ-20)  
Dimensions shown in inches and (millimeters)  
Rev. B | Page 20 of 24  
 
Data Sheet  
AD8436  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
0°C to +70°C  
Package Description  
Package Option  
CP-20-10  
CP-20-10  
CP-20-10  
CP-20-10  
CP-20-10  
CP-20-10  
RQ-20  
RQ-20  
RQ-20  
RQ-20  
RQ-20  
AD8436ACPZ-R7  
AD8436ACPZ-RL  
AD8436ACPZ-WP  
AD8436JCPZ-R7  
AD8436JCPZ-RL  
AD8436JCPZ-WP  
AD8436ARQZ-R7  
AD8436ARQZ-RL  
AD8436ARQZ  
20-Lead Lead Frame Chip Scale [LFCSP_WQ]  
20-Lead Lead Frame Chip Scale [LFCSP_WQ]  
20-Lead Lead Frame Chip Scale [LFCSP_WQ]  
20-Lead Lead Frame Chip Scale [LFCSP_WQ]  
20-Lead Lead Frame Chip Scale [LFCSP_WQ]  
20-Lead Lead Frame Chip Scale [LFCSP_WQ]  
20-Lead QSOP [RQ_20]  
20-Lead QSOP [RQ_20]  
20-Lead QSOP [RQ_20]  
20-Lead QSOP [RQ_20]  
20-Lead QSOP [RQ_20]  
0°C to +70°C  
0°C to +70°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
AD8436BRQZ-R7  
AD8436BARQZ-RL  
AD8436BRQZ  
20-Lead QSOP [RQ_20]  
RQ-20  
AD8436-EVALZ  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. B | Page 21 of 24  
 
 
AD8436  
NOTES  
Data Sheet  
Rev. B | Page 22 of 24  
Data Sheet  
NOTES  
AD8436  
Rev. B | Page 23 of 24  
AD8436  
NOTES  
Data Sheet  
©2011–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10033-0-1/13(B)  
Rev. B | Page 24 of 24  

相关型号:

AD8436BRQZ

Low Cost, Low Power, True RMS-to-DC Converter
ADI

AD8436BRQZ-R7

Low Cost, Low Power, True RMS-to-DC Converter
ADI

AD8436BRQZ-RL

Low Cost, Low Power, True RMS-to-DC Converter
ADI

AD8436JCPZ-R7

Low Cost, Low Power
ADI

AD8436JCPZ-RL

Low Cost, Low Power
ADI

AD8436JCPZ-WP

Low Cost, Low Power
ADI

AD8436_13

Low Cost, Low Power, True RMS-to-DC Converter
ADI

AD8436_17

Low Cost, Low Power, True RMS-to-DC Converter
ADI

AD843A

34 MHz, CBFET Fast Settling Op Amp
ADI

AD843AQ

34 MHz, CBFET Fast Settling Op Amp
ADI

AD843AQ

OP-AMP, 4000uV OFFSET-MAX, 34MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERAMIC, DIP-8
ROCHESTER

AD843B

34 MHz, CBFET Fast Settling Op Amp
ADI