AD849JR2 [ADI]

High Speed, Low Power Monolithic Op Amp; 高速,低功耗单片运算放大器
AD849JR2
型号: AD849JR2
厂家: ADI    ADI
描述:

High Speed, Low Power Monolithic Op Amp
高速,低功耗单片运算放大器

运算放大器
文件: 总8页 (文件大小:220K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed, Low Power  
Monolithic Op Amp  
a
AD848/AD849  
FEATURES  
CO NNECTIO N D IAGRAMS  
725 MHz Gain Bandw idth – AD849  
175 MHz Gain Bandw idth – AD848  
4.8 m A Supply Current  
P lastic (N),  
Sm all O utline (R) and  
Cer dip (Q ) P ackages  
300 V/ s Slew Rate  
80 ns Settling Tim e to 0.1% for a 10 V Step – AD849  
Differential Gain: AD848 = 0.07%, AD849 = 0.08%  
Differential Phase: AD848 = 0.08؇, AD849 = 0.04؇  
Drives Capacitive Loads  
AD848/49  
1
2
3
4
8
7
6
5
NULL  
–IN  
NULL  
+V  
S
+IN  
OUTPUT  
NC  
TOP VIEW  
(Not to Scale)  
–V  
S
DC PERFORMANCE  
NC = NO CONNECT  
3 nV/ Hz Input Voltage Noise – AD849  
85 V/ m V Open Loop Gain into a 1 kLoad – AD849  
1 m V m ax Input Offset Voltage  
Perform ance Specified for ؎5 V and ؎15 V Operation  
Available in Plastic, Herm etic Cerdip and Sm all Outline  
Packages. Chips and MIL-STD-883B Parts Available.  
Available in Tape and Reel in Accordance w ith  
EIA-481A Standard  
20-Ter m inal LCC P inout  
18 17 16 15 14  
NC 19  
13 NC  
APPLICATIONS  
Cable Drivers  
8- and 10-Bit Data Acquisition System s  
Video and RF Am plification  
Signal Generators  
OFFSET  
20  
1
12 NC  
11 NC  
10 V–  
AD848SE/883B  
TOP VIEW  
(Not to Scale)  
NULL  
NC  
OFFSET  
NULL  
2
NC  
3
9
NC  
4
5
7
8
6
P RO D UCT D ESCRIP TIO N  
NC = NO CONNECT  
T he AD848 and AD849 are high speed, low power monolithic  
operational amplifiers. T he AD848 is internally compensated so  
that it is stable for closed loop gains of 5 or greater. T he AD849  
is fully decompensated and is stable at gains greater than 24.  
T he AD848 and AD849 achieve their combination of fast ac  
and good dc performance by utilizing Analog Devices’ junction  
isolated complementary bipolar (CB) process. T his process  
enables these op amps to achieve their high speed while only  
requiring 4.8 mA of current from the power supplies.  
AP P LICATIO NS H IGH LIGH TS  
1. T he high slew rate and fast settling time of the AD848 and  
AD849 make them ideal for video instrumentation circuitry,  
low noise pre-amps and line drivers.  
2. In order to meet the needs of both video and data acquisition  
applications, the AD848 and AD849 are optimized and  
tested for ±5 V and ±15 V power supply operation.  
3. Both amplifiers offer full power bandwidth greater than  
T he AD848 and AD849 are members of Analog Devices’ family  
of high speed op amps. T his family includes, among others, the  
AD847 which is unity gain stable, with a gain bandwidth of  
50 MHz. For more demanding applications, the AD840,  
AD841 and AD842 offer even greater precision and greater  
output current drive.  
20 MHz (for 2 V p-p with ±5 V supplies).  
4. T he AD848 and AD849 remain stable when driving any  
capacitive load.  
5. Laser wafer trimming reduces the input offset voltage to  
1 mV maximum on all grades, thus eliminating the need for  
external offset nulling in many applications.  
T he AD848 and AD849 have good dc performance. When  
operating with ±5 V supplies, they offer open loop gains of  
13 V/mV (AD848 with a 500 load) and low input offset  
voltage of 1 mV maximum. Common-mode rejection is a  
minimum of 92 dB. Output voltage swing is ±3 V even into  
loads as low as 150 .  
6. T he AD848 is an enhanced replacement for the LM6164  
series and can function as a pin-for-pin replacement for  
many high speed amplifiers such as the HA2520/2/5 and  
EL2020 in applications where the gain is 5 or greater.  
REV. B  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
AD848/AD849–SPECIFICATIONS(@ T = +25؇C, unless otherwise noted)  
A
AD 848J  
AD 848A/S  
Min Typ Max  
0.2  
Model  
Conditions  
VS  
Min  
Typ Max  
Units  
INPUT OFFSET VOLT AGE1  
±5 V  
±15 V  
±5 V  
±15 V  
0.2  
0.5  
1
1
mV  
mV  
mV  
mV  
2.3  
1.5  
3.0  
0.5  
2.3  
2
T MIN to TMAX  
3.5  
Offset Drift  
±5 V, ±15 V  
7
7
µV/°C  
INPUT BIAS CURRENT  
±5 V, ±15 V  
±5 V, ±15 V  
3.3  
6.6  
7.2  
3.3  
6.6/5  
7.5  
µA  
µA  
T MIN to TMAX  
T MIN to TMAX  
INPUT OFFSET CURRENT  
±5 V, ±15 V  
±5 V, ±15 V  
±5 V, ±15 V  
50  
300  
400  
50  
300  
400  
nA  
nA  
nA/°C  
Offset Current Drift  
OPEN LOOP GAIN  
0.3  
0.3  
VO = ±2.5 V  
±5 V  
RLOAD = 500 Ω  
T MIN to TMAX  
RLOAD = 150 Ω  
VOUT = ±10 V  
RLOAD = 1 kΩ  
T MIN to TMAX  
9
7
13  
8
9
7/5  
13  
8
V/mV  
V/mV  
V/mV  
±15 V  
12  
8
20  
12  
8/6  
20  
V/mV  
V/mV  
DYNAMIC PERFORMANCE  
Gain Bandwidth  
AVCL 5  
±5 V  
±15 V  
125  
175  
125  
175  
MHz  
MHz  
Full Power Bandwidth2  
VO = 2 V p-p,  
RL = 500 Ω  
VO = 20 V p-p,  
RL = 1 kΩ  
±5 V  
24  
24  
MHz  
±15 V  
±5 V  
±15 V  
±5 V  
±15 V  
±15 V  
4.7  
200  
300  
65  
4.7  
200  
300  
65  
MHz  
V/µs  
V/µs  
ns  
Slew Rate  
RLOAD = 1 kΩ  
225  
225  
Settling T ime to 0.1%  
Phase Margin  
–2.5 V to +2.5 V  
10 V Step, AV = –4  
CLOAD = 10 pF  
RLOAD = 1 kΩ  
100  
100  
ns  
60  
60  
Degrees  
%
DIFFERENT IAL GAIN  
f = 4.4 MHz  
f = 4.4 MHz  
±15 V  
±15 V  
0.07  
0.08  
0.07  
0.08  
DIFFERENT IAL PHASE  
COMMON-MODE REJECT ION  
Degree  
VCM = ±2.5 V  
VCM = ±12 V  
T MIN to TMAX  
±5 V  
±15 V  
92  
92  
88  
105  
105  
92  
92  
88  
105  
105  
dB  
dB  
dB  
POWER SUPPLY REJECT ION  
VS = ±4.5 V to ±18 V  
T MIN to TMAX  
85  
80  
98  
85  
80  
98  
dB  
dB  
INPUT VOLT AGE NOISE  
INPUT CURRENT NOISE  
f = 10 kHz  
f = 10 kHz  
±15 V  
±15 V  
5
5
nV/Hz  
pA/Hz  
1.5  
1.5  
INPUT COMMON-MODE  
VOLT AGE RANGE  
±5 V  
+4.3  
–3.4  
+14.3  
–13.4  
+4.3  
–3.4  
+14.3  
–13.4  
V
V
V
V
±15 V  
OUT PUT VOLT AGE SWING  
RLOAD = 500 Ω  
RLOAD = 150 Ω  
RLOAD = 50 Ω  
RLOAD = 1 kΩ  
RLOAD = 500 Ω  
±5 V  
±5 V  
±5 V  
±15 V  
±15 V  
3.0  
2.5  
3.6  
3
1.4  
3.0  
2.5  
3.6  
3
1.4  
±V  
±V  
±V  
±V  
±V  
12  
10  
12  
10  
SHORT CIRCUIT CURRENT  
INPUT RESIST ANCE  
±15 V  
32  
70  
1.5  
15  
32  
70  
1.5  
15  
mA  
kΩ  
pF  
INPUT CAPACIT ANCE  
OUT PUT RESIST ANCE  
Open Loop  
POWER SUPPLY  
Operating Range  
Quiescent Current  
؎4.5  
؎18  
6.0  
7.4  
6.8  
8.0  
؎4.5  
؎18  
6.0  
7.4/8.3 mA  
6.8 mA  
8.0/9.0 mA  
V
mA  
±5 V  
4.8  
5.1  
4.8  
5.1  
T MIN to TMAX  
T MIN to TMAX  
±15 V  
NOT ES  
1Input offset voltage specifications are guaranteed after 5 minutes at T A = +25°C.  
2Full power bandwidth = slew rate/2 π VPEAK. Refer to Figure 1.  
All min and max specifications are guaranteed. Specifications in boldface are tested on all production units at final electrical test. All others are guaranteed but not necessarily tested.  
Specifications subject to change without notice.  
–2–  
REV. B  
AD848/AD849  
AD 849J  
Typ Max  
AD 849A/S  
Min Typ Max  
Model  
Conditions  
VS  
Min  
Units  
INPUT OFFSET VOLT AGE1  
±5 V  
±15 V  
±5 V  
±15 V  
0.3  
0.3  
1
1
1.3  
1.3  
0.1  
0.1  
0.75  
0.75  
1.0  
mV  
mV  
mV  
mV  
T MIN to T MAX  
1.0  
Offset Drift  
±5 V, ±15 V  
2
2
µV/°C  
INPUT BIAS CURRENT  
±5 V, ±15 V  
±5 V, ±15 V  
3.3  
6.6  
7.2  
3.3  
6.6/5  
7.5  
µA  
µA  
T MIN to T MAX  
T MIN to T MAX  
INPUT OFFSET CURRENT  
±5 V, ±15 V  
±5 V, ±15 V  
±5 V, ±15 V  
50  
300  
400  
50  
300  
400  
nA  
nA  
nA/°C  
Offset Current Drift  
OPEN LOOP GAIN  
0.3  
0.3  
VO = ±2.5 V  
±5 V  
RLOAD = 500 Ω  
T MIN to T MAX  
RLOAD = 150 Ω  
VOUT = ±10 V  
RLOAD = 1 kΩ  
T MIN to T MAX  
30  
20  
50  
32  
85  
30  
20/15  
50  
32  
85  
V/mV  
V/mV  
V/mV  
±15 V  
45  
30  
45  
30/25  
V/mV  
V/mV  
DYNAMIC PERFORMANCE  
Gain Bandwidth  
AVCL 25  
±5 V  
±15 V  
520  
725  
520  
725  
MHz  
MHz  
Full Power Bandwidth2  
VO = 2 V p-p,  
RL = 500 Ω  
VO = 20 V p-p,  
RL = 1 kΩ  
±5 V  
20  
20  
MHz  
±15 V  
±5 V  
±15 V  
±5 V  
±15 V  
±15 V  
4.7  
200  
300  
65  
4.7  
200  
300  
65  
MHz  
V/µs  
V/µs  
ns  
Slew Rate  
RLOAD = 1 kΩ  
225  
225  
Settling T ime to 0.1%  
Phase Margin  
–2.5 V to +2.5 V  
10 V Step, AV = –24  
CLOAD = 10 pF  
RLOAD = 1 kΩ  
80  
80  
ns  
60  
60  
Degrees  
%
DIFFERENT IAL GAIN  
f = 4.4 MHz  
f = 4.4 MHz  
±15 V  
±15 V  
0.08  
0.04  
0.08  
0.04  
DIFFERENT IAL PHASE  
COMMON-MODE REJECT ION  
Degrees  
VCM = ±2.5 V  
VCM = ±12 V  
T MIN to T MAX  
±5 V  
±15 V  
100  
100  
96  
115  
115  
100  
100  
96  
115  
115  
dB  
dB  
dB  
POWER SUPPLY REJECT ION  
VS = ±4.5 V to ±18 V  
T MIN to T MAX  
98  
94  
120  
98  
94  
120  
dB  
dB  
INPUT VOLT AGE NOISE  
INPUT CURRENT NOISE  
f = 10 kHz  
f = 10 kHz  
±15 V  
±15 V  
3
3
nV/Hz  
pA/Hz  
1.5  
1.5  
INPUT COMMON-MODE  
VOLT AGE RANGE  
±5 V  
+4.3  
–3.4  
+14.3  
–13.4  
+4.3  
–3.4  
+14.3  
–13.4  
V
V
V
V
±15 V  
OUT PUT VOLT AGE SWING  
RLOAD = 500 Ω  
RLOAD = 150 Ω  
RLOAD = 50 Ω  
RLOAD = 1 kΩ  
RLOAD = 500 Ω  
±5 V  
±5 V  
±5 V  
±15 V  
±15 V  
3.0  
2.5  
3.6  
3
1.4  
3.0  
2.5  
3.6  
3
1.4  
±V  
±V  
±V  
±V  
±V  
12  
10  
12  
10  
SHORT CIRCUIT CURRENT  
INPUT RESIST ANCE  
±15 V  
32  
25  
1.5  
15  
32  
25  
1.5  
15  
mA  
kΩ  
pF  
INPUT CAPACIT ANCE  
OUT PUT RESIST ANCE  
Open Loop  
POWER SUPPLY  
Operating Range  
Quiescent Current  
؎4.5  
؎18  
6.0  
7.4  
6.8  
8.0  
؎4.5  
؎18  
6.0  
7.4/8.3 mA  
6.8 mA  
8.0/9.0 mA  
V
mA  
±5 V  
4.8  
5.1  
4.8  
5.1  
T MIN to T MAX  
T MIN to T MAX  
±15 V  
NOT ES  
1Input offset voltage specifications are guaranteed after 5 minutes at T A = +25°C.  
2Full power bandwidth = slew rate/2 π VPEAK. Refer to Figure 1.  
All min and max specifications are guaranteed. Specifications in boldface are tested on all production units at final electrical test. All others are guaranteed but not necessarily tested.  
Specifications subject to change without notice.  
REV. B  
–3–  
AD848/AD849  
ABSO LUTE MAXIMUM RATINGS 1  
METALIZATIO N P H O TO GRAP H  
Contact factory for latest dimensions. (AD 848 and AD 849 are identical  
except for the part number in the upper right.)  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Internal Power Dissipation2  
D imensions shown in inches and (mm).  
Plastic (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Watts  
Small Outline (R) . . . . . . . . . . . . . . . . . . . . . . . . . 0.9 Watts  
Cerdip (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Watts  
LCC (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8 Watts  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . ±6 V  
Storage T emperature Range (Q) . . . . . . . . –65°C to +150°C  
(N, R) . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +125°C  
Junction T emperature . . . . . . . . . . . . . . . . . . . . . . . . +175°C  
Lead T emperature Range (Soldering 60 sec) . . . . . . . +300°C  
NOT ES  
1Stresses above those listed under “Absolute Maximum Ratings” may cause per-  
manent damage to the device. T his is a stress rating only, and functional opera-  
tion of the device at these or any other conditions above those indicated in the  
operational section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2LCC: θJA = 150°C/Watt  
Mini-DIP Package: θJA = 110°C/Watt  
Cerdip Package: θJA = 110°C/Watt  
Small Outline Package: θJA = 155°C/Watt.  
O RD ERING GUID E  
Min Max  
Stable O ffset Voltage Tem perature  
Gain  
Bandwidth  
MH z  
P ackage  
O ption1  
Model  
Gain  
m V  
Range – ؇C  
AD848JN  
175  
175  
175  
175  
175  
5
5
5
5
5
5
5
1
1
1
1
1
1
1
0 to +70  
0 to +70  
0 to +70  
–40 to +85  
–55 to +125  
–55 to +125  
–55 to +125  
N-8  
R-8  
Die Form  
Q-8  
Q-8  
AD848JR2  
AD848JCHIPS  
AD848AQ  
AD848SQ  
AD848SQ/883B 175  
AD848SE/883B 175  
Q-8  
E-20A  
AD849JN  
AD849JR2  
AD849AQ  
AD849SQ  
725  
725  
725  
725  
25  
25  
25  
25  
25  
1
1
0.75  
0.75  
0.75  
0 to +70  
0 to +70  
–40 to +85  
–55 to +125  
–55 to +125  
N-8  
R-8  
Q-8  
Q-8  
Q-8  
AD849SQ/883B 725  
AD847J/A/S  
50  
1
1
See AD847 Data Sheet  
NOT ES  
1E = LCC; N = Plastic DIP; Q = Cerdip; R = Small Outline IC (SOIC).  
2Plastic SOIC (R) available in tape and reel. AD848 available in S grade chips. AD849 available in J and S grade  
chips.  
–4–  
REV. B  
AD848/AD849  
Figure 1. AD848 Inverting Am plifier Configuration  
Figure 1a. AD848 Large Signal Pulse Response  
Figure 1b. AD848 Sm all Signal Pulse Response  
Figure 2. AD849 Inverting Am plifier Configuration  
Figure 2a. AD849 Large Signal Pulse Response  
Figure 2b. AD849 Sm all Signal Pulse Response  
O FFSET NULLING  
T he input voltage of the AD848 and AD849 are very low for  
high speed op amps, but if additional nulling is required, the  
circuit shown in Figure 3 can be used.  
For high performance circuits it is recommended that a resistor  
(RB in Figures 1 and 2) be used to reduce bias current errors by  
matching the impedance at each input. T he offset voltage error  
caused by the input currents is decreased by more than an order  
of magnitude.  
Figure 3. Offset Nulling  
–5–  
REV. B  
AD848/AD849–Typical Characteristics  
(@ T = +25؇C and V = ؎15 V, unless otherwise noted)  
A
S
Figure 4. Quiescent Current vs.  
Supply Voltage (AD848 and AD849)  
Figure 6. Output Voltage Swing vs.  
Load Resistance (AD848 and AD849)  
Figure 5. Large Signal Frequency  
Response (AD848 and AD849)  
Figure 8. Open Loop Gain vs.  
Load Resistance (AD849)  
Figure 9. Output Swing and  
Error vs. Settling Tim e (AD848)  
Figure 7. Open Loop Gain vs.  
Load Resistance (AD848)  
Figure 11. Short Circuit Current  
Lim it vs. Tem perature (AD848  
and AD849)  
Figure 10. Quiescent Current vs.  
Tem perature (AD848 and AD849)  
Figure 12. Input Bias Current vs.  
Tem perature (AD848 and AD849)  
–6–  
REV. B  
AD848/AD849  
Figure 13. Open Loop Gain and  
Phase Margin vs. Frequency (AD848)  
Figure 14. Open Loop Gain and  
Phase Margin vs. Frequency (AD849)  
Figure 15. Norm alized Gain Band-  
width Product vs. Tem perature  
(AD848 and AD849)  
Figure 16. Harm onic Distortion vs.  
Frequency (AD848)  
Figure 17. Harm onic Distortion vs.  
Frequency (AD849)  
Figure 18. Slew Rate vs. Tem perature  
(AD848 and AD849)  
Figure 19. Power Supply Rejection vs.  
Frequency (AD848)  
Figure 20. Power Supply Rejection vs.  
Frequency (AD849)  
Figure 21. Com m on-Mode  
Rejection vs. Frequency  
–7–  
REV. B  
AD848/AD849–Applications  
GRO UND ING AND BYP ASSING  
Often termination is not used, either because signal integrity  
requirements are low or because too many high frequency  
signals returned to ground contaminate the ground plane.  
Unterminated cables appear as capacitive loads. Since the  
AD848 and AD849 are stable into any capacitive load, the op  
amp will not oscillate if the cable is not terminated; however  
pulse integrity will be degraded. Figure 23 shows the AD848  
driving both 100 pF and 1000 pF loads.  
In designing practical circuits with the AD848 or AD849, the  
user must remember that whenever high frequencies are  
involved, some special precautions are in order. Circuits must  
be built with short interconnect leads. A large ground plane  
should be used whenever possible to provide a low resistance,  
low inductance circuit path, as well as minimizing the effects of  
high frequency coupling. Sockets should be avoided because the  
increased interlead capacitance can degrade bandwidth.  
LO W NO ISE P RE-AMP  
Feedback resistors should be of low enough value to assure that  
the time constant formed with the capacitances at the amplifier  
summing junction will not limit the amplifier performance.  
Resistor values of less than 5 kare recommended. If a larger  
resistor must be used, a small (< 10 pF) feedback capacitor in  
parallel with the feedback resistor, RF, may be used to compen-  
sate for the input capacitances and optimize the dynamic per-  
formance of the amplifier.  
T he input voltage noise spectral densities of the AD848 and the  
AD849 are shown in Figure 24. T he low wideband noise and  
high gain bandwidths of these devices makes them well suited as  
pre-amps for high frequency systems.  
Power supply leads should be bypassed to ground as close as  
possible to the amplifier pins. 0.1 µF ceramic disc capacitors are  
recommended.  
VID EO LINE D RIVER  
T he AD848 functions very well as a low cost, high speed line  
driver of either terminated or unterminated cables. Figure 22  
shows the AD848 driving a doubly terminated cable.  
T he termination resistor, RT , (when equal to the characteristic  
impedance of the cable) minimizes reflections from the far end  
of the cable. While operating off ±5 V supplies, the AD848  
maintains a typical slew rate of 200 V/µs, which means it can  
drive a ±1 V, 24 MHz signal on the terminated cable.  
Figure 24. Input Voltage Noise Spectral Density  
Input voltage noise will be the dominant source of noise at the  
output in most applications. Other noise sources can be  
minimized by keeping resistor values as small as possible.  
A back-termination resistor (RBT, also equal to the characteristic  
impedance of the cable) may be placed between the AD848  
output and the cable in order to damp any reflected signals  
caused by a mismatch between RT and the cable’s characteristic  
impedance. T his will result in a “cleaner” signal, although it  
requires that the op amp supply ±2 V to the output in order to  
achieve a ±1 V swing at the line.  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
Mini-D IP (N) P ackage  
Cer dip (Q ) P ackage  
Figure 22. Video Line Driver  
100pF  
LOAD  
Sm all O utline (R) P ackage  
1000pF  
LOAD  
Figure 23. AD848 Driving a Capacitive Load  
–8–  
REV. B  

相关型号:

AD849SCHIPS

Voltage-Feedback Operational Amplifier
ETC

AD849SQ

High Speed, Low Power Monolithic Op Amp
ADI

AD849SQ-883B

High Speed, Low Power Monolithic Op Amp
ADI

AD849SQ/883B

High Speed, Low Power Monolithic Op Amp
ADI

AD849SQ/883B

OP-AMP, 1000uV OFFSET-MAX, 725MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8
ROCHESTER

AD8500

Micropower Precision CMOS Operational Amplifier
ADI

AD8500AKSZ

OP-AMP, 1000uV OFFSET-MAX, 0.007MHz BAND WIDTH, PDSO5
ADI

AD8500AKSZ-R2

Micropower Precision CMOS Operational Amplifier
ADI

AD8500AKSZ-REEL

Micropower Precision CMOS Operational Amplifier
ADI

AD8500AKSZ-REEL7

Micropower Precision CMOS Operational Amplifier
ADI

AD8502

1レ Micropower Precision CMOS Operational Amplifier
ADI

AD8502ARJZ-R2

1 レA Micropower CMOS Operational Amplifiers
ADI