AD8505ARJZ-R7 [ADI]

20 µA Maximum, RRIO, Zero Input Crossover Distortion Single Op Amp;
AD8505ARJZ-R7
型号: AD8505ARJZ-R7
厂家: ADI    ADI
描述:

20 µA Maximum, RRIO, Zero Input Crossover Distortion Single Op Amp

放大器 光电二极管
文件: 总21页 (文件大小:742K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
20 μA Maximum, Rail-to-Rail I/O,  
Zero Input Crossover Distortion Amplifiers  
AD8505/AD8506/AD8508  
Data Sheet  
FEATURES  
PSRR: 100 dB minimum  
CMRR: 105 dB typical  
PIN CONFIGURATIONS  
BALL A1  
INDICATOR  
OUT  
A1  
V+  
A2  
Very low supply current: 20 μA per amplifier maximum  
1.8 V to 5 V single supply or 0.9 V to 2.5 V dual supply  
Rail-to-rail input/output  
V–  
B1  
NC  
B2  
Low noise: 45 nV/√Hz at 1 kHz  
2.5 mV offset voltage maximum  
Very low input bias current: 1 pA typical  
+IN  
C1  
–IN  
C2  
OUT  
V–  
1
2
3
5
4
V+  
AD8505  
APPLICATIONS  
Pressure and position sensors  
Remote security  
AD8505  
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
TOP VIEW  
(Not to Scale)  
+IN  
–IN  
NC = NO CONNECT  
Bio sensors  
IR thermometers  
Figure 1. 5-Lead SOT-23 (RJ-5)  
Figure 2. 6-Ball WLCSP (CB-6-7)  
BALL A1  
CORNER  
Battery-powered consumer equipment  
Hazard detectors  
OUT B  
A1  
V+  
A2  
OUT A  
A3  
GENERAL DESCRIPTION  
The AD8505/AD8506/AD8508 are single, dual, and quad micro-  
power amplifiers featuring rail-to-rail input/output swings while  
operating from a single 1.8 V to 5 V power supply or from dual  
±0.ꢀ V to ±±.5 V power supplies. Using a new circuit technology,  
these amplifiers offer zero input crossover distortion (excellent  
PSRR and CMRR performance) and low bias current while  
operating with a supply current of less than ±0 μA per amplifier.  
This amplifier family offers the lowest noise in its power class.  
–IN B  
B1  
–IN A  
B3  
+IN B  
C1  
V–  
C2  
+IN A  
C3  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8506  
OUT B  
–IN B  
+IN B  
AD8506  
TOP VIEW  
TOP VIEW  
(Not to Scale)  
(BALL SIDE DOWN)  
Not to Scale  
Figure 3. 8-Lead MSOP (RM-8)  
Figure 4. 8-Ball WLCSP (CB-8-2)  
This combination of features makes the AD8505/AD8506/AD8508  
amplifiers ideal choices for battery-powered applications because  
they minimize errors due to power supply voltage variations over  
the lifetime of the battery and maintain high CMRR even for a rail-  
to-rail input op amp. Remote battery-powered sensors, handheld  
instrumentation, consumer equipment, hazard detection (for  
example, smoke, fire, and gas), and patient monitors can benefit  
from the features of the AD8505/AD8506/AD8508 amplifiers.  
BALL A1  
CORNER  
OUTD  
A1  
OUTA  
A2  
–INA  
A3  
–IND  
B1  
V–  
B2  
+INA  
B3  
+IND  
C1  
+INB  
C3  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
11 V–  
+INC  
D1  
V+  
D2  
–INB  
D3  
AD8508  
–INC  
E1  
OUTC  
E2  
OUTB  
E3  
TOP VIEW  
The AD8505/AD8506/AD8508 are specified for both the industrial  
temperature range of −40°C to +85°C and the extended industrial  
temperature range of −40°C to +1±5°C. The AD8505 single ampli-  
fier is available in a tiny 5-lead SOT-±3 and a 6-ball WLCSP  
packages. The AD8506 dual amplifier is available in 8-lead MSOP  
and 8-ball WLCSP packages. The AD8508 quad amplifier is  
available in 14-lead TSSOP and 14-ball WLCSP packages. The  
AD8505/AD8506/AD8508 are members of a growing series of  
zero crossover distortion op amps offered by Analog Devices,  
Inc., including the ADA4505-1/ADA4505-±/ADA4505-4, that  
operate from a single 1.8 V to 5 V supply or from dual ±0.ꢀ V to  
±±.5 V power supplies.  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
10 +IN C  
9
8
–IN C  
AD8508  
TOP VIEW  
OUT C  
(BALL SIDE DOWN)  
Not to Scale  
Figure 5. 14-Lead TSSOP (RU-14)  
Figure 6. 14-Ball WLCSP (CB-14-1)  
Rev. F  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2007–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
Data Sheet  
AD8505/AD8506/AD8508  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................6  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 14  
Applications Information .............................................................. 16  
Pulse Oximeter Current Source ............................................... 16  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Pin Configurations ........................................................................... 1  
Revision History ............................................................................... 3  
Specifications..................................................................................... 4  
Electrical Characteristics—1.8 V Operation ............................ 4  
Electrical Characteristics—5 V Operation................................ 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
Four-Pole, Low-Pass Butterworth Filter for Glucose Monitor  
....................................................................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 21  
Rev. F | Page 2 of 21  
Data Sheet  
AD8505/AD8506/AD8508  
REVISION HISTORY  
7/2008—Rev. 0 to Rev. A  
9/2017—Rev. E to Rev. F  
Added AD8508................................................................... Universal  
Added TSSOP Package...................................................... Universal  
Changes to Features Section and General Description Section..1  
Added Figure 2; Renumbered Sequentially...................................1  
Changed Electrical Characteristics Heading to Electrical  
Characteristics—5 V Operation......................................................3  
Changes to Table 1 ............................................................................3  
Added Electrical Characteristics—1.8 V Operation Heading ....4  
Changes to Table 2 ............................................................................4  
Changes to Table 3, Thermal Resistance Section, and Table 4....5  
Updated Outline Dimensions........................................................18  
Changes to Ordering Guide...........................................................21  
5/2010—Rev. D to Rev. E  
Added AD8505, 6-Ball WLCSP Package ........................ Universal  
Changes to Large-Signal Voltage Gain Parameter (Table 1) .......4  
Changes to Large-Signal Voltage Gain Parameter (Table 2) .......5  
Changes to Table 4 ............................................................................6  
Updated Outline Dimensions........................................................19  
Changes to Ordering Guide...........................................................21  
Added T  
A = 25°C Condition to Typical Performance  
10/2009—Rev. C to Rev. D  
Characteristics Section.....................................................................6  
Changes to Figure 3, Figure 4, Figure 6, and Figure 7..................6  
Added Figure 11 and Figure 14.......................................................7  
Changes to Figure 17 Through Figure 20 ......................................8  
Changes to Figure 21 Through Figure 26 ......................................9  
Changes to Figure 27, Figure 28, Figure 30, and Figure 31 .......10  
Changes to Figure 34, Figure 37, and Figure 38..........................11  
Added Figure 39 and Figure 40.....................................................12  
Added Theory of Operation Section, Figure 41, and  
Figure 42...........................................................................................13  
Added Figure 43 and Figure 44.....................................................14  
Added Applications Information Section and Figure 45...........15  
Added Figure 46..............................................................................16  
Updated Outline Dimensions........................................................17  
Added Figure 48..............................................................................17  
Changes to Ordering Guide...........................................................17  
Added AD8505, 5-Lead SOT-23 Package....................... Universal  
Changes to General Description, Added Figure 1........................1  
Moved Electrical Characteristics—1.8 V Operation Section,  
Changes to Supply Current per Amplifier Parameter, Table 1 ..... 3  
Moved Electrical Characteristics—5 V Operation Section,  
Changes to Supply Current per Amplifier Parameter, Table 2 ..... 4  
Changes to Thermal Resistance Section and Table 4 ...................5  
Changes to Figure 20 and Figure 23 ...............................................8  
Updated Outline Dimensions........................................................16  
Changes to Ordering Guide...........................................................17  
3/2009—Rev. B to Rev. C  
Added AD8508, 14-Ball WLCSP Package ...................... Universal  
Updated Outline Dimensions........................................................17  
Changes to Ordering Guide...........................................................18  
10/2008—Rev. A to Rev. B  
11/2007—Revision 0: Initial Version  
Added WLCSP Package..................................................... Universal  
Added Figure 2; Renumbered Sequentially ...................................1  
Added Input Resistance Parameter.................................................3  
Changes to Input Capacitance Differential Mode Parameter  
Symbol and Input Capacitance Common Mode Parameter  
Symbol ................................................................................................3  
Added Input Resistance Parameter.................................................4  
Changes to Input Capacitance Differential Mode Parameter  
Symbol and Input Capacitance Common Mode Parameter  
Symbol ................................................................................................4  
Changes to Table 4 ............................................................................5  
Changes to Figure 46 ......................................................................16  
Updated Outline Dimensions........................................................17  
Added Figure 49 ..............................................................................17  
Changes to Ordering Guide...........................................................18  
Rev. F | Page 3 of 21  
 
AD8505/AD8506/AD8508  
SPECIFICATIONS  
Data Sheet  
ELECTRICAL CHARACTERISTICS—1.8 V OPERATION  
VSY = 1.8 V, VCM = VSY/2, TA = 25°C, RL = 100 kΩ to GND, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
0.5  
1
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
0 V ≤ VCM ≤ 1.8 V  
−40°C ≤ TA ≤ +125°C  
2.5  
3.5  
10  
100  
600  
5
50  
100  
1.8  
mV  
mV  
pA  
pA  
pA  
pA  
pA  
pA  
V
dB  
dB  
dB  
dB  
Input Bias Current  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
0.5  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
0 V ≤ VCM ≤ 1.8 V  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
0
CMRR  
AVO  
85  
85  
80  
95  
100  
115  
Large-Signal Voltage Gain  
0.05 V ≤ VOUT ≤ 1.75 V,  
RL = 100 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
95  
dB  
Offset Voltage Drift  
Input Resistance  
Input Capacitance, Differential Mode CINDM  
2.5  
220  
3
µV/°C  
GΩ  
pF  
VOS/T  
RIN  
Input Capacitance, Common Mode  
OUTPUT CHARACTERISTICS  
Output Voltage High  
CINCM  
VOH  
4.2  
pF  
RL = 100 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to VSY  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to VSY  
1.78  
1.78  
1.65  
1.65  
1.79  
1.75  
2
V
V
V
V
mV  
mV  
mV  
mV  
mA  
Output Voltage Low  
VOL  
5
5
25  
25  
12  
−40°C ≤ TA ≤ +125°C  
VOUT = VSY or GND  
Short-Circuit Limit  
POWER SUPPLY  
Power Supply Rejection Ratio  
ISC  
4.5  
110  
PSRR  
VSY = 1.8 V to 5 V  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
100  
100  
95  
dB  
dB  
dB  
Supply Current per Amplifier  
AD8506/AD8508  
ISY  
VOUT = VSY/2  
−40°C ≤ TA ≤ +125°C  
VOUT = VSY/2  
16.5  
16.5  
20  
25  
24  
27.5  
µA  
µA  
µA  
µA  
AD8505  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Phase Margin  
SR  
GBP  
ΦM  
RL = 100 kΩ, CL = 10 pF, G = 1  
RL = 1 MΩ, CL = 20 pF, G = 1  
RL = 1 MΩ, CL = 20 pF, G = 1  
13  
95  
60  
mV/µs  
kHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
in  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
2.8  
45  
15  
µV p-p  
nV/√Hz  
fA/√Hz  
Rev. F | Page 4 of 21  
 
 
Data Sheet  
AD8505/AD8506/AD8508  
ELECTRICAL CHARACTERISTICS—5 V OPERATION  
VSY = 5 V, V CM = VSY/2, TA = 25°C, RL = 100 kΩ to GND, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
0.5  
1
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
0 V ≤ VCM ≤ 5 V  
−40°C ≤ TA ≤ +125°C  
2.5  
3.5  
10  
100  
600  
5
50  
130  
5
mV  
mV  
pA  
pA  
pA  
pA  
pA  
pA  
V
dB  
dB  
dB  
dB  
Input Bias Current  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
0.5  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
0 V ≤ VCM ≤ 5 V  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
0
CMRR  
AVO  
90  
90  
85  
105  
105  
120  
Large-Signal Voltage Gain  
0.05 V ≤ VOUT ≤ 4.95 V,  
RL = 100 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
100  
dB  
Offset Voltage Drift  
Input Resistance  
Input Capacitance, Differential Mode CINDM  
2
µV/°C  
GΩ  
pF  
VOS/T  
RIN  
220  
3
Input Capacitance, Common Mode  
OUTPUT CHARACTERISTICS  
Output Voltage High  
CINCM  
VOH  
4.2  
pF  
RL = 100 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to VSY  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to VSY  
4.98  
4.98  
4.9  
4.99  
4.95  
2
V
V
V
V
mV  
mV  
mV  
mV  
mA  
4.9  
Output Voltage Low  
VOL  
5
5
25  
30  
10  
−40°C ≤ TA ≤ +125°C  
VOUT = VSY or GND  
Short-Circuit Limit  
POWER SUPPLY  
ISC  
45  
Power Supply Rejection Ratio  
PSRR  
VSY = 1.8 V to 5 V  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
100  
100  
95  
110  
dB  
dB  
dB  
Supply Current per Amplifier  
AD8506/AD8508  
ISY  
VOUT = VSY/2  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
15  
20  
25  
25.5  
µA  
µA  
µA  
AD8505  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Phase Margin  
SR  
GBP  
ΦM  
RL = 100 kΩ, CL = 10 pF, G = 1  
RL = 1 MΩ, CL = 20 pF, G = 1  
RL = 1 MΩ, CL = 20 pF, G = 1  
13  
95  
60  
mV/µs  
kHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
in  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
2.8  
45  
15  
µV p-p  
nV/√Hz  
fA/√Hz  
Rev. F | Page 5 of 21  
 
AD8505/AD8506/AD8508  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages with its  
exposed paddle soldered to a pad, if applicable. Table 4 shows  
simulated thermal values for a 4-layer (2S2P) JEDEC standard  
thermal test board, unless otherwise specified.  
Parameter  
Rating  
5.5 V  
VSY 0.1 V  
10 mA  
VSY  
Supply Voltage  
Input Voltage  
Input Current1  
Differential Input Voltage2  
Output Short-Circuit Duration to GND Indefinite  
Table 4.  
Package Type  
Storage Temperature Range  
−65°C to +150°C  
θJA  
190  
105  
142  
82  
θJC  
92  
N/A  
45  
N/A  
35  
N/A  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
−40°C to +125°C  
−65°C to +150°C  
300°C  
5-Lead SOT-23 (RJ-5)  
6-Ball WLCSP (CB-6-7)  
8-Lead MSOP (RM-8)  
8-Ball WLCSP (CB-8-2)  
14-Lead TSSOP (RU-14)  
14-Ball WLCSP (CB-14-1)  
1 Input pins have clamp diodes to the supply pins. The input current must be  
limited to 10 mA or less whenever the input signal exceeds the power  
supply rail by 0.5 V.  
112  
64  
2 The differential input voltage is limited to 5 V or the supply voltage, whichever  
is less.  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. F | Page 6 of 21  
 
 
 
 
Data Sheet  
AD8505/AD8506/AD8508  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
250  
200  
150  
100  
50  
250  
V
V
= 1.8V  
V
V
= 5V  
SY  
SY  
= V /2  
= V /2  
CM  
SY  
CM  
SY  
200  
150  
100  
50  
0
–4  
0
–4  
–3  
–2  
–1  
0
1
2
3
4
–3  
–2  
–1  
0
1
2
3
4
V
(mV)  
V
(mV)  
OS  
OS  
Figure 7. Input Offset Voltage Distribution  
Figure 10. Input Offset Voltage Distribution  
16  
14  
12  
10  
8
12  
10  
8
V
= 5V  
V
= 1.8V  
SY  
SY  
–40°C T +125°C  
–40°C T +125°C  
A
A
6
6
4
4
2
2
0
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
TCV  
(µV/°C)  
TCV  
(µV/°C)  
OS  
OS  
Figure 8. Input Offset Voltage Drift Distribution  
Figure 11. Input Offset Voltage Drift Distribution  
2000  
1500  
1000  
500  
2000  
1500  
1000  
500  
V
= 1.8V  
V
= 5V  
SY  
SY  
0
0
–500  
–1000  
–1500  
–2000  
–500  
–1000  
–1500  
–2000  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
0
1
2
3
4
5
V
V
(V)  
CM  
CM  
Figure 9. Input Offset Voltage vs. Input Common-Mode Voltage  
Figure 12. Input Offset Voltage vs. Input Common-Mode Voltage  
Rev. F | Page 7 of 21  
 
AD8505/AD8506/AD8508  
Data Sheet  
TA = 25°C, unless otherwise noted.  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
V
= 1.8V  
V
= 5V  
SY  
SY  
–120  
–125  
–130  
–135  
–140  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
0
1
2
3
4
5
V
V
(V)  
CM  
CM  
Figure 13. Input Offset Voltage vs. Input Common-Mode Voltage  
Figure 16. Input Offset Voltage vs. Input Common-Mode Voltage  
600  
600  
V
= 1.8V  
V
= 5V  
SY  
SY  
550  
500  
450  
400  
350  
300  
250  
200  
550  
500  
450  
400  
350  
300  
250  
200  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
0
0.5  
1.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
4.5  
5.0  
V
V
CM  
CM  
Figure 14. Input Bias Current vs. Input Common-Mode Voltage at 125°C  
Figure 17. Input Bias Current vs. Input Common-Mode Voltage at 125°C  
1000  
1000  
V
V
= 1.8V  
= V /2  
SY  
SY  
V
V
= 5V  
= V /2  
SY  
SY  
CM  
CM  
100  
10  
1
100  
10  
1
0.1  
0.1  
0.01  
0.01  
25  
35  
45  
55  
65  
75  
85  
95  
105 115 125  
25  
35  
45  
55  
65  
75  
85  
95  
105 115 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. Input Bias Current vs. Temperature  
Figure 18. Input Bias Current vs. Temperature  
Rev. F | Page 8 of 21  
Data Sheet  
AD8505/AD8506/AD8508  
TA = 25°C, unless otherwise noted.  
10k  
10k  
1k  
V
= 1.8V  
V
= 5V  
SY  
SY  
1k  
100  
10  
V
– V  
OH  
DD  
100  
10  
V
OL  
V
OL  
V
– V  
OH  
DD  
1
1
0.1  
0.01  
0.1  
0.001  
0.01  
0.1  
LOAD CURRENT (mA)  
1
10  
0.001  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
Figure 19. Output Voltage to Supply Rail vs. Load Current  
Figure 22. Output Voltage to Supply Rail vs. Load Current  
14  
12  
10  
8
14  
12  
10  
8
V
= 1.8V  
V
= 5V  
SY  
SY  
V
– V @ R = 10k  
OH L  
V
– V @ R = 10kΩ  
OH L  
DD  
DD  
V
@ R = 10kΩ  
V
@ R = 10kΩ  
L
OL  
L
OL  
6
6
4
4
V
– V @ R = 100kΩ  
OH L  
DD  
V
– V @ R = 100kΩ  
OH L  
DD  
2
2
V
@ R = 100kΩ  
V
@ R = 100kΩ  
L
OL  
L
OL  
20  
0
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 20. Output Voltage to Supply Rail vs. Temperature  
Figure 23. Output Voltage to Supply Rail vs. Temperature  
90  
90  
80  
70  
AD8508  
AD8506  
AD8505  
V
= V /2  
SY  
V
= V /2  
SY  
CM  
CM  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
AD8508, 1.8V  
AD8508, 5V  
AD8506, 1.8V  
AD8606, 5V  
AD8505, 1.8V  
AD8505, 5V  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5 5.0  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 21. Total Supply Current vs. Supply Voltage  
Figure 24. Total Supply Current vs. Temperature  
Rev. F | Page 9 of 21  
AD8505/AD8506/AD8508  
Data Sheet  
TA = 25°C, unless otherwise noted.  
120  
120  
100  
80  
120  
100  
80  
120  
V
= 1.8V  
V
= 5V  
SY  
SY  
100  
80  
PHASE  
GAIN  
100  
80  
PHASE  
GAIN  
60  
60  
60  
40  
60  
40  
40  
40  
20  
20  
20  
20  
0
0
0
0
–20  
–40  
–60  
–80  
–100  
–120  
–20  
–40  
–60  
–80  
–100  
–120  
–20  
–20  
GAIN, C = 0pF  
GAIN, C = 0pF  
L
PHASE, C = 0pF  
L
GAIN, C = 50pF  
L
PHASE, C = 50pF  
L
GAIN, C = 100pF  
L
PHASE, C = 100pF  
L
L
PHASE, C = 0pF  
L
–40  
–60  
–40  
–60  
–80  
–100  
GAIN, C = 50pF  
L
PHASE, C = 50pF  
L
GAIN, C = 100pF  
L
–80  
PHASE, C = 100pF  
L
–100  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 25. Open-Loop Gain and Phase vs. Frequency  
Figure 28. Open-Loop Gain and Phase vs. Frequency  
50  
40  
50  
V
= 1.8V  
SY  
V
= 5V  
SY  
G = –100  
G = –10  
G = –100  
G = –10  
40  
30  
30  
20  
20  
10  
10  
G = –1  
G = –1  
0
0
–10  
–20  
–30  
–40  
–50  
–10  
–20  
–30  
–40  
–50  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 29. Closed-Loop Gain vs. Frequency  
Figure 26. Closed-Loop Gain vs. Frequency  
10k  
1k  
10k  
V
= 5V  
SY  
V
= 1.8V  
SY  
1k  
100  
10  
G = 100  
G = 10  
G = 1  
G = 100  
100  
10  
G = 10  
G = 1  
1
1
0.1  
0.01  
0.1  
10  
10  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 30. ZOUT vs. Frequency  
Figure 27. ZOUT vs. Frequency  
Rev. F | Page 10 of 21  
Data Sheet  
AD8505/AD8506/AD8508  
TA = 25°C, unless otherwise noted.  
100  
100  
90  
V
= 1.8V  
V
= 5V  
SY  
SY  
90  
80  
70  
60  
80  
70  
60  
50  
40  
50  
40  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 31. CMRR vs. Frequency  
Figure 34. CMRR vs. Frequency  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 1.8V  
V
= 5V  
SY  
SY  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PSRR+  
100k  
PSRR+  
100k  
PSRR–  
PSRR–  
10  
100  
1k  
10k  
1M  
10  
100  
1k  
10k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 32. PSRR vs. Frequency  
Figure 35. PSRR vs. Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
V
R
= 1.8V  
= 100k  
SY  
V
R
= 5V  
= 100k  
SY  
L
L
–OVERSHOOT  
–OVERSHOOT  
+OVERSHOOT  
+OVERSHOOT  
10  
100  
LOAD CAPACITANCE (pF)  
600  
10  
100  
LOAD CAPACITANCE (pF)  
600  
Figure 33. Small-Signal Overshoot vs. Load Capacitance  
Figure 36. Small-Signal Overshoot vs. Load Capacitance  
Rev. F | Page 11 of 21  
AD8505/AD8506/AD8508  
Data Sheet  
TA = 25°C, unless otherwise noted.  
V
R
C
= 1.8V  
= 100k  
= 200pF  
V
R
C
= 5V  
SY  
SY  
= 100kΩ  
L
L
L
= 200pF  
L
G = 1  
G = 1  
TIME (100µs/DIV)  
TIME (100µs/DIV)  
Figure 37. Large-Signal Transient Response  
Figure 40. Large-Signal Transient Response  
V
R
C
G = 1  
= 1.8V  
= 100kΩ  
= 200pF  
V
R
C
= 5V  
= 100kΩ  
= 200pF  
SY  
SY  
L
L
L
L
G = 1  
TIME (100µs/DIV)  
TIME (100µs/DIV)  
Figure 38. Small-Signal Transient Response  
Figure 41. Small-Signal Transient Response  
1k  
V
= 1.8V AND 5V  
SY  
2.78µV p-p  
V
= 1.8V AND 5V  
SY  
100  
10  
1
TIME (4s/DIV)  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 39. Input Voltage Noise 0.1 Hz to 10 Hz  
Figure 42. Voltage Noise Density vs. Frequency  
Rev. F | Page 12 of 21  
Data Sheet  
AD8505/AD8506/AD8508  
TA = 25°C, unless otherwise noted.  
–40  
–40  
V
V
= 1.8V  
= 1.5V p-p  
V
V
= 5V  
= 4V p-p  
SY  
IN  
100kΩ  
SY  
IN  
100kΩ  
–50  
–60  
–70  
–80  
–50  
–60  
–70  
–80  
10kΩ  
10kΩ  
–90  
–100  
–110  
–120  
–90  
–100  
–110  
–120  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 43. Channel Separation vs. Frequency  
Figure 44. Channel Separation vs. Frequency  
Rev. F | Page 13 of 21  
AD8505/AD8506/AD8508  
Data Sheet  
THEORY OF OPERATION  
V
DD  
The AD8505/AD8506/AD8508 are unity-gain, stable, CMOS, rail-  
to-rail input/output operational amplifiers designed to optimize  
performance in current consumption, PSRR, CMRR, and zero  
crossover distortion, all embedded in a small package. The  
typical offset voltage is 500 μV, with a low peak-to-peak voltage  
noise of 2.8 μV from 0.1 Hz to 10 Hz and a voltage noise density  
of 45 nV/√Hz at 1 kHz.  
V
BIAS  
V
V
IN+  
IN–  
I
Q2  
Q4  
Q3  
Q1  
The AD8505/AD8506/AD8508 amplifiers are designed to solve  
two key problems in low voltage battery-powered applications:  
the battery voltage decrease over time and the rail-to-rail input  
stage distortion.  
I
B
B
V
SS  
In battery-powered applications, the supply voltage available to  
the IC is the voltage of the battery. Unfortunately, the voltage of  
a battery decreases as it discharges itself through the load. This  
voltage drop over the lifetime of the battery causes an error in  
the output of the op amps. Some applications requiring precision  
measurements during the entire lifetime of the battery use voltage  
regulators to power up the op amps as a solution. If a design  
uses standard battery cells, the op amps experience a supply  
voltage change from roughly 3.2 V to 1.8 V during the lifetime  
of the battery. This means that for a PSRR of 70 dB minimum in  
a typical op amp, the input-referred offset error is approximately  
440 μV. If the same application uses the AD8505/AD8506/  
AD8508 amplifiers with a 100 dB minimum PSRR, the error is  
only 14 μV. It is possible to calibrate out this error or to use an  
external voltage regulator to power the op amp, but these solutions  
can increase system cost and complexity. The AD8505/AD8506/  
AD8508 amplifiers solve the impasse with no additional cost or  
error-nullifying circuitry.  
Figure 45. A Typical Dual Differential Pair Input Stage Op Amp  
(Dual PMOS Q1 and Q2 Transistors Form the Lower End of the Input Voltage  
Range, Whereas Dual NMOS Q3 and Q4 Compose the Upper End)  
300  
V
= 5V  
SY  
= 25°C  
250  
200  
150  
100  
50  
T
A
0
–50  
–100  
–150  
–200  
–250  
–300  
0
0.5  
1.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
4.5  
5.0  
V
CM  
Figure 46. Typical Input Offset Voltage vs. Common-Mode Voltage  
Response in a Dual Differential Pair Input Stage Op Amp (Powered by 5 V  
Supply; Results of Approximately 100 Units per Graph Are Displayed)  
The second problem with battery-powered applications is the  
distortion caused by the standard rail-to-rail input stage. Using  
a CMOS non-rail-to-rail input stage (that is, a single differential  
pair) limits the input voltage to approximately one VGS (gate-  
source voltage) away from one of the supply lines. Because VGS  
for normal operation is commonly over 1 V, a single differential  
pair input stage op amp greatly restricts the allowable input  
voltage range when using a low supply voltage. This limitation  
restricts the number of applications where the non-rail-to-rail  
input op amp was originally intended to be used. To solve this  
problem, a dual differential pair input stage is usually implemented  
(see Figure 45); however, this technique has its own drawbacks.  
This distortion forces the designer to devise impractical ways  
to avoid the crossover distortion areas, therefore narrowing the  
common-mode dynamic range of the operational amplifier. The  
AD8505/AD8506/AD8508 amplifiers solve this crossover dis-  
tortion problem by using an on-chip charge pump to power the  
input differential pair. The charge pump creates a supply voltage  
higher than the voltage of the battery, allowing the input stage to  
handle a wide range of input signal voltages without using a second  
differential pair. With this solution, the input voltage can vary from  
one supply extreme to the other with no distortion, thereby  
restoring the full common-mode dynamic range of the op amp.  
One differential pair amplifies the input signal when the common-  
mode voltage is on the high end, whereas the other pair amplifies  
the input signal when the common-mode voltage is on the low  
end. This method also requires control circuitry to operate the  
two differential pairs appropriately. Unfortunately, this topology  
leads to a very noticeable and undesirable problem: if the signal  
level moves through the range where one input stage turns off  
and the other one turns on, noticeable distortion occurs (see  
Figure 46).  
Rev. F | Page 14 of 21  
 
 
 
Data Sheet  
AD8505/AD8506/AD8508  
The charge pump has been carefully designed so that switching  
noise components at any frequency, both within and beyond the  
amplifier bandwidth, are much lower than the thermal noise floor.  
Therefore, the spurious-free dynamic range (SFDR) is limited only  
by the input signal and the thermal or flicker noise. There is no  
intermodulation between the input signal and the switching noise.  
Figure 48, the input offset voltage vs. input common-mode voltage  
response, shows the typical response of 12 devices. Figure 48 is  
expanded to make it easier to compare with Figure 46, the typical  
input offset voltage vs. common-mode voltage response in a  
dual differential pair input stage op amp.  
300  
250  
Figure 47 displays a typical front-end section of an operational  
amplifier with an on-chip charge pump.  
V
= 5V, T = 25°C  
SY A  
200  
150  
100  
50  
V
= POSITIVE PUMPED VOLTAGE = V + 1.8V  
PP  
DD  
V
PP  
V
DD  
V
BIAS  
+IN  
0
–50  
CASCODE  
STAGE  
AND  
–100  
–150  
Q2  
Q1  
–IN  
RAIL-TO-RAIL  
OUTPUT  
OUT  
–200  
–250  
–300  
STAGE  
0
0.5  
1.0  
1.5 2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
4.5  
5.0  
V
CM  
V
SS  
Figure 48. Input Offset Voltage vs. Input Common-Mode Voltage Response  
(Powered by a 5 V Supply; Results of 12 Units Are Displayed)  
Figure 47. Typical Front-End Section of an Op Amp  
with Embedded Charge Pump  
This solution improves the CMRR performance tremendously.  
For instance, if the input varies from rail to rail on a 2.5 V  
supply rail, using a part with a CMRR of 70 dB minimum, an  
input-referred error of 790 µV is introduced. Another part with  
a CMRR of 52 dB minimum generates a 6.3 mV error. The  
AD8505/AD8506/AD8508 CMRR of 90 dB minimum causes only  
a 79 µV error. As with the PSRR error, there are complex ways to  
minimize this error, but the AD8505/AD8506/AD8508 amplifiers  
solve this problem without incurring unnecessary circuitry  
complexity or increased cost.  
Rev. F | Page 15 of 21  
 
 
AD8505/AD8506/AD8508  
Data Sheet  
APPLICATIONS INFORMATION  
The maximum total quiescent currents for the AD8506 (that is,  
half of the AD8506), ADR1581, and ADG733 are 25 µA, 70 µA,  
and 1 µA, respectively, resulting in a total of 96 µA current con-  
sumption (480 µW power consumption) per circuit, which is good  
for a system powered by a battery. If the accuracy and temperature  
drift of the total design need to be improved, then a more accurate  
and low temperature coefficient drift voltage reference and current  
source resistor must be utilized. C3 and C4 are used to improve  
stabilization of U1; R3 and R7 are used to provide some current  
limit into the U1 inverting pin; and R2 and R6 are used to slow  
down the rise time of the N-MOSFET when it turns on. These  
elements may not be needed, or some bench adjustments may  
be required.  
PULSE OXIMETER CURRENT SOURCE  
A pulse oximeter is a noninvasive medical device used for con-  
tinuously measuring the percentage of hemoglobin (Hb) saturated  
with oxygen and the pulse rate of a patient. Hemoglobin that is  
carrying oxygen (oxyhemoglobin) absorbs light in the infrared  
(IR) region of the spectrum; hemoglobin that is not carrying  
oxygen (deoxyhemoglobin) absorbs visible red (R) light. In  
pulse oximetry, a clip containing two LEDs (sometimes more,  
depending on the complexity of the measurement algorithm) and  
the light sensor (photodiode) is placed on the finger or earlobe  
of the patient. One LED emits red light (600 nm to 700 nm) and  
the other emits light in the near IR (800 nm to 900 nm) region.  
The clip is connected by a cable to a processor unit. The LEDs  
are rapidly and sequentially excited by two current sources (one  
for each LED), whose dc levels depend on the LED being driven,  
based on manufacturer requirements, and the detector is synchro-  
nized to capture the light from each LED as it is transmitted  
through the tissue.  
+5V  
C2  
0.1µF  
CONNECT TO RED LED  
+5V  
U2  
ADG733  
C1  
0.1µF  
U1  
1/2  
16  
+5V  
62.5mA  
R2  
AD8506  
V
DD  
S1A 12  
R4  
53.6kΩ  
8
14 D1  
An example design of a dc current source driving the red and  
infrared LEDs is shown in Figure 49. These dc current sources  
allow 62.5 mA and 101 mA to flow through the red and infrared  
LEDs, respectively. First, to prolong battery life, the LEDs are  
driven only when needed. One-third of the ADG733 SPDT  
analog switch is used to disconnect or connect the 1.25 V voltage  
reference from or to each current circuit. When driving the LEDs,  
the ADR1581 1.25 V voltage reference is buffered by half of the  
AD8506; the presence of this voltage on the noninverting input  
forces the output of the op amp (due to the negative feedback)  
to maintain a level that causes its inverting input to track the  
noninverting pin. Therefore, the 1.25 V appears in parallel with  
the 20 Ω R1 or 12.4 Ω R5 current source resistor, creating the flow  
of 62.5 mA or 101 mA current through the red or infrared LED  
as the output of the op amp turns on the Q1 or Q2 N-MOSFET  
IRLMS2002.  
5
6
V
OUT1  
S1B 13  
22Ω  
V+  
7
V
= 1.25V  
REF  
V–  
4
S2A  
S2B  
S3A  
S3B  
2
1
5
3
U3  
Q1  
IRLMS2002  
D2  
15  
ADR1581  
C3  
22pF  
R3  
1kΩ  
4
D3  
R1  
20Ω  
0.1%  
1/4W MIN  
9
RED CURRENT  
SOURCE  
A2  
A1  
A0  
EN  
10  
11  
6
8
GND  
V
SS  
CONNECT TO INFRARED LED  
7
+5V  
U1  
101mA  
1/2  
AD8506  
8
R6  
22Ω  
I_BIT2  
I_BIT1  
I_BIT0  
I_ENA  
3
2
V
OUT2  
V+  
1
V–  
4
Q2  
IRLMS2002  
C4  
22pF  
R7  
1kΩ  
R5  
12.4Ω  
0.1%  
INFRARED CURRENT  
SOURCE  
1/2W MIN  
Figure 49. Pulse Oximeter Red and Infrared Current Sources Using the  
AD8506 as a Buffer to the Voltage Reference Device  
Rev. F | Page 16 of 21  
 
 
 
Data Sheet  
AD8505/AD8506/AD8508  
Another consideration is operation from a 3.3 V battery. Glucose  
signal currents are usually less than 3 μA full scale; therefore,  
the I-to-V converter requires low input bias current. The  
AD8505/AD8506/AD8508 are excellent choices because these  
amplifiers provide 1 pA typical and 10 pA maximum of input  
bias current at ambient temperature.  
FOUR-POLE, LOW-PASS BUTTERWORTH FILTER  
FOR GLUCOSE MONITOR  
There are several methods of glucose monitoring: spectroscopic  
absorption of infrared light in the 2 μm to 2.5 μm range, reflec-  
tance spectrophotometry, and the amperometric type using  
electrochemical strips with glucose oxidase enzymes. The  
amperometric type generally uses three electrodes: a reference  
electrode, a control electrode, and a working electrode. Although  
this is a well established and widely used technique, signal-to-noise  
ratio and repeatability can be improved using the AD8505/  
AD8506/AD8508 amplifiers with their low peak-to-peak voltage  
noise of 2.8 μV from 0.1 Hz to 10 Hz and voltage noise density  
of 45 nV/√Hz at 1 kHz.  
A low-pass filter with a cutoff frequency of 80 Hz to 100 Hz is  
desirable in a glucose meter device to remove extraneous noise;  
this can be a simple two-pole or four-pole Butterworth filter. Low  
power op amps with bandwidths of 50 kHz to 500 kHz are  
adequate. The AD8505/AD8506/AD8508 amplifiers with their  
95 kHz GBP and 15 μA typical current consumption meet these  
requirements. A circuit design of a four-pole Butterworth filter  
(preceded by a one-pole, low-pass filter) is shown in Figure 50.  
With a 3.3 V battery, the total power consumption of this design  
is 297 μW typical at ambient temperature.  
C1  
1000pF  
R1  
5M  
+3.3V  
WORKING  
+3.3V  
U1  
1/2  
AD8506  
8
3
2
CONTROL  
R2  
R3  
U2  
1/2  
AD8506  
+3.3V  
V+  
22.6k22.6kΩ  
8
1
5
6
R4  
R5  
V–  
4
C3  
V+  
22.6k22.6kΩ  
REFERENCE  
8
U1  
1/2  
AD8506  
0.047µF  
7
3
2
V–  
4
C5  
V+  
0.047µF  
1
V
OUT  
V–  
4
C2  
0.1µF  
C4  
0.1µF  
DUPLICATE OF CIRCUIT ABOVE  
Figure 50. A Four-Pole Butterworth Filter That Can Be Used in a Glucose Meter  
Rev. F | Page 17 of 21  
 
 
AD8505/AD8506/AD8508  
OUTLINE DIMENSIONS  
Data Sheet  
3.00  
2.90  
2.80  
5
1
4
3
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
2
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
0.20 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
0.55  
0.45  
0.35  
0.15 MAX  
0.05 MIN  
10°  
5°  
0°  
SEATING  
PLANE  
0.60  
BSC  
0.50 MAX  
0.35 MIN  
COMPLIANT TO JEDEC STANDARDS MO-178-AA  
Figure 51. 5-Lead Small Outline Transistor Package [SOT-23]  
(RJ-5)  
Dimensions shown in millimeters  
0.945  
0.905  
0.865  
2
1
A
B
BALL A1  
IDENTIFIER  
1.425  
1.385  
1.345  
0.80  
REF  
C
0.40  
BSC  
TOP VIEW  
(BALL SIDE DOWN)  
0.40 BSC  
0.415  
0.400  
0.385  
BOTTOM VIEW  
(BALL SIDE UP)  
0.645  
0.600  
0.555  
SIDE VIEW  
COPLANARITY  
0.05  
0.287  
0.267  
0.247  
0.230  
0.200  
0.170  
SEATING  
PLANE  
Figure 52. 6-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-6-7)  
Dimensions shown in millimeters  
Rev. F | Page 18 of 21  
 
Data Sheet  
AD8505/AD8506/AD8508  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 53. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
1.460  
1.420 SQ  
1.380  
3
2
1
A
B
C
BALL A1  
IDENTIFIER  
0.50  
BSC  
TOP VIEW  
(BALL SIDE DOWN)  
BOTTOM VIEW  
(BALL SIDE UP)  
0.380  
0.355  
0.330  
0.650  
0.595  
0.540  
END VIEW  
COPLANARITY  
0.075  
SEATING  
PLANE  
0.270  
0.240  
0.210  
0.340  
0.320  
0.300  
Figure 54. 8-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-8-2)  
Dimensions shown in millimeters  
Rev. F | Page 19 of 21  
AD8505/AD8506/AD8508  
Data Sheet  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
0.20  
0.09  
MAX  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 55. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
0.25  
BSC  
1.50  
1.46  
1.42  
0.25  
BSC  
0.25  
0.25  
BSC  
BSC  
3
2
1
A
BALL A1  
IDENTIFIER  
0.50 BSC  
3.00  
2.96  
2.92  
B
C
D
E
0.50 BSC  
0.50 BSC  
2.00  
BSC  
0.50  
BSC  
TOP VIEW  
(BALL SIDE DOWN)  
BOTTOM VIEW  
(BALL SIDE UP)  
1.00  
BSC  
0.380  
0.355  
0.330  
0.650  
0.595  
0.540  
END VIEW  
COPLANARITY  
0.10  
0.270  
0.240  
0.210  
SEATING  
PLANE  
0.340  
0.320  
0.300  
Figure 56. 14-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-14-1)  
Dimensions shown in millimeters  
Rev. F | Page 20 of 21  
Data Sheet  
AD8505/AD8506/AD8508  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
RJ-5  
RJ-5  
CB-6-7  
CB-6-7  
CB-8-2  
RM-8  
Branding  
A2E  
A2E  
A2H  
A2H  
AD8505ARJZ-R2  
AD8505ARJZ-R7  
AD8505ACBZ-R7  
AD8505ACBZ-RL  
AD8506ACBZ-REEL7  
AD8506ARMZ  
AD8506ARMZ-R7  
AD8506ARMZ-REEL  
AD8508ARUZ  
5-Lead Small Outline Transistor Package [SOT-23]  
5-Lead Small Outline Transistor Package [SOT-23]  
6-Ball Wafer Level Chip Scale Package [WLCSP]  
6-Ball Wafer Level Chip Scale Package [WLCSP]  
8-Ball Wafer Level Chip Scale Package [WLCSP]  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Mini Small Outline Package [MSOP]  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
14-Ball Wafer Level Chip Scale Package [WLCSP]  
A1X  
A1X  
A1X  
A1X  
RM-8  
RM-8  
RU-14  
RU-14  
CB-14-1  
AD8508ARUZ-REEL  
AD8508ACBZ-REEL7  
A27  
1 Z = RoHS Compliant Part.  
©2007–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06900-0-9/17(F)  
Rev. F | Page 21 of 21  
 

相关型号:

AD8505ARJZ-RL

20 µA Maximum, RRIO, Zero Input Crossover Distortion Single Op Amp
ADI

AD8505_16

20 μA Maximum, Rail-to-Rail I/O, Zero Input Crossover Distortion Amplifiers
ADI

AD8506

Micropower, Rail-to-Rail I/O, High Linearity Amplifiers
ADI

AD8506ACBZ

Micropower, Rail-to-Rail I/O, High Linearity Amplifiers
ADI

AD8506ACBZ-REEL

暂无描述
ROCHESTER

AD8506ACBZ-REEL

20 μA Maximum, Rail-to-Rail I/O, Zero Input Crossover Distortion Amplifiers
ADI

AD8506ACBZ-REEL7

DUAL OP-AMP, 3500 uV OFFSET-MAX, 0.095 MHz BAND WIDTH, PBGA8, ROHS COMPLIANT, WLCSP-8
ROCHESTER

AD8506ACBZ-REEL7

20 µA Maximum, RRIO, Zero Input Crossover Distortion Dual Op Amp
ADI

AD8506ARMZ

Micropower, Rail-to-Rail I/O, High Linearity Amplifiers
ADI

AD8506ARMZ

DUAL OP-AMP, 3500 uV OFFSET-MAX, 0.095 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8
ROCHESTER

AD8506ARMZ-R2

20 レA Maximum, Rail-to-Rail I/O, Zero Input Crossover Distortion Amplifiers
ADI

AD8506ARMZ-R2

DUAL OP-AMP, 3500 uV OFFSET-MAX, 0.095 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8
ROCHESTER