AD8542ARMZ-R2 [ADI]

General-Purpose CMOS Rail-to-Rail Amplifiers; 通用CMOS轨到轨放大器
AD8542ARMZ-R2
型号: AD8542ARMZ-R2
厂家: ADI    ADI
描述:

General-Purpose CMOS Rail-to-Rail Amplifiers
通用CMOS轨到轨放大器

运算放大器 放大器电路 光电二极管
文件: 总20页 (文件大小:453K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
General-Purpose CMOS  
Rail-to-Rail Amplifiers  
AD8541/AD8542/AD8544  
FEATURES  
PIN CONFIGURATIONS  
Single-supply operation: 2.7 V to 5.5 V  
Low supply current: 45 μA/amplifier  
Wide bandwidth: 1 MHz  
AD8541  
V+  
OUT A  
V–  
1
2
5
No phase reversal  
Low input currents: 4 pA  
Unity gain stable  
+IN A  
3
–IN A  
4
Rail-to-rail input and output  
Figure 1. 5-Lead SC70 and 5-Lead SOT-23  
(KS and RJ Suffixes)  
APPLICATIONS  
NC  
1
2
8
7
NC  
V+  
ASIC input or output amplifiers  
Sensor interfaces  
AD8541  
–IN A  
Piezoelectric transducer amplifiers  
Medical instrumentation  
Mobile communications  
Audio outputs  
OUT A  
NC  
+IN A  
V–  
3
4
6
5
NC = NO CONNECT  
Figure 2. 8-Lead SOIC  
(R Suffix)  
Portable systems  
GENERAL DESCRIPTION  
AD8542  
OUT A  
8
The AD8541/AD8542/AD8544 are single, dual, and quad rail-  
to-rail input and output, single-supply amplifiers featuring very  
low supply current and 1 MHz bandwidth. All are guaranteed to  
operate from a 2.7 V single supply as well as a 5 V supply. These  
parts provide 1 MHz bandwidth at a low current consumption  
of 45 μA per amplifier.  
1
V+  
–IN A  
+IN A  
V–  
2
3
4
7
6
5
OUT B  
–IN B  
+IN B  
Figure 3. 8-Lead SOIC, 8-Lead MSOP, and 8-Lead TSSOP  
(R, RM, and RU Suffixes)  
Very low input bias currents enable the AD8541/AD8542/AD8544  
to be used for integrators, photodiode amplifiers, piezoelectric  
sensors, and other applications with high source impedance.  
The supply current is only 45 ꢀA per amplifier, ideal for battery  
operation.  
14  
13  
12  
11  
10  
9
OUT D  
–IN D  
OUT A  
–IN A  
1
2
Rail-to-rail inputs and outputs are useful to designers buffering  
ASICs in single-supply systems. The AD8541/AD8542/AD8544  
are optimized to maintain high gains at lower supply voltages,  
making them useful for active filters and gain stages.  
3
4
5
6
7
+IN D  
V–  
+IN A  
V+  
AD8544  
+IN C  
+IN B  
–IN B  
The AD8541/AD8542/AD8544 are specified over the extended  
industrial temperature range (–40°C to +125°C). The AD8541  
is available in 5-lead SOT-23, 5-lead SC70, and 8-lead SOIC  
packages. The AD8542 is available in 8-lead SOIC, 8-lead MSOP,  
and 8-lead TSSOP surface-mount packages. The AD8544 is  
available in 14-lead narrow SOIC and 14-lead TSSOP surface-  
mount packages. All MSOP, SC70, and SOT versions are available  
in tape and reel only.  
–IN C  
8
OUT C  
OUT B  
Figure 4. 14-Lead SOIC and 14-Lead TSSOP  
(R and RU Suffixes)  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
AD8541/AD8542/AD8544  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 13  
Notes on the AD854x Amplifiers............................................. 13  
Applications..................................................................................... 14  
Notch Filter ................................................................................. 14  
Comparator Function................................................................ 14  
Photodiode Application ............................................................ 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Pin Configurations ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
REVISION HISTORY  
1/08—Rev. E to Rev. F  
8/04—Rev. C to Rev. D  
Inserted Figure 21; Renumbered Sequentially.............................. 9  
Changes to Figure 22 Caption......................................................... 9  
Changes to Notch Filter Section, Figure 35, Figure 36, and  
Figure 37 .......................................................................................... 13  
Updated Outline Dimensions....................................................... 16  
Changes to Ordering Guide.............................................................5  
Changes to Figure 3........................................................................ 10  
Updated Outline Dimensions....................................................... 12  
1/03—Rev. B to Rev. C  
Updated Format..................................................................Universal  
Changes to General Description .....................................................1  
Changes to Ordering Guide.............................................................5  
Changes to Outline Dimensions .................................................. 12  
1/07—Rev. D to Rev. E  
Updated Format..................................................................Universal  
Changes to Photodiode Application Section .............................. 14  
Changes to Ordering Guide .......................................................... 17  
Rev. F | Page 2 of 20  
 
AD8541/AD8542/AD8544  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VS = 2.7 V, VCM = 1.35 V, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
1
4
6
7
60  
mV  
mV  
pA  
−40°C ≤ TA ≤ +125°C  
Input Bias Current  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
100  
1000  
30  
pA  
pA  
pA  
Input Offset Current  
IOS  
0.1  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
50  
500  
2.7  
pA  
pA  
V
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 2.7 V  
40  
38  
100  
50  
2
45  
dB  
dB  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ, VO = 0.5 V to 2.2 V  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain  
500  
V/mV  
V/mV  
V/mV  
μV/°C  
fA/°C  
fA/°C  
fA/°C  
Offset Voltage Drift  
Bias Current Drift  
ΔVOS/ΔT  
ΔIB/ΔT  
4
100  
2000  
25  
Offset Current Drift  
OUTPUT CHARACTERISTICS  
Output Voltage High  
ΔIOS/ΔT  
VOH  
VOL  
IL = 1 mA  
−40°C ≤ TA ≤ +125°C  
IL = 1 mA  
−40°C ≤ TA ≤ +125°C  
VOUT = VS − 1 V  
2.575  
2.550  
2.65  
35  
V
V
Output Voltage Low  
Output Current  
100  
125  
mV  
mV  
mA  
mA  
Ω
IOUT  
ISC  
ZOUT  
15  
20  
50  
Closed-Loop Output Impedance  
POWER SUPPLY  
f = 200 kHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.5 V to 6 V  
−40°C ≤ TA ≤ +125°C  
VO = 0 V  
65  
60  
76  
38  
dB  
dB  
μA  
μA  
Supply Current/Amplifier  
55  
75  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
tS  
RL = 100 kΩ  
0.4  
0.75  
5
V/μs  
μs  
Settling Time  
To 0.1% (1 V step)  
Gain Bandwidth Product  
Phase Margin  
GBP  
980  
63  
kHz  
Degrees  
ΦM  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
en  
in  
f = 1 kHz  
f = 10 kHz  
40  
38  
<0.1  
nV/√Hz  
nV/√Hz  
pA/√Hz  
Current Noise Density  
Rev. F | Page 3 of 20  
 
AD8541/AD8542/AD8544  
VS = 3.0 V, VCM = 1.5 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
1
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
6
7
mV  
mV  
pA  
pA  
pA  
pA  
pA  
pA  
−40°C ≤ TA ≤ +125°C  
Input Bias Current  
4
60  
100  
1000  
30  
50  
500  
3
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
0.1  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
0
V
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 3 V  
40  
38  
100  
50  
2
45  
dB  
dB  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ, VO = 0.5 V to 2.2 V  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain  
500  
V/mV  
V/mV  
V/mV  
ꢀV/°C  
fA/°C  
fA/°C  
fA/°C  
Offset Voltage Drift  
Bias Current Drift  
ΔVOS/ΔT  
ΔIB/ΔT  
4
100  
2000  
25  
Offset Current Drift  
OUTPUT CHARACTERISTICS  
Output Voltage High  
ΔIOS/ΔT  
VOH  
IL = 1 mA  
−40°C ≤ TA ≤ +125°C  
IL = 1 mA  
−40°C ≤ TA ≤ +125°C  
VOUT = VS − 1 V  
2.875  
2.850  
2.955  
32  
V
V
Output Voltage Low  
Output Current  
VOL  
100  
125  
mV  
mV  
mA  
mA  
Ω
IOUT  
ISC  
ZOUT  
18  
25  
50  
Closed-Loop Output Impedance  
POWER SUPPLY  
f = 200 kHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.5 V to 6 V  
−40°C ≤ TA ≤ +125°C  
VO = 0 V  
65  
60  
76  
40  
dB  
dB  
μA  
μA  
Supply Current/Amplifier  
60  
75  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
SR  
tS  
RL = 100 kΩ  
To 0.01% (1 V step)  
0.4  
0.8  
5
V/μs  
μs  
Gain Bandwidth Product  
Phase Margin  
GBP  
ΦM  
980  
64  
kHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
en  
in  
f = 1 kHz  
f = 10 kHz  
42  
38  
<0.1  
nV/√Hz  
nV/√Hz  
pA/√Hz  
Current Noise Density  
Rev. F | Page 4 of 20  
AD8541/AD8542/AD8544  
VS = 5.0 V, VCM = 2.5 V, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
1
4
6
7
mV  
mV  
pA  
pA  
pA  
pA  
pA  
pA  
−40°C ≤ TA ≤ +125°C  
Input Bias Current  
60  
100  
1000  
30  
50  
500  
5
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
0.1  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
0
V
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 5 V  
40  
38  
20  
10  
2
48  
40  
dB  
dB  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ, VO = 0.5 V to 2.2 V  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain  
V/mV  
V/mV  
V/mV  
ꢀV/°C  
fA/°C  
fA/°C  
fA/°C  
Offset Voltage Drift  
Bias Current Drift  
ΔVOS/ΔT  
ΔIB/ΔT  
4
100  
2000  
25  
Offset Current Drift  
OUTPUT CHARACTERISTICS  
Output Voltage High  
ΔIOS/ΔT  
VOH  
VOL  
IL = 1 mA  
−40°C ≤ TA ≤ +125°C  
IL = 1 mA  
−40°C ≤ TA ≤ +125°C  
VOUT = VS − 1 V  
4.9  
4.875  
4.965  
25  
V
V
Output Voltage Low  
Output Current  
100  
125  
mV  
mV  
mA  
mA  
Ω
IOUT  
ISC  
ZOUT  
30  
60  
45  
Closed-Loop Output Impedance  
POWER SUPPLY  
f = 200 kHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.5 V to 6 V  
−40°C ≤ TA ≤ +125°C  
VO = 0 V  
65  
60  
76  
45  
dB  
dB  
μA  
μA  
Supply Current/Amplifier  
65  
85  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
RL = 100 kΩ, CL = 200 pF  
1% distortion  
To 0.1% (1 V step)  
0.45  
0.92  
70  
6
V/μs  
kHz  
μs  
Full Power Bandwidth  
Settling Time  
BWP  
tS  
Gain Bandwidth Product  
Phase Margin  
GBP  
ΦM  
1000  
67  
kHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
en  
in  
f = 1 kHz  
f = 10 kHz  
42  
38  
<0.1  
nV/√Hz  
nV/√Hz  
pA/√Hz  
Current Noise Density  
Rev. F | Page 5 of 20  
AD8541/AD8542/AD8544  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
Supply Voltage (VS)  
6 V  
Input Voltage  
GND to VS  
6 V  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
Table 5.  
Package Type  
Differential Input Voltage1  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
θJA  
θJC  
126  
146  
43  
45  
43  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
5-Lead SC70 (KS)  
5-Lead SOT-23 (RJ)  
8-Lead SOIC (R)  
8-Lead MSOP (RM)  
8-Lead TSSOP (RU)  
14-Lead SOIC (R)  
14-Lead TSSOP (RU)  
376  
230  
158  
210  
240  
120  
240  
1 For supplies less than 6 V, the differential input voltage is equal to VS.  
36  
43  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. F | Page 6 of 20  
 
AD8541/AD8542/AD8544  
TYPICAL PERFORMANCE CHARACTERISTICS  
180  
400  
V
V
= 5V  
S
V
V
= 2.7V AND 5V  
S
= 2.5V  
160  
140  
120  
100  
80  
CM  
= 25°C  
= V /2  
S
CM  
350  
300  
250  
T
A
200  
150  
100  
60  
40  
50  
0
20  
0
–4.5 –3.5 –2.5 –1.5  
–0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
INPUT OFFSET VOLTAGE (mV)  
TEMPERATURE (°C)  
Figure 5. Input Offset Voltage Distribution  
Figure 8. Input Bias Current vs. Temperature  
7
6
5
4
3
2
1.0  
0.5  
V
= 2.7V AND 5V  
= V /2  
V
V
= 2.7V AND 5V  
= V /2  
S
S
V
CM  
S
CM  
S
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
1
0
–3.5  
–4.0  
–1  
–55 –35 –15  
5
25  
45  
65  
85  
105 125 145  
–55 –35 –15  
5
25  
45  
65  
85  
105 125 145  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 6. Input Offset Voltage vs. Temperature  
Figure 9. Input Offset Current vs. Temperature  
9
8
7
160  
140  
120  
100  
V
V
= 2.7V AND 5V  
S
V
T
= 2.7V  
= 25°C  
S
A
= V /2  
S
CM  
6
5
80  
60  
40  
20  
0
–PSRR  
4
3
+PSRR  
2
1
0
–20  
–40  
100  
–0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
1k  
10k  
100k  
1M  
10M  
COMMON-MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 7. Input Bias Current vs. Common-Mode Voltage  
Figure 10. Power Supply Rejection vs. Frequency  
Rev. F | Page 7 of 20  
 
AD8541/AD8542/AD8544  
10k  
60  
50  
V
= 2.7V  
= 10k  
= 25°C  
V
T
= 2.7V  
= 25°C  
S
S
R
T
L
A
1k  
100  
10  
A
+OS  
40  
30  
20  
10  
0
SOURCE  
–OS  
SINK  
1
0.1  
0.01  
10  
100  
1k  
10k  
0.001  
0.01  
0.1  
1
10  
100  
CAPACITANCE (pF)  
LOAD CURRENT (mA)  
Figure 11. Output Voltage to Supply Rail vs. Load Current  
Figure 14. Small Signal Overshoot vs. Load Capacitance  
3.0  
2.5  
60  
50  
40  
30  
20  
V
V
R
= 2.7V  
S
V
R
= 2.7V  
= 2kΩ  
= 25°C  
S
= 2.5V p-p  
= 2k  
IN  
L
L
T
A
T
= 25°C  
A
2.0  
1.5  
1.0  
0.5  
0
+OS  
–OS  
10  
0
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
CAPACITANCE (pF)  
Figure 15. Small Signal Overshoot vs. Load Capacitance  
Figure 12. Closed-Loop Output Voltage Swing vs. Frequency  
60  
50  
40  
30  
20  
V
= 2.7V  
S
R
T
=
L
= 25°C  
V
= 2.7V  
= 100k  
= 300pF  
= 1  
A
S
R
C
A
L
L
+OS  
–OS  
V
A
T
= 25°C  
1.35V  
10  
0
10  
100  
1k  
10k  
50mV  
10µs  
CAPACITANCE (pF)  
Figure 16. Small Signal Transient Response  
Figure 13. Small Signal Overshoot vs. Load Capacitance  
Rev. F | Page 8 of 20  
AD8541/AD8542/AD8544  
90  
80  
70  
60  
50  
40  
V
= 2.7V  
= 2kΩ  
= 1  
S
V
T
= 5V  
= 25°C  
S
A
R
A
L
V
A
T
= 25°C  
1.35V  
30  
20  
10  
0
500mV  
10µs  
–10  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 17. Large Signal Transient Response  
Figure 20. Common-Mode Rejection vs. Frequency  
5
4
3
2
1
0
V
= 2.7V  
= NO LOAD  
= 25°C  
S
V
= 5V  
= NO LOAD  
= 25°C  
S
R
T
L
R
T
L
A
A
80  
45  
60  
40  
20  
0
90  
135  
180  
–1  
–2  
–3  
–4  
–5  
1k  
10k  
100k  
1M  
10M  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
FREQUENCY (Hz)  
COMMON-MODE VOLTAGE (V)  
Figure 18. Open-Loop Gain and Phase vs. Frequency  
Figure 21. Input Offset Voltage vs. Common-Mode Voltage  
10k  
1k  
160  
140  
V
T
= 5V  
= 25°C  
V
T
= 5V  
= 25°C  
S
S
A
A
120  
100  
80  
100  
10  
–PSRR  
+PSRR  
SOURCE  
60  
40  
SINK  
1
20  
0
0.1  
0.01  
–20  
–40  
100  
1k  
10k  
100k  
1M  
10M  
0.001  
0.01  
0.1  
1
10  
100  
FREQUENCY (Hz)  
LOAD CURRENT (mA)  
Figure 19. Power Supply Rejection Ratio vs. Frequency  
Figure 22. Output Voltage to Supply Rail vs. Load Current  
Rev. F | Page 9 of 20  
AD8541/AD8542/AD8544  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
60  
50  
40  
30  
20  
10  
0
V
V
R
= 5V  
V
= 5V  
= 2k  
= 25°C  
S
S
= 4.9V p-p  
= NO LOAD  
= 25°C  
R
T
IN  
L
L
A
T
A
+OS  
–OS  
10  
100  
1k  
10k  
1k  
10k  
100k  
1M  
10M  
CAPACITANCE (pF)  
FREQUENCY (Hz)  
Figure 23. Closed-Loop Output Voltage Swing vs. Frequency,  
Figure 26. Small Signal Overshoot vs. Load Capacitance  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
60  
50  
V
V
R
= 5V  
S
V
R
= 5V  
S
= 4.9V p-p  
= 2kΩ  
IN  
=
L
L
T
= 25°C  
A
T
= 25°C  
A
40  
30  
20  
10  
0
+OS  
–OS  
1.5  
1.0  
0.5  
0
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
CAPACITANCE (pF)  
Figure 24. Closed-Loop Output Voltage Swing vs. Frequency  
Figure 27. Small Signal Overshoot vs. Load Capacitance  
60  
50  
40  
30  
20  
10  
0
V
= 5V  
V
= 5V  
= 10kΩ  
= 25°C  
S
S
R
C
A
= 100k  
= 300pF  
= 1  
R
T
L
L
L
A
V
A
T
= 25°C  
+OS  
2.5V  
–OS  
50mV  
10µs  
10  
100  
1k  
10k  
CAPACITANCE (pF)  
Figure 25. Small Signal Overshoot vs. Load Capacitance  
Figure 28. Small Signal Transient Response  
Rev. F | Page 10 of 20  
AD8541/AD8542/AD8544  
V
= 5V  
V
= 5V  
S
S
R
A
T
= 10kΩ  
= 1  
= 25°C  
R
A
T
= 2kΩ  
= 1  
= 25°C  
L
V
L
V
V
IN  
A
A
V
OUT  
2.5V  
2.5V  
1V  
10µs  
1V  
20µs  
Figure 29. Large Signal Transient Response  
Figure 31. No Phase Reversal  
60  
50  
40  
30  
20  
10  
0
V
R
= 5V  
= NO LOAD  
= 25°C  
S
T
= 25°C  
A
L
T
A
80  
60  
45  
40  
20  
0
90  
135  
180  
1k  
10k  
100k  
1M  
10M  
0
1
2
3
4
5
6
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
Figure 30. Open-Loop Gain and Phase vs. Frequency  
Figure 32. Supply Current per Amplifier vs. Supply Voltage  
Rev. F | Page 11 of 20  
AD8541/AD8542/AD8544  
55  
V
= 5V  
S
MARKER SET @ 10kHz  
MARKER READING: 37.6nV/ Hz  
50  
T
= 25°C  
V
= 5V  
A
S
45  
40  
35  
30  
25  
20  
V
= 2.7V  
S
0
5
10  
15  
20  
25  
–55 –35 –15  
5
25  
45  
65  
85  
105 125 145  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
Figure 35. Voltage Noise  
Figure 33. Supply Current per Amplifier vs. Temperature  
1000  
900  
V
= 2.7V AND 5V  
= 1  
= 25°C  
S
A
V
A
T
800  
700  
600  
500  
400  
300  
200  
100  
0
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 34. Closed-Loop Output Impedance vs. Frequency  
Rev. F | Page 12 of 20  
AD8541/AD8542/AD8544  
THEORY OF OPERATION  
Higher Output Current  
NOTES ON THE AD854X AMPLIFIERS  
At 5 V single supply, the short-circuit current is typically 60 μA.  
Even 1 V from the supply rail, the AD854x amplifiers can provide a  
30 mA output current, sourcing, or sinking.  
The AD8541/AD8542/AD8544 amplifiers are improved  
performance, general-purpose operational amplifiers.  
Performance has been improved over previous amplifiers in  
several ways, including lower supply current for 1 MHz gain  
bandwidth, higher output current, and better performance at  
lower voltages.  
Sourcing and sinking are strong at lower voltages, with 15 mA  
available at 2.7 V and 18 mA at 3.0 V. For even higher output  
currents, see the AD8531/AD8532/AD8534 parts for output  
currents to 250 mA. Information on these parts is available  
from your Analog Devices, Inc. representative, and data sheets  
are available at www.analog.com.  
Lower Supply Current for 1 MHz Gain Bandwidth  
The AD854x series typically uses 45 μA of current per amplifier,  
which is much less than the 200 μA to 700 μA used in earlier  
generation parts with similar performance. This makes the  
AD854x series a good choice for upgrading portable designs  
for longer battery life. Alternatively, additional functions and  
performance can be added at the same current drain.  
Better Performance at Lower Voltages  
The AD854x family of parts was designed to provide better ac  
performance at 3.0 V and 2.7 V than previously available parts.  
Typical gain bandwidth product is close to 1 MHz at 2.7 V.  
Voltage gain at 2.7 V and 3.0 V is typically 500,000. Phase  
margin is typically over 60°C, making the part easy to use.  
Rev. F | Page 13 of 20  
 
AD8541/AD8542/AD8544  
APPLICATIONS  
Figure 38 is an example of the AD8544 in a notch filter circuit. The  
frequency dependent negative resistance (FDNR) notch filter has  
fewer critical matching requirements than the twin-T notch, where  
as the Q of the FDNR is directly proportional to a single resistor R1.  
Although matching component values is still important, it is also  
much easier and/or less expensive to accomplish in the FDNR  
circuit. For example, the twin-T notch uses three capacitors  
with two unique values, whereas the FDNR circuit uses only  
two capacitors, which may be of the same value. U3 is simply a  
buffer that is added to lower the output impedance of the circuit.  
NOTCH FILTER  
The AD854x have very high open-loop gain (especially with a  
supply voltage below 4 V), which makes it useful for active filters of  
all types. For example, Figure 36 illustrates the AD8542 in the  
classic twin-T notch filter design. The twin-T notch is desired  
for simplicity, low output impedance, and minimal use of op  
amps. In fact, this notch filter can be designed with only one op  
amp if Q adjustment is not required. Simply remove U2 as  
illustrated in Figure 37. However, a major drawback to this  
circuit topology is ensuring that all the Rs and Cs closely match.  
The components must closely match or notch frequency offset  
and drift causes the circuit to no longer attenuate at the ideal  
notch frequency. To achieve desired performance, 1% or better  
component tolerances or special component screens are usually  
required. One method to desensitize the circuit-to-component  
mismatch is to increase R2 with respect to R1, which lowers Q.  
A lower Q increases attenuation over a wider frequency range  
but reduces attenuation at the peak notch frequency.  
1/4 AD8544  
R1  
9
Q ADJUST  
8
VOUT  
U3  
200  
10  
C1  
1µF  
VIN  
2.5V  
REF  
R
2.61kΩ  
4
1/4 AD8544  
3
2
C2  
1µF  
1
1/4 AD8544  
U1  
6
11  
7
U2  
R
5
2.61kΩ  
5.0V  
R
R
R
8
100kΩ  
100kΩ  
3
2
2.61kΩ  
1/2 AD8542  
1
f =  
VOUT  
U1  
2π LC1  
VIN  
2.5V  
2C  
53.6µF  
1
1/4 AD8544  
R
13  
4
2
L = R C2  
2.61kΩ  
14  
U4  
NC  
12  
REF  
R/2  
50kΩ  
2.5V  
REF  
VIN  
2.5V  
R2  
2.5kΩ  
REF  
C
C
1/2 AD8542  
26.7nF  
26.7nF  
5
6
Figure 38. FDNR 60 Hz Notch Filter with Output Buffer  
1
7
f0  
f0  
=
=
U2  
2πRC  
COMPARATOR FUNCTION  
R1  
97.5kΩ  
1
R1  
R1 + R2  
A comparator function is a common application for a spare op  
amp in a quad package. Figure 39 illustrates ¼ of the AD8544 as a  
comparator in a standard overload detection application. Unlike  
many op amps, the AD854x family can double as comparators  
because this op amp family has a rail-to-rail differential input  
range, rail-to-rail output, and a great speed vs. power ratio.  
R2 is used to introduce hysteresis. The AD854x, when used as  
comparators, have 5 μs propagation delay at 5 V and 5 μs  
overload recovery time.  
4
1 –  
2.5V  
REF  
Figure 36. 60 Hz Twin-T Notch Filter, Q = 10  
5.0V  
7
R
R
3
2
AD8541  
VOUT  
U1  
6
VIN  
2.5V  
4
2C  
REF  
R2  
1MΩ  
R1  
1kΩ  
R/2  
VOUT  
VIN  
2.5V  
C
C
1/4 AD8541  
Figure 37. 60 Hz Twin-T Notch Filter, Q = ∞ (Ideal)  
2.5V  
DC  
REF  
Figure 39. AD854x Comparator Application—Overload Detector  
Rev. F | Page 14 of 20  
 
 
 
 
 
AD8541/AD8542/AD8544  
C
100pF  
PHOTODIODE APPLICATION  
The AD854x family has very high impedance with an input bias  
current typically around 4 pA. This characteristic allows the  
AD854x op amps to be used in photodiode applications and  
other applications that require high input impedance. Note that  
the AD854x has significant voltage offset that can be removed  
by capacitive coupling or software calibration.  
R
10MΩ  
V+  
OR  
7
2
6
VOUT  
3
4 AD8541  
D
Figure 40 illustrates a photodiode or current measurement  
application. The feedback resistor is limited to 10 MΩ to avoid  
excessive output offset. In addition, a resistor is not needed on  
the noninverting input to cancel bias current offset because the  
bias current-related output offset is not significant when compared  
to the voltage offset contribution. For best performance, follow the  
standard high impedance layout techniques, which include the  
following:  
2.5V  
2.5V  
REF  
REF  
Figure 40. High Input Impedance Application—Photodiode Amplifier  
Shielding the circuit.  
Cleaning the circuit board.  
Putting a trace connected to the noninverting input around  
the inverting input.  
Using separate analog and digital power supplies.  
Rev. F | Page 15 of 20  
 
 
AD8541/AD8542/AD8544  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
2.90 BSC  
5
4
2.80 BSC  
14  
8
7
1.60 BSC  
4.50  
4.40  
4.30  
1
2
3
6.40  
BSC  
PIN 1  
0.95 BSC  
1
1.90  
BSC  
1.30  
1.15  
0.90  
PIN 1  
0.65  
BSC  
1.05  
1.00  
0.80  
0.20  
0.09  
1.45 MAX  
0.22  
0.08  
1.20  
MAX  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
10°  
5°  
0°  
0.30  
0.19  
0.15 MAX  
SEATING  
PLANE  
0.50  
0.30  
0.60  
0.45  
0.30  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
COMPLIANT TO JEDEC STANDARDS MO-178-AA  
Figure 41. 5-Lead Small Outline Transistor Package [SOT-23]  
Figure 42. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
(RJ-5)  
Dimensions shown in millimeters  
Dimensions shown in millimeters  
8.75 (0.3445)  
8.55 (0.3366)  
2.20  
2.00  
1.80  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.35  
1.25  
1.15  
2.40  
2.10  
1.80  
5
1
4
3
2
PIN 1  
1.00  
0.90  
0.70  
1.27 (0.0500)  
0.50 (0.0197)  
0.25 (0.0098)  
0.65 BSC  
45°  
BSC  
0.40  
0.10  
1.75 (0.0689)  
1.35 (0.0531)  
1.10  
0.80  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.46  
0.36  
0.26  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
0.30  
0.15  
0.22  
0.08  
0.10 M  
AX  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
COMPLIANT TO JEDEC STANDARDS MO-203-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 43. 5-Lead Thin Shrink Small Outline Transistor Package [SC70]  
Figure 44. 14-Lead Standard Small Outline Package [SOIC_N]  
(KS-5)  
Narrow Body  
(R-14)  
Dimensions shown in millimeters  
Dimensions shown in millimeters and (inches)  
Rev. F | Page 16 of 20  
 
AD8541/AD8542/AD8544  
3.20  
3.00  
2.80  
3.10  
3.00  
2.90  
8
5
4
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65 BSC  
PIN 1  
0.95  
0.85  
0.75  
0.65 BSC  
1.10 MAX  
0.15  
0.05  
1.20  
0.80  
0.60  
0.40  
MAX  
8°  
0°  
0.15  
0.00  
8°  
0°  
0.38  
0.22  
0.23  
0.08  
0.75  
0.60  
0.45  
0.30  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.20  
0.09  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AA  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 45. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Figure 46. 8-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-8)  
Dimensions shown in millimeters  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
45°  
1.27 (0.0500)  
BSC  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0099)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
1.27 (0.0500)  
0.10  
0.25 (0.0098)  
0.40 (0.0157)  
SEATING  
0.17 (0.0067)  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 47. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. F | Page 17 of 20  
AD8541/AD8542/AD8544  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
Package Option  
KS-5  
KS-5  
KS-5  
KS-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
Branding  
A4B  
A4B  
A12  
A12  
A4A  
A4A  
A4A  
AD8541AKS-R2  
AD8541AKS-REEL7  
AD8541AKSZ-R21  
AD8541AKSZ-REEL71  
AD8541ART-R2  
AD8541ART-REEL  
AD8541ART-REEL7  
AD8541ARTZ-R21  
AD8541ARTZ-REEL1  
AD8541ARTZ-REEL71  
AD8541AR  
AD8541AR-REEL  
AD8541AR-REEL7  
AD8541ARZ1  
AD8541ARZ-REEL1  
AD8541ARZ-REEL71  
AD8542AR  
AD8542AR-REEL  
AD8542AR-REEL7  
AD8542ARZ1  
AD8542ARZ-REEL1  
AD8542ARZ-REEL71  
AD8542ARM-R2  
AD8542ARM-REEL  
AD8542ARMZ-R21  
AD8542ARMZ-REEL1  
AD8542ARU  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead TSSOP  
8-Lead TSSOP  
8-Lead TSSOP  
8-Lead TSSOP  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
A4A#  
A4A#  
A4A#  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RU-8  
RU-8  
RU-8  
RU-8  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
RU-14  
RU-14  
RU-14  
RU-14  
AVA  
AVA  
AVA#  
AVA#  
AD8542ARU-REEL  
AD8542ARUZ1  
AD8542ARUZ-REEL1  
AD8544AR  
AD8544AR-REEL  
AD8544AR-REEL7  
AD8544ARZ1  
AD8544ARZ-REEL1  
AD8544ARZ-REEL71  
AD8544ARU  
AD8544ARU-REEL  
AD8544ARUZ1  
AD8544ARUZ-REEL1  
1 Z = RoHS Compliant Part; # denotes RoHS compliant product may be top or bottom marked.  
Rev. F | Page 18 of 20  
 
 
AD8541/AD8542/AD8544  
NOTES  
Rev. F | Page 19 of 20  
AD8541/AD8542/AD8544  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00935-0-1/08(F)  
Rev. F | Page 20 of 20  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY