AD8557ACP-R2 [ADI]

IC SPECIALTY ANALOG CIRCUIT, QCC16, 4 X 4 MM, MO-220VGGC, LFCSP-16, Analog IC:Other;
AD8557ACP-R2
型号: AD8557ACP-R2
厂家: ADI    ADI
描述:

IC SPECIALTY ANALOG CIRCUIT, QCC16, 4 X 4 MM, MO-220VGGC, LFCSP-16, Analog IC:Other

文件: 总24页 (文件大小:486K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Digitally Programmable  
Sensor Signal Amplifier  
AD8557  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VDD  
Very low offset voltage: 12 μV maximum over temperature  
Very low input offset voltage drift: 65 nV/°C maximum  
High CMRR: 96 dB minimum  
Digitally programmable gain and output offset voltage  
Gain range from 28 to 1300  
Qualified for automotive applications  
Single-wire serial interface  
Stable with any capacitive load  
VCLAMP  
VDD  
A4  
P3  
VNEG  
R4  
R1  
R6  
A1  
VSS  
VDD  
A3  
VSS  
P1  
R3  
P2  
R2  
VOUT  
SOIC_N and LFCSP_VQ packages  
2.7 V to 5.5 V operation  
VDD  
A2  
VSS  
R7  
R5  
APPLICATIONS  
VPOS  
P4  
VDD  
DIGIN  
VSS  
Automotive sensors  
VSS  
Pressure and position sensors  
Precision current sensing  
Thermocouple amplifiers  
Industrial weigh scales  
Strain gages  
Figure 1.  
GENERAL DESCRIPTION  
The AD8557 is a zero drift, sensor signal amplifier with digitally  
programmable gain and output offset. Designed to easily and  
accurately convert variable pressure sensor and strain bridge  
outputs to a well-defined output voltage range, the AD8557  
accurately amplifies many other differential or single-ended  
sensor outputs. The AD8557 uses the Analog Devices, Inc.  
patented low noise auto-zero and DigiTrim® technologies to  
create an accurate and flexible signal processing solution in a  
compact footprint.  
also includes a pull-up current source at the input pins and a  
pull-down current source at the VCLAMP pin. Output  
clamping set via an external reference voltage allows the  
AD8557 to drive lower voltage ADCs safely and accurately.  
When used in conjunction with an ADC referenced to the same  
supply, the system accuracy becomes immune to normal supply  
voltage variations. Output offset voltage can be adjusted with a  
resolution of better than 0.4% of the difference between VDD  
and VSS. A lockout trim after gain and offset adjustment  
further ensures field reliability.  
Gain is digitally programmable in a wide range from 28 to 1300  
through a serial data interface. Gain adjustment can be fully  
simulated in circuit and then permanently programmed with  
reliable polyfuse technology. Output offset voltage is also  
digitally programmable and is ratiometric to the supply voltage.  
The AD8557 is fully specified from −40°C to +125°C.  
Operating from single-supply voltages of 2.7 V to 5.5 V, the  
AD8557 is offered in an 8-lead SOIC_N, and a 4 mm × 4 mm,  
16-lead LFCSP_VQ.  
In addition to extremely low input offset voltage and input  
offset voltage drift and very high dc and ac CMRR, the AD8557  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2007–2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD8557  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 14  
Gain Values ................................................................................. 15  
Open Wire Fault Detection....................................................... 16  
Shorted Wire Fault Detection................................................... 16  
Floating VPOS, VNEG, or VCLAMP Fault Detection ......... 16  
Device Programming................................................................. 16  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 22  
Automotive Products................................................................. 22  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 7  
REVISION HISTORY  
6/11—Rev. B to Rev. C  
Added EPAD Note to Figure 3 and Table 5................................... 6  
Changes to Open Wire Fault Detection Section and Table 8 ... 16  
7/10—Rev. A to Rev. B  
Changes to Features Section and Figure 1..................................... 1  
Changes to Figure 45...................................................................... 14  
Changes to Simulation Mode Section and Programming  
Mode Section................................................................................... 18  
Changes to Ordering Guide .......................................................... 22  
Added Automotive Products Section........................................... 22  
1/08—Rev. 0 to Rev. A  
Changes to Theory of Operation Section.................................... 14  
Changes to Determining Optimal Gain and Offset  
Codes Section.................................................................................. 20  
5/07—Revision 0: Initial Version  
Rev. C | Page 2 of 24  
 
AD8557  
SPECIFICATIONS  
VDD = 5.0 V, VSS = 0.0 V, VCM = 2.5 V, VOUT = 2.5 V, gain = 28, TA = −40°C to +125°C, unless otherwise specified.  
Table 1.  
Parameter  
Symbol Conditions  
Min  
Typ  
Max  
Unit  
INPUT STAGE  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Offset Current  
Input Voltage Range  
Common-Mode Rejection Ratio  
VOS  
TCVOS  
IB  
2
12  
65  
25  
4
μV  
nV/°C  
nA  
nA  
V
dB  
dB  
ppm  
ppm  
%
27  
18  
1
10  
IOS  
0.6  
75  
96  
3.8  
CMRR  
VCM = 0.9 V to 3.6 V, AV = 28  
VCM = 0.9 V to 3.6 V, AV = 1300  
VOUT = 0.2 V to 3.4 V  
85  
112  
20  
Linearity  
VOUT = 0.2 V to 4.8 V  
1000  
Differential Gain Accuracy  
Differential Gain Accuracy  
Differential Gain Temperature Coefficient  
DAC  
Second stage gain = 10 to 70  
Second stage gain = 100 to 250  
Second stage gain = 10 to 250  
1.6  
2.5  
40  
%
15  
ppm/°C  
Accuracy  
Ratiometricity  
Output Offset  
Temperature Coefficient  
VCLAMP  
Offset codes = 8 to 248  
Offset codes = 8 to 248  
Offset codes = 8 to 248  
0.7  
50  
5
0.8  
%
ppm  
mV  
35  
80  
20  
ppm FS/°C  
Clamp Input Bias Current  
Clamp Input Voltage Range  
OUTPUT STAGE  
ICLAMP 1.25 V to 5.0 V  
200  
nA  
V
1.25  
5.0  
−25  
30  
Short-Circuit Current  
ISC  
Source  
−45  
55  
mA  
mA  
mV  
V
ISC  
Sink  
40  
Output Voltage, Low  
Output Voltage, High  
POWER SUPPLY  
VOL  
VOH  
RL = 10 kΩ to 5 V  
RL = 10 kΩ to 0 V  
4.94  
Supply Current  
ISY  
VPOS = VNEG = 2.5 V,  
VDAC code = 128, VOUT = 2.5 V  
VDD = 2.7 V to 5.5 V  
1.8  
mA  
dB  
Power Supply Rejection Ratio  
DYNAMIC PERFORMANCE  
Gain Bandwidth Product  
PSRR  
105  
125  
GBP  
ts  
First gain stage, TA = 25°C  
Second gain stage, TA = 25°C  
To 0.1%, 4 V output step  
2
8
8
MHz  
MHz  
µs  
Settling Time  
NOISE PERFORMANCE  
Input Referred Noise  
Low Frequency Noise  
Total Harmonic Distortion  
f = 1 kHz, TA = 25°C  
f = 0.1 Hz to 10 Hz, TA = 25°C  
VIN = 16.75 mV rms, f = 1 kHz,  
TA = 25°C  
32  
0.5  
−100  
nV/√Hz  
µV p-p  
dB  
en p-p  
THD  
DIGITAL INTERFACE  
Input Current  
DIGIN Pulse Width to Load 0  
DIGIN Pulse Width to Load 1  
Time Between Pulses at DIGIN  
DIGIN Low  
DIGIN High  
DIGOUT Logic 0  
DIGOUT Logic 1  
2
µA  
µs  
µs  
µs  
V
V
V
V
tw0  
tw1  
tws  
TA = 25°C  
TA = 25°C  
TA = 25°C  
TA = 25°C  
TA = 25°C  
TA = 25°C  
TA = 25°C  
0.05  
50  
10  
10  
0.2 × VDD  
0.2 × VDD  
0.8 × VDD  
0.8 × VDD  
Rev. C | Page 3 of 24  
 
 
AD8557  
VDD = 2.7 V, VSS = 0.0 V, VCM = 1.35 V, VOUT = 1.35 V, gain = 28, TA = −40°C to +125°C, unless otherwise specified.  
Table 2.  
Parameter  
Symbol Conditions  
Min  
Typ  
Max  
Unit  
INPUT STAGE  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Offset Current  
Input Voltage Range  
Common-Mode Rejection Ratio  
VOS  
TCVOS  
IB  
2
12  
65  
25  
4
µV  
nV/°C  
nA  
nA  
V
dB  
dB  
ppm  
ppm  
%
10  
18  
1
IOS  
0.6  
71  
96  
1.5  
CMRR  
VCM = 0.9 V to 1.5 V, AV = 28  
VCM = 0.9 V to 1.5 V, AV = 1300  
VOUT = 0.2 V to 1.8 V  
VOUT = 0.2 V to 2.5 V  
Second stage gain = 10 to 250  
Second stage gain = 10 to 250  
82  
112  
20  
Linearity  
1000  
Differential Gain Accuracy  
Differential Gain Temperature Coefficient  
DAC  
1.6  
40  
15  
ppm/°C  
Accuracy  
Ratiometricity  
Output Offset  
Temperature Coefficient  
VCLAMP  
Offset codes = 8 to 248  
Offset codes = 8 to 248  
Offset codes = 8 to 248  
0.7  
50  
5
0.8  
%
ppm  
mV  
35  
80  
20  
ppm FS/°C  
Input Bias Current  
Input Voltage Range  
OUTPUT STAGE  
ICLAMP 1.25 V to 2.7 V  
200  
nA  
V
1.25  
2.7  
−7  
30  
Short-Circuit Current  
ISC  
Source  
−12  
25  
mA  
mA  
mV  
V
Sink  
15  
Output Voltage, Low  
Output Voltage, High  
POWER SUPPLY  
VOL  
VOH  
RL = 10 kΩ to 2.7 V  
RL = 10 kΩ to 0 V  
2.64  
Supply Current  
ISY  
VPOS = VNEG = 1.35 V,  
VDAC code = 128, VOUT = 1.35 V  
VDD = 2.7 V to 5.5 V  
1.8  
mA  
dB  
Power Supply Rejection Ratio  
DYNAMIC PERFORMANCE  
Gain Bandwidth Product  
PSRR  
105  
125  
GBP  
ts  
First gain stage, TA = 25°C  
Second gain stage, TA = 25°C  
To 0.1%, 2 V output step,  
TA = 25°C  
2
8
8
MHz  
MHz  
µs  
Settling Time  
NOISE PERFORMANCE  
Input Referred Noise  
Low Frequency Noise  
Total Harmonic Distortion  
DIGITAL INTERFACE  
Input Current  
DIGIN Pulse Width to Load 0  
DIGIN Pulse Width to Load 1  
Time Between Pulses at DIGIN  
DIGIN Low  
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
VIN = 16.75 mV rms, f = 1 kHz  
32  
0.5  
−100  
nV/√Hz  
µV p-p  
dB  
en p-p  
THD  
2
µA  
µs  
µs  
µs  
V
V
V
V
tw0  
tw1  
tws  
TA = 25°C  
TA = 25°C  
TA = 25°C  
TA = 25°C  
TA = 25°C  
TA = 25°C  
TA = 25°C  
0.05  
50  
10  
10  
0.2 × VDD  
0.2 × VDD  
DIGIN High  
DIGOUT Logic 0  
DIGOUT Logic 1  
0.8 × VDD  
0.8 × VDD  
Rev. C | Page 4 of 24  
AD8557  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for LFCSP_VQ packages.  
Parameter  
Rating  
Supply Voltage  
Input Voltage  
Differential Input Voltage1  
Output Short-Circuit Duration to  
VSS or VDD  
ESD (Human Body Model)  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature  
6 V  
VSS − 0.3 V to VDD + 0.3 V  
6.0 V  
Indefinite  
Table 4. Thermal Resistance  
Package Type  
θJA  
158  
44  
θJC  
Unit  
°C/W  
°C/W  
8-Lead SOIC_N (R)  
16-Lead LFCSP_VQ (CP)  
43  
31.5  
2000 V  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
ESD CAUTION  
1 Differential input voltage is limited to 5.0 V or the supply voltage,  
whichever is less.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. C | Page 5 of 24  
 
 
 
 
AD8557  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
12 VOUT  
11 NC  
NC  
DIGOUT  
NC  
1
2
3
4
PIN 1  
INDICATOR  
AD8557  
10 VCLAMP  
TOP VIEW  
DIGIN  
9 NC  
(Not to Scale)  
VDD  
DIGOUT  
DIGIN  
1
2
3
4
8
7
6
5
VSS  
AD8557  
VOUT  
VCLAMP  
VPOS  
NOTES  
TOP VIEW  
(Not to Scale)  
1. THE EXPOSED PAD SHOULD BE CONNECTED  
TO AVSS (PIN 14) OR LEFT UNCONNECTED.  
2. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.  
VNEG  
Figure 2. 8-Lead SOIC_N Pin Configuration  
Figure 3. 16-Lead LFCSP_VQ Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
SOIC_N LFCSP_VQ  
Mnemonic  
VDD  
Description  
1
Positive Supply Voltage.  
2
3
4
5
6
7
8
2
4
6
8
10  
12  
DIGOUT  
DIGIN  
VNEG  
VPOS  
VCLAMP  
VOUT  
In read mode, this pin functions as a digital output.  
Digital Input.  
Negative Amplifier Input (Inverting Input).  
Positive Amplifier Input (Noninverting Input).  
Set Clamp Voltage at Output.  
Amplifier Output.  
Negative Supply Voltage.  
VSS  
13, 14  
15, 16  
DVSS, AVSS  
DVDD, AVDD  
Negative Supply Voltage.  
Positive Supply Voltage.  
1, 3, 5, 7, 9, 11 NC  
EPAD EPAD  
Do Not Connect.  
Exposed Pad. The exposed pad should be connected to AVSS (Pin 14) or left unconnected.  
Rev. C | Page 6 of 24  
 
AD8557  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
180  
160  
140  
120  
100  
80  
V
= 5V  
SY  
15  
10  
+125°C  
5
+25°C  
0
5  
60  
–40°C  
10  
15  
20  
40  
20  
0
0
1
2
3
4
5
10 8  
6  
4  
2  
0
2
4
6
8
10  
COMMON-MODE VOLTAGE (V)  
INPUT OFFSET VOLTAGE (µV)  
Figure 7. Input Offset Voltage Distribution, VSY = 2.7 V  
Figure 4. Input Offset Voltage vs. Common-Mode Voltage, VSY = 5 V  
10  
15  
10  
5
V
= 2.7V  
SY  
8
6
4
+125°C  
2
5V  
0
0
+25°C  
2  
4  
6  
8  
5  
10  
15  
2.7V  
–40°C  
1.5  
10  
0
0.5  
1.0  
2.0  
2.5  
50  
25  
0
25  
50  
75  
100  
125  
150  
175  
COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 5. Input Offset Voltage vs. Common-Mode Voltage, VSY = 2.7 V  
Figure 8. Input Offset Voltage vs. Temperature  
180  
160  
140  
120  
100  
80  
30  
25  
20  
15  
10  
5
60  
40  
20  
0
0
10 8  
6  
4  
2  
0
2
4
6
8
10  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
(nV/°C)  
T
V
OS  
INPUT OFFSET VOLTAGE (µV )  
C
Figure 9. TCVOS at VSY = 5 V, −40°C ≤TA ≤ +125°C  
Figure 6. Input Offset Voltage Distribution, VSY = 5 V  
Rev. C | Page 7 of 24  
 
AD8557  
0.5  
0.3  
35  
30  
25  
20  
15  
10  
5
0.1  
–0.1  
–0.3  
–0.5  
0
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
(nV/°C)  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
175  
TEMPERATURE (°C)  
T
V
OS  
C
Figure 10. TCVOS at VSY = 2.7 V, −40°C ≤ TA ≤ +125°C  
Figure 13. Input Offset Current vs. Temperature  
20  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–40°C  
18  
16  
+125°C  
I 5V  
B
+25°C  
+I 5V  
B
14  
12  
V
= 5V  
SY  
1
2
3
4
50  
25  
0
25  
50  
75  
100  
125  
150  
175  
0
5
TEMPERATURE (°C)  
DIGITAL INPUT VOLTAGE (V)  
Figure 11. Input Bias Current at VPOS, VNEG vs. Temperature,  
VSY = 5 V, 2.7 V  
Figure 14. Digital Input Current vs. Digital Input Voltage (Pin 4)  
100  
10  
1
1000  
+25°C  
+125°C  
100  
–40°C  
V
= 5V  
SY  
0.1  
10  
1
2
3
4
0
1
2
3
4
5
0
5
COMMON-MODE VOLTAGE (V)  
VCLAMP VOLTAGE (V)  
Figure 12. Input Bias Current at VPOS, VNEG  
vs. Common-Mode Voltage, TA = 25°C  
Figure 15. VCLAMP Current over Temperature at VSY = 5 V  
vs. VCLAMP Voltage  
Rev. C | Page 8 of 24  
AD8557  
1000  
100  
10  
120  
100  
80  
60  
40  
20  
0
+125°C  
+25°C  
HIGH GAIN +1300  
LOW GAIN +28  
–40°C  
V
= 2.7V  
SY  
0.5  
1.0  
1.5  
2.0  
2.5  
0
3.0  
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
VCLAMP VOLTAGE (V)  
Figure 16. VCLAMP Current over Temperature at VSY = 2.7 V  
vs. VCLAMP Voltage  
Figure 19. CMRR vs. Frequency, VSY = 5 V  
2.0  
1.5  
1.0  
0.5  
0
120  
100  
80  
60  
40  
20  
0
HIGH GAIN +1300  
LOW GAIN +28  
0
1
2
3
4
5
6
0.1  
1
10  
100  
1000  
V
(V)  
FREQUENCY (kHz)  
SY  
Figure 20. CMRR vs. Frequency, VSY = 2.7 V  
Figure 17. Supply Current (ISY) vs. Supply Voltage  
150  
130  
110  
90  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
CMRR GAIN +28  
CMRR GAIN +448  
I
5V  
SY  
CMRR GAIN +1300  
I
2.7V  
SY  
70  
50  
30  
10  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
175  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
175  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 21. CMRR vs. Temperature at Different Gains, VSY = 5 V  
Figure 18. Supply Current (ISY) vs. Temperature  
Rev. C | Page 9 of 24  
AD8557  
140  
120  
100  
80  
CMRR GAIN +28  
CMRR GAIN +448  
CHANNEL 1  
16.6mV p-p  
CMRR GAIN +1300  
1
60  
40  
20  
0
–50  
–25  
0
25  
50  
75  
100  
125  
150  
175  
CH1 10.0mV  
M 1.00s  
A
CH1  
–2.80mV  
TEMPERATURE (°C)  
Figure 25. Low Frequency Input Voltage Noise 0.1 Hz to 10 Hz, VSY = 2.7 V  
Figure 22. CMRR vs. Temperature at Different Gains, VSY = 2.7 V  
REF 502µV  
5dB/DIV  
MARKER 20 000.0Hz  
RANGE 12.5mV  
1.89µV/√Hz  
70  
V
= 5V  
SY  
60  
50  
HIGH GAIN +1300 62.28dB  
LOW GAIN +28 28.9dB  
40  
30  
20  
10  
0
–10  
–20  
0.1  
1
10  
100  
1k  
10k  
FREQUENCY (kHz)  
START .0 Hz  
RBW 100Hz  
STOP 1 000 000.0Hz  
ST 900s  
VBW 300Hz  
Figure 23. Input Voltage Noise Density vs. Frequency (0 Hz to 1000 kHz)  
Figure 26. Closed-Loop Gain vs. Frequency Measured at Output Pin, VSY = 5 V  
70  
V
= 2.7V  
SY  
60  
50  
HIGH GAIN +1300 62.28dB  
LOW GAIN +28 28.9dB  
CHANNEL 1  
15.2mV p-p  
40  
30  
1
20  
10  
0
–10  
–20  
CH1 10.0mV  
M 1.00s  
A
CH1  
–2.80mV  
0.1  
1
10  
100  
1k  
10k  
FREQUENCY (kHz)  
Figure 24. Low Frequency Input Voltage Noise, 0.1 Hz to 10 Hz, VSY = 5 V  
Figure 27. Closed-Loop Gain vs. Frequency Measured at Output Pin, VSY = 2.7 V  
Rev. C | Page 10 of 24  
AD8557  
10  
1
V
= 5V  
SY  
SOURCE  
0.1  
SINK  
1
0.01  
0.001  
2
0.01  
0.1  
1
10  
100  
CH1 2.0V  
CH2 1.0V  
M 100µs  
23.80%  
A
CH1  
800mV  
T
LOAD CURRENT (mA)  
Figure 31. Power-On Response at 125°C  
Figure 28. Output Voltage to Supply Rail vs. Load Current  
100  
ILIMSINK 5V  
50  
0
ILIMSINK 2.7V  
1
ILIMSRC 2.7V  
ILIMSRC 5V  
–50  
–100  
2
CH1 2.0V  
CH2 1.0V  
M 100µs  
23.80%  
A
CH1  
800mV  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
175  
T
TEMPERATURE (°C)  
Figure 32. Power-On Response at −40°C  
Figure 29. Output Short-Circuit vs. Temperature  
175  
160  
145  
130  
115  
100  
PSRR 2.7V TO 5.5V  
1
2
–50  
–25  
0
25  
50  
75  
100  
125  
150  
175  
CH1 2.0V  
CH2 1.0V  
M 100µs  
23.80%  
A
CH1  
800mV  
TEMPERATURE (°C)  
T
Figure 33. PSRR vs. Temperature  
Figure 30. Power-On Response at 25°C  
Rev. C | Page 11 of 24  
AD8557  
140  
120  
100  
80  
GAIN = +1300  
2
60  
GAIN = +28  
40  
20  
0
0.01  
0.1  
0.1  
1
10  
100  
CH2 1.0V  
M 10.0µs  
23.20%  
A
CH2  
0V  
T
FREQUENCY (kHz)  
Figure 37. Large Signal Response, CL = 0 pF  
Figure 34. PSRR vs. Frequency  
CHANNEL 3  
+OVER  
5.967%  
CHANNEL 3  
–OVER  
6.878%  
2
3
CH2 1.0V  
M 10.0µs  
23.20%  
A
CH2  
0V  
CH3 50.0mV  
M 10.0µs  
24.20%  
A
CH3  
12.0mV  
T
T
Figure 38. Large Signal Response, CL = 5 nF  
Figure 35. Small Signal Response, VSY = 5 V, CL = 100 pF  
60  
50  
40  
30  
20  
10  
0
V
= 5V  
SY  
CHANNEL 3  
+OVER  
GAIN = +28  
98.13%  
CHANNEL 3  
–OVER  
54.94%  
3
–10  
–20  
0.1  
1
10  
100  
1000  
CH3 50.0mV  
M 10.0µs  
24.20%  
A
CH2  
480µV  
T
FREQUENCY (kHz)  
Figure 36. Small Signal Response, VSY = 5 V, CL = 15 nF  
Figure 39. Output Impedance vs. Frequency  
Rev. C | Page 12 of 24  
AD8557  
V
= ±2.5V  
V
= ±2.5V  
SY  
GAIN = +1300  
= 25°C  
SY  
GAIN = +28  
= 25°C  
T
T
A
A
1
1
2
2
CH1 50.0mV  
CH2 2.00V  
M 1.00µs  
4.00µs  
A
CH1  
–21.0mV  
CH1 50.0mV  
CH2 2.00V  
M 1.00µs  
A
CH1  
57.0mV  
T
Figure 43. Positive Overload Recovery (Gain = 1300)  
Figure 40. Positive Overload Recovery  
10  
5
2
1
1
V
= ±2.5V  
SY  
GAIN = +28  
T
= 25°C  
A
0.5  
0.2  
0.1  
2
0.05  
0.02  
0.01  
20  
50  
100 200  
500 1k  
2k  
5k 10k 20k  
CH1 10.0mV  
CH2 2.00V  
M 10.0µs  
A
CH1  
–5.80mV  
FREQUENCY (Hz)  
Figure 41. Negative Overload Recovery  
Figure 44. THD + N vs. Frequency  
V
= ±2.5V  
SY  
GAIN = +1300  
= 25°C  
T
A
1
2
CH1 10.0mV  
CH2 2.00V  
M 10.0µs  
10.00%  
A
CH1  
10.8mV  
T
Figure 42. Negative Overload Recovery (Gain = 1300)  
Rev. C | Page 13 of 24  
AD8557  
THEORY OF OPERATION  
A1, A2, R1, R2, R3, P1, and P2 form the first gain stage of the  
differential amplifier. A1 and A2 are auto-zeroed op amps that  
minimize input offset errors. P1 and P2 are digital potentiome-  
ters, guaranteed to be monotonic. Programming P1 and P2  
allows the first stage gain to be varied from 2.8 to 5.2 with 7-bit  
resolution (see Table 6 and Equation 1), giving a fine gain  
adjustment resolution of 0.49%. Because R1, R2, R3, P1, and P2  
each have a similar temperature coefficient, the first stage gain  
temperature coefficient is lower than 100 ppm/°C.  
to be monotonic. To preserve the ratiometric nature of the input  
signal, the DAC references are driven from VSS and VDD, and  
the DAC output can swing from VSS (Code 0) to VDD (Code  
255). The 8-bit resolution is equivalent to 0.39% of the difference  
between VDD and VSS, for example, 19.5 mV with a 5 V supply.  
The DAC output voltage (VDAC) is given approximately by  
Code +0.5  
VDAC ≈  
VDD VSS +VSS  
( )  
(2)  
256  
where the temperature coefficient of VDAC is lower than  
200 ppm/°C.  
Code  
5.2 127  
GAIN1 2.8 ×  
(1)  
2.8  
The amplifier output voltage (VOUT) is given by  
A3, R4, R5, R6, R7, P3, and P4 form the second gain stage of the  
differential amplifier. A3 is an auto-zeroed op amp that mini-  
mizes input offset errors and also includes an output buffer. P3  
and P4 are digital potentiometers, which allow the second stage  
gain to be varied from 10 to 250 in eight steps (see Table 7). R4,  
R5, R6, R7, P3, and P4 each have a similar temperature coefficient,  
so the second stage gain temperature coefficient is lower than  
100 ppm/°C. The output stage of A3 is supplied from a buffered  
version of VCLAMP instead of VDD, allowing the positive  
swing to be limited.  
VOUT = GAIN VPOS VNEG +VDAC  
( )  
(3)  
where GAIN is the product of the first and second stage gains.  
VDD  
VCLAMP  
VDD  
A4  
P3  
VNEG  
R4  
R1  
R6  
A1  
VSS  
VDD  
A3  
VSS  
P1  
R3  
P2  
R2  
VOUT  
A4 implements a voltage buffer, which provides the positive  
supply to the output stage of A3. Its function is to limit VOUT  
to a maximum value, useful for driving analog-to-digital  
converters (ADC) operating on supply voltages lower than  
VDD. The input to A4, VCLAMP, has a very high input  
resistance. It should be connected to a known voltage and not  
be left floating. However, the high input impedance allows the  
clamp voltage to be set using a high impedance source, such as a  
potential divider. If the maximum value of VOUT does not  
need to be limited, VCLAMP should be connected to VDD.  
VDD  
A2  
VSS  
R7  
R5  
VPOS  
P4  
VDD  
DIGIN  
VSS  
VSS  
Figure 45. Functional Schematic  
An 8-bit digital-to-analog converter (DAC) is used to generate a  
variable offset for the amplifier output. This DAC is guaranteed  
Rev. C | Page 14 of 24  
 
AD8557  
GAIN VALUES  
Table 6. First Stage Gain vs. First Stage Gain Code  
First Stage  
Gain Code  
First Stage  
Gain Code  
First Stage  
Gain Code  
First Stage  
Gain Code  
First Stage Gain  
2.800  
2.814  
2.827  
2.841  
2.855  
2.869  
2.883  
2.897  
2.911  
2.926  
2.940  
2.954  
2.969  
2.983  
2.998  
3.012  
3.027  
3.042  
3.057  
3.072  
3.087  
3.102  
3.117  
3.132  
3.147  
3.163  
3.178  
3.194  
3.209  
3.225  
3.241  
3.257  
First Stage Gain  
3.273  
3.289  
3.305  
3.321  
3.337  
3.353  
3.370  
3.386  
3.403  
3.419  
3.436  
3.453  
3.470  
3.487  
3.504  
3.521  
3.538  
3.555  
3.573  
3.590  
3.608  
3.625  
3.643  
3.661  
3.679  
3.697  
3.715  
3.733  
3.751  
3.770  
3.788  
3.806  
First Stage Gain  
3.825  
3.844  
3.863  
3.881  
3.900  
3.919  
3.939  
3.958  
3.977  
3.997  
4.016  
4.036  
4.055  
4.075  
4.095  
4.115  
4.135  
4.156  
4.176  
4.196  
4.217  
4.237  
4.258  
4.279  
4.300  
4.321  
4.342  
4.363  
4.384  
4.406  
4.427  
4.449  
First Stage Gain  
4.471  
4.493  
4.515  
4.537  
4.559  
4.581  
4.603  
4.626  
4.649  
4.671  
4.694  
4.717  
4.740  
4.763  
4.786  
4.810  
4.833  
4.857  
4.881  
4.905  
4.929  
4.953  
4.977  
5.001  
5.026  
5.050  
5.075  
5.100  
5.125  
5.150  
5.175  
5.200  
0
1
2
3
4
5
6
7
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Table 7. Second Stage Gain and Gain Ranges vs. Second Stage Gain Code  
Second Stage Gain Code  
Second Stage Gain  
Minimum Combined Gain  
Maximum Combined Gain  
0
1
2
3
4
5
6
7
10  
16  
25  
40  
28.0  
44.8  
70.0  
112.0  
176.4  
280.0  
448.0  
700.0  
52.0  
83.2  
130.0  
208.0  
327.6  
520.0  
832.0  
1300.0  
63  
100  
160  
250  
Rev. C | Page 15 of 24  
 
 
 
AD8557  
OPEN WIRE FAULT DETECTION  
FLOATING VPOS, VNEG, OR VCLAMP FAULT  
DETECTION  
The inputs to A1 and A2, VNEG and VPOS, each have a com-  
parator to detect whether VNEG or VPOS exceeds a threshold  
voltage, nominally VDD − 1.1 V. If VNEG > (VDD − 1.1 V) or  
VPOS > (VDD − 1.1 V), VOUT is clamped to VSS. The output  
current limit circuit is disabled in this mode, but the maximum  
sink current is approximately 10 mA when VDD = 5 V. The  
inputs to A1 and A2, VNEG and VPOS, are also pulled up to  
VDD by currents IP1 and IP2. These are both nominally 16 nA  
and matched to within 3 nA. If the inputs to A1 or A2 are  
accidentally left floating, as with an open wire fault, IP1 and IP2  
pull them to VDD, which would cause VOUT to swing to VSS,  
allowing this fault to be detected. It is not possible to disable IP1  
and IP2, nor the clamping of VOUT to VSS, when VNEG or  
VPOS approaches VDD.  
A floating fault condition at the VPOS, VNEG, or VCLAMP  
pins is detected by using a low current to pull a floating input  
into an error voltage range, defined in the previous section. In  
this way, the VOUT pin is shorted to VSS when a floating input  
is detected. Table 9 lists the currents used.  
Table 9. Floating Fault Detection at VPOS, VNEG,  
and VCLAMP  
Pin  
Typical Current  
16 nA pull-up  
16 nA pull-up  
Goal of Current  
VPOS  
VNEG  
Pull VPOS above VINH  
Pull VNEG above VINH  
Pull VCLAMP below VCLL  
VCLAMP 0.2 µA pull-down  
DEVICE PROGRAMMING  
Digital Interface  
SHORTED WIRE FAULT DETECTION  
The digital interface allows the first stage gain, second stage  
gain, and output offset to be adjusted and allows desired values  
for these parameters to be permanently stored by selectively  
blowing polysilicon fuses. To minimize pin count and board  
space, a single-wire digital interface is used. The digital input  
pin, DIGIN, has hysteresis to minimize the possibility of  
inadvertent triggering with slow signals. It also has a pull-down  
current sink to allow it to be left floating when programming is  
not being performed. The pull-down ensures inactive status of  
the digital input by forcing a dc low voltage on DIGIN.  
The AD8557 provides fault detection in the case where VPOS,  
VNEG, or VCLAMP shorts to VDD and VSS. Figure 46 shows  
the voltage regions at VPOS, VNEG, and VCLAMP that trigger  
an error condition. When an error condition occurs, the VOUT  
pin is shorted to VSS. Table 8 lists the voltage levels shown in  
Figure 46.  
VPOS  
VNEG  
VCLAMP  
VDD  
VDD  
VDD  
ERROR  
ERROR  
VINH  
VINH  
NORMAL  
ERROR  
A short pulse at DIGIN from low to high and back to low again,  
such as between 50 ns and 10 µs long, loads a 0 into a shift  
register. A long pulse at DIGIN, such as 50 µs or longer, loads a  
1 into the shift register. The time between pulses should be at  
least 10 µs. Assuming VSS = 0 V, voltages at DIGIN between  
VSS and 0.2 × VDD are recognized as a low, and voltages at  
DIGIN between 0.8 × VDD and VDD are recognized as a high.  
A timing diagram example, Figure 47, shows the waveform for  
entering Code 010011 into the shift register.  
NORMAL  
ERROR  
NORMAL  
ERROR  
VCLL  
VSS  
VINL  
VSS  
VINL  
VSS  
Figure 46. Voltage Regions at VPOS, VNEG, and VCLAMP  
that Trigger a Fault Condition  
Table 8. Typical VINL, VINH, and VCLL Values  
(VDD = 5 V)  
Voltage  
Min (V)  
Max (V)  
VOUT Condition  
VINH  
VINL  
VCLL  
3.9  
0.195  
1.0  
4.2  
0.55  
1.2  
Short to VDD fault detection  
Short to VSS fault detection  
Short to VSS fault detection  
tW1  
tWS  
tW1  
tWS  
tW1  
tWS  
tWS  
tW0  
tW0  
tW0  
tWS  
WAVEFORM  
CODE  
0
1
0
0
1
1
Figure 47. Timing Diagram for Code 010011  
Rev. C | Page 16 of 24  
 
 
 
 
 
 
 
 
AD8557  
Table 10. Timing Specifications  
Timing Parameter  
Description  
Specification  
Between 50 ns and 10 µs  
≥50 µs  
tw0  
tw1  
tws  
Pulse width for loading 0 into shift register  
Pulse width for loading 1 into shift register  
Width between pulses  
≥10 µs  
Table 11. 38-Bit Serial Word Format  
Field No.  
Bits  
Description  
0
1
0 to 11  
12 to 13  
12-bit start of packet 1000 0000 0001  
2-bit function  
00: change sense current  
01: simulate parameter value  
10: program parameter value  
11: read parameter value  
2
14 to 15  
2-bit parameter  
00: second stage gain code  
01: first stage gain code  
10: output offset code  
11: other functions  
3
4
16 to 17  
18 to 25  
2-bit dummy 10  
8-bit value  
Parameter 00 (second stage gain code): 3 LSBs used  
Parameter 01 (first stage gain code): 7 LSBs used  
Parameter 10 (output offset code): all 8 bits used  
Parameter 11 (other functions)  
Bit 0 (LSB): master fuse  
Bit 1: fuse for production test at Analog Devices  
12-bit end of packet 0111 1111 1110  
5
26 to 37  
A 38-bit serial word is used, divided into 6 fields. Assuming  
each bit can be loaded in 60 µs, the 38-bit serial word transfers  
in 2.3 ms. Table 11 summarizes the word format.  
Initial State  
Initially, all the polysilicon fuses are intact. Each parameter has  
the value 0 assigned (see Table 12).  
Field 0 and Field 5 are the start-of-packet field and end-of-  
packet field, respectively. Matching the start-of-packet field with  
1000 0000 0001 and the end-of-packet field with 0111 1111  
1110 ensures that the serial word is valid and enables decoding  
of the other fields.  
Table 12. Initial State Before Programming  
Second Stage Gain Code = 0  
First stage gain code = 0  
Output offset code = 0  
Master fuse = 0  
Second Stage Gain = 10  
First stage gain = 2.8  
Output offset = VSS  
Master fuse not blown  
Field 3 breaks up the data and ensures that no data combination  
can inadvertently trigger the start-of-packet and end-of-packet  
fields. Field 0 should be written first and Field 5 written last.  
When power is applied to a device, parameter values are taken  
either from internal registers, if the master fuse is not blown,  
or from the polysilicon fuses, if the master fuse is blown.  
Programmed values have no effect until the master fuse is  
blown. The internal registers feature power-on reset, so the  
unprogrammed devices enter a known state after power-up.  
Power-on reset occurs when VDD is between 0.7 V and 2.2 V.  
Within each field, the MSB must be written first and the LSB  
written last. The shift register features power-on reset to mini-  
mize the risk of inadvertent programming; power-on reset  
occurs when VDD is between 0.7 V and 2.2 V.  
Rev. C | Page 17 of 24  
 
 
AD8557  
Parameters are programmed by setting Field 1 to 10, selecting  
the desired parameter in Field 2, and selecting a single bit with  
the value 1 in Field 4.  
Simulation Mode  
The simulation mode allows any parameter to be temporarily  
changed. These changes are retained until the simulated value is  
reprogrammed, the power is removed, or the master fuse is  
blown. Parameters are simulated by setting Field 1 to 01,  
selecting the desired parameter in Field 2, and selecting the  
desired value for the parameter in Field 4. Note that a value of  
11 for Field 2 is ignored during the simulation mode. Examples  
of temporary settings follow:  
As an example, suppose the user wants to permanently set the  
second stage gain to 40. Parameter 00 needs to have the value  
0000 0011 assigned. Two bits have the value 1, so two fuses need  
to be blown. Because only one fuse can be blown at a time, this  
code can be used to blow one fuse:  
1000 0000 0001 10 00 10 0000 0010 0111 1111 1110  
Setting the second stage gain code (Parameter 00) to 011  
and the second stage gain to 40 produces:  
1000 0000 0001 01 00 10 0000 0011 0111 1111 1110  
The MOS switch that blows the fuse closes when the complete  
packet is recognized, and opens when the start-of-packet,  
dummy, or end-of-packet fields are no longer valid. After 1 ms,  
this second code is entered to blow the second fuse:  
Setting the first stage gain code (Parameter 01) to 000 1011  
and the first stage gain to 4.166 produces:  
1000 0000 0001 10 00 10 0000 0001 0111 1111 1110  
To permanently set the first stage gain to a nominal value of  
2.954, Parameter 01 needs to have the value 000 1011 assigned.  
Three fuses need to be blown, and the following codes are used,  
with a 1 ms delay after each code:  
1000 0000 0001 10 01 10 0000 1000 0111 1111 1110  
1000 0000 0001 10 01 10 0000 0010 0111 1111 1110  
1000 0000 0001 10 01 10 0000 0001 0111 1111 1110  
1000 0000 0001 01 01 10 0000 1011 0111 1111 1110  
A first stage gain of 2.954 with a second stage gain of 40  
gives a total gain of 118.16. This gain has a maximum  
tolerance of 2.5%.  
Set the output offset code (Parameter 10) to 0100 0000  
and the output offset to 1.260 V when VDD = 5 V and  
VSS = 0 V. This output offset has a maximum tolerance  
of 0.8%:  
To permanently set the output offset to a nominal value of  
1.260 V when VDD = 5 V and VSS = 0 V, Parameter 10 needs  
to have the value 0100 0000 assigned. If one fuse needs to be  
blown, use the following code:  
1000 0000 0001 01 10 10 0100 0000 0111 1111 1110  
Programming Mode  
1000 0000 0001 10 10 10 0100 0000 0111 1111 1110  
Intact fuses give a bit value of 0. Bits with a desired value of 1  
need to have the associated fuse blown. Because a relatively  
large current is needed to blow a fuse, only one fuse can be  
reliably blown at a time. Thus, a given parameter value may  
need several 38-bit words to allow reliable programming.  
Finally, to blow the master fuse to deactivate the simulation  
mode and prevent further programming, use code:  
1000 0000 0001 10 11 10 0000 0001 0111 1111 1110  
There are a total of 20 programmable fuses. Because each fuse  
requires 1 ms to blow, and each serial word can be loaded in  
2.3 ms, the maximum time needed to program the fuses can be  
as low as 66 ms.  
A 5.75 V ( 0.25 V) supply is required when blowing fuses to  
minimize the on resistance of the internal MOS switches that  
blow the fuse. The power supply voltage must not exceed the  
absolute maximum rating and must be able to deliver 250 mA  
of current.  
Read Mode  
The values stored by the polysilicon fuses can be sent to the  
DIGOUT pin to verify correct programming. Normally, the  
DIGOUT pin is only connected to the second gain stage output.  
During read mode, however, the DIGOUT pin is also connected  
to the output of a shift register to allow the polysilicon fuse  
contents to be read. Because VOUT is a buffered version of  
DIGOUT, VOUT also outputs a digital signal during read mode.  
At least 10 μF (tantalum type) of decoupling capacitance is  
needed across the power pins of the device during program-  
ming. The capacitance can be on the programming apparatus as  
long as it is within 2 inches of the device being programmed.  
An additional 0.1 ꢀF (ceramic type) in parallel with the 10 μF is  
recommended within ½ inch of the device being programmed.  
A minimum period of 1 ms should be allowed for each fuse to  
blow. There is no need to measure the supply current during  
programming.  
Read mode is entered by setting Field 1 to 11 and selecting the  
desired parameter in Field 2. Field 4 is ignored. The parameter  
value, stored in the polysilicon fuses, is loaded into an internal  
shift register, and the MSB of the shift register is connected to  
the DIGOUT pin. Pulses at DIGIN shift out the shift register  
contents to the DIGOUT pin, allowing the 8-bit parameter  
value to be read after seven additional pulses; shifting occurs on  
the falling edge of DIGIN. An eighth pulse at DIGIN disconnects  
DIGOUT from the shift register and terminates the read mode.  
The best way to verify correct programming is to use the read  
mode to read back the programmed values. Then, remeasure  
the gain and offset to verify these values. Programmed fuses  
have no effect on the gain and output offset until the master  
fuse is blown. After blowing the master fuse, the gain and  
output offset are determined solely by the blown fuses, and the  
simulation mode is permanently deactivated.  
Rev. C | Page 18 of 24  
 
AD8557  
If a parameter value is less than eight bits long, the MSBs of the  
shift register are padded with 0s.  
Programming Procedure  
For reliable fuse programming, it is imperative to follow the  
programming procedure requirements, especially the proper  
supply voltage during programming:  
For example, to read the second stage gain, this code is used:  
1000 0000 0001 11 00 10 0000 0000 0111 1111 1110  
Because the second stage gain parameter value is only three bits  
long, the DIGOUT pin has a value of 0 when this code is  
entered, and remains 0 during four additional pulses at DIGIN.  
The fifth, sixth, and seventh pulses at DIGIN return the 3-bit  
value at DIGOUT, the seventh pulse returns the LSB. An eighth  
pulse at DIGIN terminates the read mode.  
1. When programming the AD8557, the temperature of the  
device must be between 10°C to 40°C.  
2. Set VDD and VSS to the desired values in the application.  
Use simulation mode to test and determine the desired  
codes for the second stage gain, first stage gain, and output  
offset. The nominal values for these parameters are shown  
in Table 6, Table 7, Equation 2, and Equation 3; use the  
codes corresponding to these values as a starting point.  
However, because actual parameter values for given codes  
vary from device to device, some fine tuning is necessary  
for the best possible accuracy.  
Sense Current  
A sense current is sent across each polysilicon fuse to determine  
whether it has been blown. When the voltage across the fuse is  
less than approximately 1.5 V, the fuse is considered not blown,  
and Logic 0 is output from the OTP cell. When the voltage  
across the fuse is greater than approximately 1.5 V, the fuse is  
considered blown, and Logic 1 is output.  
One way to choose these values is to set the output offset to  
an approximate value, such as Code 128 for midsupply, to  
allow the required gain to be determined. Then, set the  
second stage gain so the minimum first stage gain (Code 0)  
gives a lower gain than required, and the maximum first  
stage gain (Code 127) gives a higher gain than required.  
After choosing the second stage gain, the first stage gain  
can be chosen to fine tune the total gain. Finally, the output  
offset can be adjusted to give the desired value. After  
determining the desired codes for second stage gain, first  
stage gain, and output offset, the device is ready for  
permanent programming.  
When the AD8557 is manufactured, all fuses have a low  
resistance. When a sense current is sent through the fuse, a  
voltage less than 0.1 V is developed across the fuse. This is  
much lower than 1.5 V, so Logic 0 is output from the OTP cell.  
When a fuse is electrically blown, it should have a very high  
resistance. When the sense current is applied to the blown fuse,  
the voltage across the fuse should be larger than 1.5 V, so  
Logic 1 is output from the OTP cell.  
It is theoretically possible, though very unlikely, for a fuse to  
be incompletely blown during programming, assuming the  
required conditions are met. In this situation, the fuse could  
have a medium resistance, neither low nor high, and a voltage of  
approximately 1.5 V could be developed across the fuse. Thus,  
the OTP cell could output Logic 0 or Logic 1, depending on  
temperature, supply voltage, and other variables.  
Note that once a programming attempt has been made for  
any fuse, there should be no further attempt to blow that  
fuse. If a fuse does not program to the expected state,  
discard the unit. The expected incidence rate of attempted  
but unblown fuses is very small when following the proper  
programming procedure and conditions.  
To detect this undesirable situation, the sense current can be  
lowered by a factor of 4 using a specific code. The voltage devel-  
oped across the fuse would then change from 1.5 V to 0.38 V,  
and the output of the OTP would be a Logic 0 instead of the  
expected Logic 1 from a blown fuse. Correctly blown fuses would  
still output a Logic 1. In this way, incorrectly blown fuses can be  
detected. Another specific code would return the sense current  
to the normal (larger) value. The sense current cannot be  
permanently programmed to the low value. When the AD8557  
is powered up, the sense current defaults to the high value.  
3. Set VSS to 0 V and VDD to 5.75 V ( 0.25 V). Power  
supplies should be capable of supplying 250 mA at the  
required voltage and properly bypassed as described in the  
Programming Mode section. Use program mode to  
permanently enter the desired codes for the first stage gain,  
second stage gain, and output offset. Blow the master fuse  
to allow the AD8557 to read data from the fuses and to  
prevent further programming.  
4. Set VDD and VSS to the desired values in the application.  
Use read mode with low sense current followed by high  
sense current to verify programmed codes.  
The low sense current code is  
1000 0000 0001 00 00 10 XXXX XXX1 0111 1111 1110  
The normal (high) sense current code is  
5. Measure gain and offset to verify correct functionality.  
1000 0000 0001 00 00 10 XXXX XXX0 0111 1111 1110  
Rev. C | Page 19 of 24  
AD8557  
Determining Optimal Gain and Offset Codes  
9. Calculate the error (in relative terms) EG2 = GC/GA − 1.  
First, determine the desired gain:  
10. Calculate the error (in the number of the first stage gain  
codes) CEG2 = EG2/0.00489.  
1. Determine the desired gain, GA (using the measurements  
obtained from the simulation).  
11. Set the first stage gain code to CG1 − CEG1 − CEG2. The  
resulting gain should be within one code of GA.  
2. Use Table 7 to determine G2, the second stage gain, such  
that (2.8 × 1.05) < (GA/G2) < (5.2/1.05). This ensures the  
first and last codes for the first stage gain are not used,  
thereby allowing enough first stage gain codes within each  
second stage gain range to adjust for the 3% accuracy.  
Finally, determine the desired output offset:  
1. Determine the desired output offset OA (using the  
measurements obtained from the simulation).  
2. Use Equation 2 to set the output offset code CO1 such that  
the output offset is nominally OA.  
Next, set the second stage gain:  
1. Use the simulation mode to set the second stage gain to G2.  
3. Measure the output offset (OB). OB should be within  
3% of OA.  
2. Set the output offset to allow the AD8557 gain to be  
measured, for example, use Code 128 to set it to midsupply.  
4. Calculate the error (in relative terms) EO1 = OB/OA − 1.  
3. Use Table 6 or Equation 1 to set the first stage gain code  
CG1, so the first stage gain is nominally GA/G2.  
5. Calculate the error (in the number of the output offset  
codes) CEO1 = EO1/0.00392.  
4. Measure the resulting gain (GB). GB should be within  
3% of GA.  
6. Set the output offset code to CO1 − CEO1  
.
7. Measure the output offset (OC). OC should be closer to OA  
than to OB.  
5. Calculate the first stage gain error (in relative terms)  
E
G1 = GB/GA − 1.  
8. Calculate the error (in relative terms) EO2 = OC/OA − 1.  
6. Calculate the error (in the number of the first stage gain  
codes) CEG1 = EG1/0.00489.  
9. Calculate the error (in the number of the output offset  
codes) CEO2 = EO2/0.00392.  
7. Set the first stage gain code to CG1 − CEG1  
.
10. Set the output offset code to CO1 − CEO1 − CEO2. The  
resulting offset should be within one code of OA.  
8. Measure the gain (GC). GC should be closer to GA than to GB.  
Rev. C | Page 20 of 24  
AD8557  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 48. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
4.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
0.65 BSC  
PIN 1  
INDICATOR  
13  
16  
1
12  
9
PIN 1  
INDICATOR  
2.50  
2.35 SQ  
2.20  
TOP  
VIEW  
EXPOSED  
3.75  
BSC SQ  
PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
4
8
5
0.25 MIN  
0.80 MAX  
0.65 TYP  
12° MAX  
1.95 BSC  
0.05 MAX  
0.02 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
1.00  
0.85  
0.80  
0.35  
0.30  
0.25  
0.20 REF  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGC  
Figure 49. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-16-10)  
Dimensions shown in millimeters  
Rev. C | Page 21 of 24  
 
AD8557  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
8-Lead SOIC_N  
Package Option  
CP-16-10  
CP-16-10  
CP-16-10  
R-8  
AD8557ACPZ-R2  
AD8557ACPZ-REEL  
AD8557ACPZ-REEL7  
AD8557ARZ  
AD8557ARZ-REEL  
AD8557ARZ-REEL7  
8-Lead SOIC_N  
8-Lead SOIC_N  
R-8  
R-8  
1 Z = RoHS Compliant Part.  
AUTOMOTIVE PRODUCTS  
The AD8557 models are available with controlled manufacturing to support the quality and reliability requirements of automotive  
applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers  
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in  
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to  
obtain the specific Automotive Reliability reports for these models.  
Rev. C | Page 22 of 24  
 
 
 
AD8557  
NOTES  
Rev. C | Page 23 of 24  
AD8557  
NOTES  
©2007–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06013-0-6/11(C)  
Rev. C | Page 24 of 24  

相关型号:

AD8557ACP-REEL

IC SPECIALTY ANALOG CIRCUIT, QCC16, 4 X 4 MM, MO-220VGGC, LFCSP-16, Analog IC:Other
ADI

AD8557ACPZ-R2

Digitally Programmable Sensor Signal Amplifier
ADI

AD8557ACPZ-REEL

Digitally Programmable Sensor Signal Amplifier
ADI

AD8557ACPZ-REEL7

Digitally Programmable Sensor Signal Amplifier
ADI

AD8557AR

IC SPECIALTY ANALOG CIRCUIT, PDSO8, MS-012AA, SOIC-8, Analog IC:Other
ADI

AD8557AR-REEL

IC SPECIALTY ANALOG CIRCUIT, PDSO8, MS-012AA, SOIC-8, Analog IC:Other
ADI

AD8557ARZ

Digitally Programmable Sensor Signal Amplifier
ADI

AD8557ARZ-REEL

Digitally Programmable Sensor Signal Amplifier
ADI

AD8557ARZ-REEL7

Digitally Programmable Sensor Signal Amplifier
ADI

AD8560

16 V Rail-to-Rail Buffer Amplifier
ADI

AD8560ACP

16 V Rail-to-Rail Buffer Amplifier
ADI

AD8561

Ultrafast 7 ns Single Supply Comparator
ADI