AD8560 [ADI]

16 V Rail-to-Rail Buffer Amplifier; 16 V轨到轨缓冲放大器
AD8560
型号: AD8560
厂家: ADI    ADI
描述:

16 V Rail-to-Rail Buffer Amplifier
16 V轨到轨缓冲放大器

缓冲放大器
文件: 总12页 (文件大小:209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16 V Rail-to-Rail  
Buffer Amplifier  
a
AD8560  
FEATURES  
BLOCK DIAGRAM  
Single-Supply Operation: 4.5 V to 16 V  
Dual-Supply Capability from ؎2.25 V to ؎8 V  
Input Capability Beyond the Rails  
Rail-to-Rail Output Swing  
Continuous Output Current: 35 mA  
Peak Output Current: 250 mA  
Offset Voltage: 10 mV Max  
Slew Rate: 8 V/s  
V+  
IN A  
1
2
3
4
5
10  
9
OUT A  
OUT B  
OUT C  
OUT D  
OUT E  
IN B  
IN C  
IN D  
8
Stable with 1 F Loads  
Supply Current  
7
APPLICATIONS  
6
IN E  
LCD Reference Drivers  
Portable Electronics  
Communications Equipment  
GND  
16-Lead LFCSP  
(CP Suffix)  
GENERAL DESCRIPTION  
The AD8560 is a low cost, five-channel, single-supply buffer  
amplifier with rail-to-rail input and output capability. The AD8560  
is optimized for LCD monitor applications.  
These LCD buffers have high slew rates, a 35 mA continuous  
output drive, and high capacitive load drive capability. They have  
wide supply range and offset voltages below 10 mV.  
PIN 1  
12 OUT A  
11 OUT B  
10 OUT C  
IN A 1  
IN B 2  
IN C 3  
IN D 4  
INDICATOR  
AD8560  
TOP VIEW  
9
OUT D  
The AD8560 is specified over the –40°C to +85°C temperature  
range. They are available on tape and reel in a 16-lead LFCSP.  
NC = NO CONNECT  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
AD8560–SPECIFICATIONS  
(4.5 V V 16 V, VCM = VS/2, TA = 25C, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
S
Parameter  
Symbol Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
Offset Voltage Drift  
VOS  
2
5
80  
10  
mV  
µV/°C  
nA  
VOS/T –40°C TA +85°C  
IB  
Input Bias Current  
600  
–40°C TA +85°C  
800  
VS + 0.5  
nA  
V
kΩ  
pF  
Input Voltage Range  
Input Impedance  
Input Capacitance  
–0.5  
ZIN  
CIN  
400  
1
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
IL = 100 µA  
VS – 0.005  
15.95  
V
V
V
V
VS = 16 V, IL = 5 mA  
–40°C TA +85°C  
VS = 4.5 V, IL = 5 mA  
–40°C TA +85°C  
IL = 100 µA  
15.85  
15.75  
4.2  
4.38  
4.1  
V
Output Voltage Low  
VOL  
5
42  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
VS = 16 V, IL = 5 mA  
–40°C TA +85°C  
VS = 4.5 V, IL = 5 mA  
–40°C TA +85°C  
150  
250  
300  
400  
95  
Continuous Output Current  
Peak Output Current  
IOUT  
IPK  
35  
250  
VS = 16 V  
TRANSFER CHARACTERISTICS  
Gain  
AVCL  
NL  
RL = 2 kΩ  
–40°C TA +85°C  
RL = 2 k, VO = 0.5 to (VS – 0.5 V)  
0.995  
0.995  
0.9985  
0.9980  
0.01  
1.005  
1.005  
V/V  
V/V  
%
Gain Linearity  
POWER SUPPLY  
Supply Voltage  
Power Supply Rejection Ratio  
VS  
PSRR  
4.5  
70  
16  
V
VS = 4 V to 17 V  
–40°C TA +85°C  
VO = VS/2, No Load  
–40°C TA +85°C  
90  
780  
dB  
µA  
µA  
Supply Current/Amplifier  
ISY  
1,000  
1,200  
DYNAMIC PERFORMANCE  
Slew Rate  
Bandwidth  
Phase Margin  
Channel Separation  
SR  
BW  
Øo  
RL = 10 k, CL = 200 pF  
–3 dB, RL = 10 k, CL = 10 pF  
RL = 10 k, CL = 10 pF  
4.5  
8
8
65  
75  
V/µs  
MHz  
Degrees  
dB  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
en  
in  
f = 1 kHz  
f = 10 kHz  
f = 10 kHz  
27  
25  
0.8  
nV/Hz  
nV/Hz  
pA/Hz  
Current Noise Density  
Specifications subject to change without notice.  
REV. 0  
–2–  
AD8560  
ABSOLUTE MAXIMUM RATINGS*  
1
2
Package Type  
JA  
JC  
JB  
Unit  
°C/W  
Supply Voltage (VS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VS + 0.5 V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . VS  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range . . . . . . . . . . . –40°C to +85°C  
Junction Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300°C  
ESD Tolerance (HBM) . . . . . . . . . . . . . . . . . . . . . . . . .1.5 kV  
ESD Tolerance (CDM) . . . . . . . . . . . . . . . . . . . . . . . . . . 1 kV  
16-Lead LFCSP (CP)  
35  
13  
NOTES  
1θJA is specified for worst-case conditions, i.e., θJA is specified for device soldered  
onto a circuit board for surface-mount packages.  
JB is applied for calculating the junction temperature by reference to the board  
2
temperature.  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
AD8560ACP  
–40°C to +85°C  
16-Lead LFCSP  
CP-16  
Available in reels only.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD8560 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–3–  
AD8560–Typical Performance Characteristics  
100  
0
50  
T
= 25C  
V
= V /2  
S
A
CM  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4.5V <V < 16V  
S
V
= 16V  
S
100  
150  
200  
250  
300  
350  
V
= 4.5V  
S
0
3
6
9
12  
+25  
TEMPERATURE – C  
+85  
12  
9  
6  
3  
40  
INPUT OFFSETVOLTAGE – mV  
TPC 1. Input Offset Voltage Distribution  
TPC 4. Input Bias Current vs. Temperature  
300  
5
4
3
2
1
4.5V <V < 16V  
S
250  
200  
150  
100  
50  
V
= 4.5V  
S
0
1  
2  
3  
4  
5  
V
= 16V  
S
0
+25  
TEMPERATURE – C  
+85  
40  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
TCVOS – V/C  
TPC 2. Input Offset Voltage Drift Distribution  
TPC 5. Input Offset Current vs. Temperature  
15.96  
15.95  
15.94  
15.93  
15.92  
15.91  
15.90  
15.89  
15.88  
15.87  
15.86  
4.46  
4.45  
4.44  
4.43  
4.42  
4.41  
4.40  
4.39  
4.38  
4.37  
4.36  
0
I
= 5mA  
LOAD  
V
= V /2  
S
CM  
V
= 16V  
S
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
V
= 16V  
S
V
= 4.5V  
S
V
= 4.5V  
S
+25  
TEMPERATURE – C  
+85  
+25  
TEMPERATURE – C  
+85  
40  
40  
TPC 3. Input Offset Voltage vs. Temperature  
TPC 6. Output Voltage Swing vs. Temperature  
REV. 0  
–4–  
AD8560  
150  
135  
120  
105  
90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
I
= 5mA  
LOAD  
V
= V /2  
S
CM  
V
= 16V  
S
V
= 4.5V  
S
75  
60  
45  
V
= 16V  
S
V
= 4.5V  
30  
S
15  
0
+25  
TEMPERATURE – C  
+85  
40  
+25  
TEMPERATURE – C  
+85  
40  
TPC 7. Output Voltage Swing vs. Temperature  
TPC 10. Supply Current/Amplifier vs. Temperature  
0.9999  
8
R
C
= 10kꢅ  
= 200pF  
L
L
4.5V < V < 16V  
S
V
= 0.5V TO 15V  
OUT  
7
6
5
4
3
2
1
V
= 16V  
S
R
= 2kꢅ  
L
V
= 4.5V  
S
0.9997  
R
= 600ꢅ  
L
0.9995  
+25  
TEMPERATURE – C  
+85  
+25  
TEMPERATURE – C  
+85  
40  
40  
TPC 8. Voltage Gain vs. Temperature  
TPC 11. Slew Rate vs. Temperature  
1k  
1.1  
T
A
V
= 25C  
= 1  
A
T
= 25C  
A
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
V
=V /2  
O
S
100  
10  
V
= 4.5V  
S
V
= 16V  
S
1
0.1  
0
2
4
6
8
10  
12  
14  
16  
18  
0.001  
0.01  
0.1  
1
10  
100  
LOAD CURRENT – mA  
SUPPLYVOLTAGE V  
TPC 12. Supply Current/Amplifier vs. Supply Voltage  
TPC 9. Output Voltage to Supply Rail vs. Load Current  
REV. 0  
–5–  
AD8560  
10  
18  
16  
14  
12  
10  
8
5
1kꢅ  
T
V
A
= 25C  
= 16V  
= 1  
A
10kꢅ  
0
S
V
5  
10  
15  
20  
R
= 10kꢅ  
T
V
V
C
= 25C  
= 8V  
L
A
DISTORTION < 1%  
S
= 50mV rms  
= 40pF  
= 1  
IN  
560ꢅ  
L
V
A
150ꢅ  
6
25  
30  
35  
40  
4
2
0
100k  
1M  
10M  
FREQUENCY – Hz  
100M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
TPC 13. Frequency Response vs. Resistive Loading  
TPC 16. Closed-Loop Output Swing vs. Frequency  
25  
160  
T
= 25C  
A
T
V
= 25C  
= 16V  
A
V
= 8V  
20  
15  
S
140  
120  
100  
80  
S
V
= 50mV rms  
= 10kꢅ  
= 1  
IN  
R
A
L
V
10  
5
50pF  
+PSRR  
0
60  
5  
10  
15  
20  
40  
PSRR  
20  
100pF  
1040pF  
540pF  
0
20  
40  
25  
100k  
1M  
10M  
FREQUENCY – Hz  
100M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
TPC 14. Frequency Response vs. Capacitive Loading  
TPC 17. Power Supply Rejection Ratio vs. Frequency  
500  
450  
400  
350  
160  
T
V
= 25C  
= 4.5V  
A
140  
120  
100  
80  
S
+PSRR  
V
= 4.5V  
S
300  
250  
200  
150  
100  
50  
PSRR  
60  
40  
20  
0
V
S
= 16V  
20  
40  
0
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 15. Closed-Loop Output Impedance vs. Frequency  
TPC 18. Power Supply Rejection Ratio vs. Frequency  
REV. 0  
–6–  
AD8560  
1,000  
100  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
4.5V  
= 25C  
A
T
V
V
V
A
R
= 25C  
= 4.5V  
A
V
16V  
S
S
= 2.25V  
CM  
= 100mV p-p  
= 1  
IN  
V
L
= 10kꢅ  
OS  
+OS  
1
10  
100  
FREQUENCY – Hz  
1k  
10k  
10  
100  
LOAD CAPACITANCE – pF  
1k  
TPC 22. Small Signal Overshoot vs. Load Capacitance  
TPC 19. Voltage Noise Density vs. Frequency  
20  
15  
T
A
= 25C  
= 8V  
= 10kꢅ  
T
= 25C  
A
0
20  
V
4.5V <V < 16V  
S
S
10  
5
R
L
40  
60  
OVERSHOOT SETTLINGTO 0.1%  
0
80  
100  
120  
140  
160  
180  
5  
10  
15  
UNDERSHOOT SETTLINGTO 0.1%  
0
0.5  
1.0  
1.5  
2.0  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
SETTLINGTIME – s  
TPC 20. Channel Separation vs. Frequency  
TPC 23. Settling Time vs. Step Size  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
0
0
0
0
0
0
0
0
T
V
V
V
A
= 25C  
= 16V  
= 8V  
T
V
A
R
C
= 25C  
= 16V  
= 1  
= 10kꢅ  
= 300pF  
A
A
S
S
CM  
V
L
L
= 100mV p-p  
IN  
= 1  
= 10kꢅ  
V
L
R
OS  
+OS  
10  
100  
LOAD CAPACITANCE – pF  
1k  
0
0
0
0
0
0
0
0
0
TIME – 2s/DIV  
TPC 24. Large Signal Transient Response  
TPC 21. Small Signal Overshoot vs. Load Capacitance  
REV. 0  
–7–  
AD8560  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
T
V
A
R
C
= 25C  
= 4.5V  
= 1  
= 10kꢅ  
= 300pF  
T
V
A
R
C
= 25C  
= 4.5V  
= 1  
= 10kꢅ  
= 100pF  
A
A
S
S
V
L
L
V
L
L
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TIME – 2s/DIV  
TIME – 1s/DIV  
TPC 25. Large Signal Transient Response  
TPC 27. Small Signal Transient Response  
0
0
T
V
A
R
C
= 25C  
= 16V  
= 1  
= 10kꢅ  
= 100pF  
A
T
V
A
R
= 25C  
= 16V  
= 1  
A
S
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
S
V
L
L
V
L
= 10kꢅ  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TIME – 1s/DIV  
TIME – 40s/DIV  
TPC 26. Small Signal Transient Response  
TPC 28. No Phase Reversal  
REV. 0  
–8–  
AD8560  
APPLICATIONS  
Short Circuit Output Conditions  
Theory of Operation  
The buffer family does not have internal short circuit protection  
circuitry. As a precautionary measure, do not short the output  
directly to the positive power supply or to the ground.  
These buffers are designed to drive large capacitive loads in LCD  
applications. Each has a high output current drive and rail-to-  
rail input/output operation and can be powered from a single 16  
V supply. They are also intended for other applications where low  
distortion and high output current drive are needed.  
It is not recommended to operate the AD8560 with more than  
35 mA of continuous output current. The output current can be  
limited by placing a series resistor at the output of the amplifier  
whose value can be derived using the following equation:  
Input Overvoltage Protection  
As with any semiconductor device, whenever the input exceeds  
either supply voltage, attention needs to be paid to the input  
overvoltage characteristics. As an overvoltage occurs, the amplifier  
could be damaged depending on the voltage level and the magnitude  
of the fault current. When the input voltage exceeds either supply  
by more than 0.6 V, internal pin junctions will allow current to  
flow from the input to the supplies.  
VS  
35mA  
RX  
For a 5 V single-supply operation, RX should have a minimum  
value of 143 .  
Recommended Land Pattern for the AD8560  
Figure 2 is a recommended land pattern for the AD8560 PCB  
design. The recommended thermal pad size for the PCB design  
matches the dimensions of the exposed pad on the bottom of  
the package. The solder mask design for improved thermal pad  
contact to the exposed pad and reliability uses a stencil pattern  
for approximately 85% solder coverage. A minimum clearance  
of 0.25 mm is maintained on the PCB between the outer edges  
of the thermal pad and the inner edges of the pattern for the  
land to avoid shorting. For better thermal performance, thermal  
vias should also be used. Since the AD8560 is relatively a low  
power part, just soldering the exposed package pad to the PCB  
thermal pad should provide sufficient electrical performance.  
This input current is not inherently damaging to the device as  
long as it is limited to 5 mA or less. If a condition exists using  
the buffers where the input exceeds the supply by more than 0.6 V,  
a series external resistor should be added. The size of the resistor  
can be calculated by using the maximum overvoltage divided by  
5 mA. This resistance should be placed in series with the input  
exposed to an overvoltage.  
Output Phase Reversal  
The buffer family is immune to phase reversal. Although the device’s  
output will not change phase, large currents due to input overvoltage  
could damage the device. In applications where the possibility exists  
of an input voltage exceeding the supply voltage, overvoltage protec-  
tion should be used as described in the previous section.  
SYMM C  
L
0.28 0.75  
TYP 16 PL  
Total Harmonic Distortion (THD+N)  
The buffer family features low total harmonic distortion. The total  
harmonic distortion plus noise for the buffer over the entire  
supply range is below 0.08%. When the device is powered from  
a 16 V supply, the THD + N stays below 0.03%. Figure 1 shows  
the AD8560’s THD + N versus the frequency performance.  
0.9  
0.4  
2.1 1.95  
0.65  
SYMM C  
L
10  
0.05  
0.1  
1
0.875  
0.20  
0.25  
0.1  
V
= 2.5V  
S
SOLDER MASK  
BOARD METALLIZATION  
V
= 8V  
S
Figure 2. 16-Lead 4 x 4 Land Pattern  
0.01  
20  
1k  
FREQUENCY – Hz  
10k  
30k  
100  
Figure 1. THD + N vs. Frequency  
REV. 0  
–9–  
AD8560  
OUTLINE DIMENSIONS  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm 4 mm Body  
(CP-16)  
Dimensions shown in millimeters  
4.0  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
0.60 MAX  
13  
16  
12  
1
PIN 1  
INDICATOR  
0.65 BSC  
TOP  
VIEW  
3.75  
BSC SQ  
BOTTOM  
VIEW  
0.75  
0.60  
0.50  
2.25  
2.10 SQ  
1.95  
4
9
8
5
1.95 BSC  
0.80 MAX  
12MAX  
0.65 NOM  
0.05 MAX  
0.02 NOM  
1.00  
0.90  
0.80  
0.35  
0.28  
0.25  
0.20 REF  
COPLANARITY  
0.08  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGC  
REV. 0  
–10–  
–11–  
–12–  

相关型号:

AD8560ACP

16 V Rail-to-Rail Buffer Amplifier
ADI

AD8561

Ultrafast 7 ns Single Supply Comparator
ADI

AD8561AN

Ultrafast 7 ns Single Supply Comparator
ADI

AD8561ANZ

Ultrafast 7 ns Single Supply Comparator
ADI

AD8561AR

Ultrafast 7 ns Single Supply Comparator
ADI

AD8561AR-REEL

Ultrafast 7 ns Single Supply Comparator
ADI

AD8561AR-REEL7

Ultrafast 7 ns Single Supply Comparator
ADI

AD8561ARU

Ultrafast 7 ns Single Supply Comparator
ADI

AD8561ARUZ

Ultrafast 7 ns Single Supply Comparator
ADI

AD8561ARUZ-REEL

Ultrafast 7 ns Single Supply Comparator
ADI

AD8561ARZ

Ultrafast 7 ns Single Supply Comparator
ADI

AD8561ARZ-REEL

Ultrafast 7 ns Single Supply Comparator
ADI