AD8561AN [ADI]

Ultrafast 7 ns Single Supply Comparator; 超快7 ns单电源比较器
AD8561AN
型号: AD8561AN
厂家: ADI    ADI
描述:

Ultrafast 7 ns Single Supply Comparator
超快7 ns单电源比较器

比较器
文件: 总11页 (文件大小:108K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultrafast 7 ns  
a
Single Supply Comparator  
AD8561  
FEATURES  
PIN CONFIGURATIONS  
7 ns Propagation Delay at 5 V  
Single Supply Operation: 3 V to 10 V  
Low Power  
8-Lead Plastic DIP  
(N-8)  
8-Lead Narrow Body SO  
(SO-8)  
Latch Function  
TSSOP Packages  
APPLICATIONS  
High Speed Timing  
Clock Recovery and Clock Distribution  
Line Receivers  
Digital Communications  
Phase Detectors  
1
2
3
4
8
7
6
5
V؉  
؉IN  
؊IN  
V؊  
OUT  
V؉  
؉IN  
؊IN  
OUT  
OUT  
OUT  
GND  
LATCH  
GND  
V؊  
AD8561  
LATCH  
AD8561  
High Speed Sampling  
Read Channel Detection  
PCMCIA Cards  
8-Lead TSSOP  
(RU-8)  
Upgrade for LT1016 Designs  
V؉  
؉IN  
؊IN  
V؊  
1
4
8
AD8561  
5
OUT  
OUT  
GND  
GENERAL DESCRIPTION  
LATCH  
The AD8561 is a single 7 ns comparator with separate input and  
output sections. Separate supplies enable the input stage to be  
operated from ±5 V dual supplies and +5 V single supplies.  
Fast 7 ns propagation delay makes the AD8561 a good choice  
for timing circuits and line receivers. Propagation delays for  
rising and falling signals are closely matched and track over  
temperature. This matched delay makes the AD8561 a good  
choice for clock recovery, since the duty cycle of the output will  
match the duty cycle of the input.  
The AD8561 has the same pinout as the LT1016, with lower  
supply current and a wider common-mode input range, which  
includes the negative supply rail.  
The AD8561 is specified over the industrial (–40°C to +85°C)  
temperature range. The AD8561 is available in both the 8-lead  
plastic DIP, 8-lead TSSOP or narrow SO-8 surface mount  
packages.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1998  
AD8561–SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS (@ V+ = +5.0 V, V– = VGND = 0 V, TA = +25؇C unless otherwise noted)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
2.3  
7
8
mV  
mV  
µV/°C  
µA  
µA  
µA  
–40°C TA +85°C  
Offset Voltage Drift  
Input Bias Current  
VOS/T  
IB  
IB  
IOS  
4
–3  
–3.5  
VCM = 0 V  
–40°C TA +85°C  
VCM = 0 V  
–6  
–7  
Input Offset Current  
±4  
Input Common-Mode Voltage Range VCM  
0.0  
65  
+3.0  
V
dB  
V/V  
pF  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Input Capacitance  
CMRR  
AVO  
CIN  
0 V VCM +3.0 V  
RL = 10 kΩ  
85  
3000  
3.0  
LATCH ENABLE INPUT  
Logic “1” Voltage Threshold  
Logic “0” Voltage Threshold  
Logic “1” Current  
Logic “0” Current  
Latch Enable  
VIH  
VIL  
IIH  
IIL  
2.0  
1.65  
1.60  
–0.3  
–2  
V
V
µA  
µA  
0.8  
VLH = 3.0 V  
VLL = 0.3 V  
–1.0  
–4  
Pulsewidth  
Setup Time  
Hold Time  
tPW(E)  
tS  
tH  
6
1
1.2  
ns  
ns  
ns  
DIGITAL OUTPUTS  
Logic “1” Voltage  
Logic “1” Voltage  
Logic “0” Voltage  
VOH  
VOH  
VOL  
IOH = –50 µA, VIN > 250 mV  
IOH = –3.2 mA, VIN > 250 mV  
IOL = 3.2 mA, VIN > 250 mV  
3.5  
2.4  
V
V
V
3.5  
0.25  
0.4  
DYNAMIC PERFORMANCE  
Propagation Delay  
tP  
tP  
200 mV Step with 100 mV Overdrive  
–40°C TA +85°C  
100 mV Step with 5 mV Overdrive  
6.75  
8
8
9.8  
13  
ns  
ns  
ns  
Propagation Delay  
Differential Propagation Delay  
(Rising Propagation Delay vs.  
Falling Propagation Delay)  
Rise Time  
tP  
100 mV Step with 100 mV Overdrive1  
20% to 80%  
80% to 20%  
0.5  
3.8  
1.5  
2.0  
ns  
ns  
ns  
Fall Time  
POWER SUPPLY  
Power Supply Rejection Ratio  
Positive Supply Current  
PSRR  
I+  
+4.5 V V+ +5.5 V  
–40°C TA +85°C  
50  
65  
4.5  
dB  
6.0  
7.5  
3.3  
3.8  
4.5  
5.5  
mA  
mA  
mA  
mA  
mA  
mA  
Ground Supply Current  
Analog Supply Current  
IGND  
I–  
VO = 0 V, RL =  
–40°C TA +85°C  
2.2  
2.3  
–40°C TA +85°C  
NOTES  
1 Guaranteed by design.  
Specifications subject to change without notice.  
–2–  
REV. 0  
AD8561  
(@ V+ = +5.0 V, V– = VGND = 0 V, V– = –5 V, TA = +25؇C unless otherwise noted)  
ELECTRICAL SPECIFICATIONS  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
1
7
8
mV  
mV  
µV/°C  
µA  
µA  
µA  
–40°C TA +85°C  
Offset Voltage Drift  
Input Bias Current  
VOS/T  
IB  
IB  
IOS  
4
–3  
–2.5  
VCM = 0 V  
–40°C TA +85°C  
VCM = 0 V  
–6  
–7  
Input Offset Current  
±4  
Input Common-Mode Voltage Range VCM  
–5.0  
65  
+3.0  
V
dB  
V/V  
pF  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Input Capacitance  
CMRR  
AVO  
CIN  
–5.0 V VCM +3.0 V  
RL = 10 kΩ  
85  
3000  
3.0  
LATCH ENABLE INPUT  
Logic “1” Voltage Threshold  
Logic “0” Voltage Threshold  
Logic “1” Current  
Logic “0” Current  
Latch Enable  
VIH  
VIL  
IIH  
IIL  
2.0  
1.65  
1.60  
–0.5  
–2  
V
V
µA  
µA  
0.8  
20  
20  
VLH = 3.0 V  
VLL = 0.3 V  
–1  
–4  
Pulsewidth  
Setup Time  
Hold Time  
tPW(E)  
tS  
tH  
6
1.0  
1.2  
ns  
ns  
ns  
DIGITAL OUTPUTS  
Logic “1” Voltage  
Logic “0” Voltage  
VOH  
VOL  
IOH = –3.2 mA  
IOL = 3.2 mA  
2.6  
3.5  
0.2  
V
V
0.3  
DYNAMIC PERFORMANCE  
Propagation Delay  
tP  
tP  
200 mV Step with 100 mV Overdrive  
–40°C TA +85°C  
100 mV Step with 5 mV Overdrive  
6.5  
8
7
9.8  
13  
ns  
ns  
ns  
Propagation Delay  
Differential Propagation Delay  
(Rising Propagation Delay vs.  
Falling Propagation Delay)  
Rise Time  
tP  
100 mV Step with 100 mV Overdrive1  
20% to 80%  
80% to 20%  
0.5  
3.8  
1.5  
1
2
ns  
ns  
ns  
ns  
Fall Time  
Dispersion  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current  
PSRR  
I+  
±4.5 V VCC and VEE ±5.5 V  
55  
70  
dB  
VO = 0 V, RL =  
Positive Supply Current  
4.7  
2.2  
2.4  
6.5  
7.5  
3.3  
3.8  
4.5  
5.5  
mA  
mA  
mA  
mA  
mA  
mA  
–40°C TA +85°C  
VO = 0 V, RL =  
Ground Supply Current  
Negative Supply Current  
IGND  
I–  
–40°C TA +85°C  
–40°C TA +85°C  
NOTES  
1 Guaranteed by design.  
Specifications subject to change without notice.  
REV. 0  
–3–  
AD8561–SPECIFICATIONS  
(@ V+ = +3.0 V, V– = VGND = 0 V, TA = +25؇C unless otherwise noted)  
ELECTRICAL SPECIFICATIONS  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACTERISTICS  
Offset Voltage  
Input Bias Current  
VOS  
IB  
IB  
7
mV  
µA  
µA  
V
VCM = 0 V  
–40°C TA +85°C  
–6  
–7  
0
–3.0  
–4  
Input Common-Mode Voltage Range VCM  
Common-Mode Rejection Ratio  
+1.5  
0.3  
CMRR  
0.1 V VCM 1.5 V  
60  
dB  
OUTPUT CHARACTERISTICS  
Output High Voltage  
Output Low Voltage  
VOH  
VOL  
IOH = –3.2 mA, VIN > 250 mV  
IOL = +3.2 mA, VIN > 250 mV  
1.21  
V
V
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Currents  
PSRR  
I+  
+2.7 V VCC, VEE +6 V  
40  
dB  
VO = 0 V, RL =  
V+ Supply Current  
4.0  
1.6  
2.4  
4.5  
5.5  
2.5  
3.0  
3.3  
3.8  
mA  
mA  
mA  
mA  
mA  
mA  
–40°C TA +85°C  
–40°C TA +85°C  
–40°C TA +85°C  
Ground Supply Current  
V– Supply Current  
IGND  
I–  
DYNAMIC PERFORMANCE  
Propagation Delay  
tP  
100 mV Step with 20 mV Overdrive2  
8.5  
9.8  
ns  
NOTES  
1Output high voltage without pull-up resistor. It may be useful to have a pull-up resistor to V+ for 3 V operation.  
2Guaranteed by design.  
Specifications subject to change without notice.  
2
ABSOLUTE MAXIMUM RATINGS  
Package Type  
Units  
JA  
JC  
Total Analog Supply Voltage . . . . . . . . . . . . . . . . . . . . . +14 V  
Digital Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . +14 V  
Analog Positive Supply–Digital Positive Supply . . . . . –600 mV  
Input Voltage1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±7 V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . ±8 V  
Output Short-Circuit Duration to GND . . . . . . . . . Indefinite  
Storage Temperature Range  
N, R, RU Package . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range . . . . . . . . . . . –40°C to +85°C  
Junction Temperature Range  
8-Lead Plastic DIP (N)  
8-Lead SO (R)  
8-Lead TSSOP  
103  
158  
240  
43  
43  
43  
°C/W  
°C/W  
°C/W  
NOTES  
1The analog input voltage is equal to ±7 V or the analog supply voltage, whichever  
is less.  
2θJA is specified for the worst case conditions, i.e., θJA is specified for device in socket  
for P-DIP and θJA is specified for device soldered in circuit board for SOIC and  
TSSOP packages.  
N, R, RU Package . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering, 10 sec) . . . . . . .+300°C  
ORDERING GUIDE  
Package  
Temperature  
Range  
Package  
Options  
Model  
Description  
AD8561AN  
AD8561ARU  
AD8561AR  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Lead Plastic DIP  
8-Lead Thin Shrink Small Outline  
8-Lead Small Outline IC  
N-8  
RU-8  
SO-8  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD8561 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. 0  
AD8561  
Typical Performance Characteristics (V+ = +5 V, V– = 0 V, TA = +25؇C unless otherwise noted)  
5
4
3
2
1
0
20  
15  
10  
5
500  
400  
300  
200  
100  
0
+125؇C  
V
= 5V, SINGLE SUPPLY  
S
V
= 5V, SINGLE SUPPLY  
S
STEP SIZE = 100mV  
CAPACITANCE LOAD = 10pF  
–40؇C  
T
= +25؇C  
A
+25؇C  
0
–2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5 1.0 1.5  
10  
20  
30  
40  
50  
0
–5 –4 –3 –2 –1  
0
1
2
3
4
5
DIFFERENTIAL INPUT VOLTAGE – mV  
OVERDRIVE – mV  
INPUT VOLTAGE – mV  
Figure 1. Output Voltage vs. Differen-  
tial Input Voltage  
Figure 2. Typical Distribution of Input  
Offset Voltage  
Figure 3. Propagation Delay vs.  
Overdrive  
20  
40  
20  
V
= 5V, SINGLE SUPPLY  
S
V
= 5V, SINGLE SUPPLY  
S
T
= +25؇C  
A
STEP SIZE = 100mV  
OVERDRIVE LOAD = 5mV  
SINGLE SUPPLY,  
STEP SIZE = 100mV  
OVERDRIVE = 10mV  
CAPACITANCE LOAD = 10pF  
T
= +25؇C  
A
OVERDRIVE = 5mV  
CAPACITANCE LOAD = 10pF  
15  
10  
5
30  
20  
10  
0
15  
10  
5
t
PD  
STEP SIZE = 800mV  
FALLING EDGE  
400mV  
200mV  
t
+
PD  
FALLING EDGE  
100mV  
0
0
10  
20  
30  
40  
50  
0
0.5  
1
1.5  
2
0
4.5  
4.75  
5
5.25  
5.5  
LOAD CAPACITANCE – pF  
SUPPLY VOLTAGE – Volts  
SOURCE RESISTANCE – k⍀  
Figure 4. Propagation Delay vs. Load  
Capacitance  
Figure 5. Propagation Delay vs.  
Source Resistance  
Figure 6. Propagation Delay vs. Posi-  
tive Supply Voltage  
20  
20  
4
3
+25؇C  
V
= +5V, SINGLE SUPPLY  
S
STEP SIZE = 100mV  
OVERDRIVE = 5mV,  
LOAD CAPACITANCE = 10pF  
15  
15  
10  
5
–40؇C  
+125؇C  
10  
5
2
1
0
HOLD TIME  
SET-UP TIME  
V
= 5V  
S
STEP SIZE = 100mV  
OVERDRIVE = 5mV  
LOAD CAPACITANCE = 10pF  
0
0
1
2
3
4
5
0
–50 –25  
0
25  
50  
75  
100 125  
–50  
–25  
0
25  
50  
75  
100 125  
TEMPERATURE – ؇C  
COMMON-MODE VOLTAGE – Volts  
TEMPERATURE – ؇C  
Figure 9. Latch Setup-and-Hold Time  
vs. Temperature  
Figure 8. Propagation Delay vs. VCM  
Figure 7. Propagation Delay vs.  
Temperature  
REV. 0  
–5–  
AD8561  
5.0  
4.4  
3.8  
3.2  
2.6  
2.0  
0.5  
0
–1.0  
–2.0  
–3.0  
–4.0  
–5.0  
0.4  
0.3  
T
= +125؇C  
A
V+ = 5V, V– = 0V  
T
= +25؇C  
T
= –40؇C  
A
A
T
= +25؇C  
A
V+ = 5V, V– = –5V  
0.2  
0.1  
0
T
= +125؇C  
A
T
= –40؇C  
A
–75 –50 –25  
0
25 50 75 100 125 150  
0
3
6
9
12  
15  
0
3
6
9
12  
15  
SINK CURRENT – mA  
SOURCE CURRENT – mA  
TEMPERATURE – ؇C  
Figure 11. Output High Voltage, VOH  
vs. Source Current  
Figure 12. Analog Supply Current vs.  
Temperature for +5 V, –5 V Supplies  
Figure 10. Output Low Voltage, VOL  
vs. Sink Current  
0
–1  
–2  
–3  
–4  
–5  
0
40  
35  
30  
25  
–1.0  
T
= –40؇C  
A
–2.0  
–3.0  
–4.0  
–5.0  
T
= +25؇C  
A
20  
+125؇C  
+25؇C  
–40؇C  
15  
10  
T
= +125؇C  
A
5
0
–7.5  
–5  
–2.5  
0
2.5  
5
2
4
6
8
10  
12  
1
10  
100  
INPUT COMMON-MODE VOLTAGE – Volts  
SUPPLY VOLTAGE –Volts  
FREQUENCY – MHz  
Figure 15. Input Bias Current vs. Input  
Common-Mode Voltage for +5 V, –5 V  
Supplies  
Figure 13. Analog Supply Current vs.  
Supply Voltage for +5 V, –5 V Supplies  
Figure 14. Positive Supply Current  
vs. Frequency  
0
–1.0  
–2.0  
–3.0  
–4.0  
–5.0  
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE – ؇C  
Figure 16. Input Bias Current vs.  
Temperature  
–6–  
REV. 0  
AD8561  
Example: A comparator compares a fast moving signal to a  
fixed 2.5 V reference. Since the comparator only needs to oper-  
ate when the signal is near 2.5 V, both signals will be within the  
input range (near 2.5 V and well under 3.0 V) when the com-  
parator needs to change output.  
APPLICATIONS  
OPTIMIZING HIGH SPEED PERFORMANCE  
As with any high speed comparator or amplifier, proper design  
and layout techniques should be used to ensure optimal perfor-  
mance from the AD8561. The performance limits of high speed  
circuitry can easily be a result of stray capacitance, improper  
ground impedance or other layout issues.  
Note that signals much greater than 3.0 V will result increased  
input currents and may cause the device to operate more slowly.  
Minimizing resistance from source to the input is an important  
consideration in maximizing the high speed operation of the  
AD8561. Source resistance in combination with equivalent  
input capacitance could cause a lagged response at the input,  
thus delaying the output. The input capacitance of the AD8561  
in combination with stray capacitance from an input pin to  
ground could result in several picofarads of equivalent capaci-  
tance. A combination of 3 ksource resistance and 5 pF of  
input capacitance yields a time constant of 15 ns, which is  
slower than the 5 ns capability of the AD8561. Source imped-  
ances should be less than 1 kfor the best performance.  
The input bias current of the AD8561 is lower (–3 µA typical)  
than the LT1016 (+5 µA typical), and the current flows out of  
the AD8561 and into LT1016. If relatively low value resistors  
and/or low impedance sources are used on the inputs, the volt-  
age shift due to bias current should be small.  
The AD8561 (6.75 ns typical) is faster than the LT1016 (10 ns  
typical). While this is beneficial to many systems, timing may  
need to be adjusted to take advantage of the higher speed.  
The AD8561 has slightly more output voltage swing, from 0.2 V  
above ground to within 1.1 V of the positive supply voltage.  
The AD8561 uses less current (typically 5 mA) than the LT1016  
(typically 25 mA).  
It is also important to provide bypass capacitors for the power  
supply in a high speed application. A 1 µF electrolytic bypass  
capacitor should be placed within 0.5 inches of each power  
supply pin, Pin 1 and Pin 4, to ground. These capacitors will  
reduce any potential voltage ripples from the power supply. In  
addition, a 10 nF ceramic capacitor should be placed as close as  
possible from the power supply pins to ground. These capacitors  
act as a charge reservoir for the device during high frequency  
switching.  
INCREASING OUTPUT SWING  
Although not required for normal operation, the output voltage  
swing of the AD8561 can be increased by connecting a 5 kΩ  
resistor from the output of the device to the V+ power supply.  
This configuration can be useful in low voltage power supply  
applications where maximizing output voltage swing is impor-  
tant. Adding a 5 kpull-up resistor to the device’s output will  
not adversely affect the specifications of the AD8561.  
A ground plane is recommended for proper high speed perfor-  
mance. This can be created by using a continuous conductive  
plane over the surface of the circuit board, only allowing breaks  
in the plane for necessary current paths. The ground plane  
provides a low inductive ground, eliminating any potential dif-  
ferences at different ground points throughout the circuit board  
caused from “ground bounce.” A proper ground plane also  
minimizes the effects of stray capacitance on the circuit board.  
OUTPUT LOADING CONSIDERATIONS  
The AD8561 output can deliver up to 40 mA of output current  
without any significant increase in propagation delay. The  
output of the device should not be connected to more than  
twenty (20) TTL input logic gates, or drive a load resistance  
less than 100 .  
To ensure the best performance from the AD8561 it is impor-  
tant to minimize capacitive loading of the output of the device.  
Capacitive loads greater than 50 pF will cause ringing on the  
output waveform and will reduce the operating bandwidth of  
the comparator.  
REPLACING THE LT1016  
The AD8561 is pin compatible with the LT1016 comparator.  
While it is easy to replace the LT1016 with the higher perfor-  
mance AD8561, please note that there are differences, and it is  
useful to check these to ensure proper operation.  
There are five major differences between the AD8561 and the  
LT1016—input voltage range, input bias currents, speed, out-  
put swing and power consumption.  
SETUP AND HOLD TIMES FOR LATCHING THE  
OUTPUT  
The latch input, Pin 5, can be used to retain data at the output  
of the AD8561. When the voltage at the latch input goes high,  
the output of the device will remain constant regardless of the  
input voltages. The setup time for the latch is 2 ns–3 ns and the  
hold time is 3 ns. This means that to ensure data retention at  
the output, the input signal must be valid at least 5 ns before  
the latch pin goes high and must remain valid at least 3 ns after  
the latch pin goes high. Once the latch input voltage goes low,  
new output data will appear in approximately 8 ns.  
When operated on a +5 V single supply, the LT1016 has an  
input voltage range from +1.25 V to +3.5 V. The AD8561 has a  
wider input range from 0 V to 3.0 V. Signals above 3.0 V may  
result in slower response times (see Figure 8). If both signals  
exceed 3.0 V, the signals may be shifted or attenuated to bring  
them into range, keeping in mind the note about source resis-  
tance in Optimizing High Speed Performance. If only one of the  
signals exceeds 3.0 V only slightly, and the other signal is always  
well within the 0 V to 3 V range, the comparator may operate  
without changes to the circuit.  
A logic high for the latch input is a minimum of +2.0 V and a  
logic low is a maximum of +0.8 V. This makes the latch input  
easily interface with TTL or CMOS logic gates. The latch  
circuitry in the AD8561 has no built-in hysteresis.  
REV. 0  
–7–  
AD8561  
INPUT STAGE AND BIAS CURRENTS  
The AD8561 uses a PNP differential input stage that enables  
the input common-mode range to extend all the way from the  
negative supply rail to within 2.2 V of the positive supply rail.  
The input common-mode voltage can be found as the average  
of the voltage at the two inputs of the device. To ensure the  
fastest response time, care should be taken not to allow the  
input common-mode voltage to exceed either of these voltages.  
The input signal is connected directly to the noninverting input  
of the comparator. The output is fed back to the inverting input  
through R1 and R2. The ratio of R1 to R1 + R2 establishes the  
width of the hysteresis window with VREF setting the center of  
the window, or the average switching voltage. The Q output will  
switch high when the input voltage is greater than VHI and will  
not switch low again until the input voltage is less than VLO as  
given in Equation 1:  
The input bias current for the AD8561 is 3 µA. As with any  
PNP differential input stage, this bias current will go to zero on  
an input that is high and will double on an input that is low.  
Care should be taken in choosing resistor values to be con-  
nected to the inputs as large resistors could cause significant  
voltage drops due to the input bias current.  
R1  
VHI = V –1–V  
+VREF  
(
)
R1+ R2  
+
REF  
(1)  
R1  
R1+ R2  
VLO =VREF 1–  
The input capacitance for the AD8561 is typically 3 pF. This is  
measured by inserting a 5 ksource resistance to the input and  
measuring the change in propagation delay.  
Where V+ is the positive supply voltage.  
The capacitor CF can also be added to introduce a pole into the  
feedback network. This has the effect of increasing the amount  
of hysteresis at high frequencies. This can be useful when com-  
paring a relatively slow signal in a high frequency noise environ-  
USING HYSTERESIS  
Hysteresis can easily be added to a comparator through the  
addition of positive feedback. Adding hysteresis to a comparator  
offers an advantage in noisy environments where it is not desir-  
able for the output to toggle between states when the input  
signal is near the switching threshold. Figure 17 shows a  
method for configuring the AD8561 with hysteresis.  
1
ment. At frequencies greater than fP =  
, the hysteresis  
2π CF R2  
window approaches VHI = V+ – 1 V and VLO = 0 V. At frequen-  
cies less than fP the threshold voltages remain as in Equation 1.  
COMPARATOR  
SIGNAL  
R1  
R2  
V
REF  
C
F
Figure 17. Configuring the AD8561 with Hysteresis  
–8–  
REV. 0  
AD8561  
SPICE Model  
* AD8561 SPICE Macro-Model Typical Values  
* 4/98, Ver. 1.0  
* TAM / ADSC  
*
* Node assignments  
*
non-inverting input  
*
*
*
*
*
*
*
*
|
|
|
|
|
|
|
|
1
inverting input  
|
|
|
|
|
|
|
2
positive supply  
|
|
|
|
|
|
99  
negative supply  
|
Latch  
|
|
DGND  
|
|
|
Q
|
|
|
|
|
|
QNOT  
|
|
|
.SUBCKT AD8561  
50  
80  
51  
45  
65  
*
* INPUT STAGE  
*
*
Q1  
Q2  
4
6
3 5 PIX  
2 5 PIX  
IBIAS 99 5 800E-6  
RC1  
RC2  
CL1  
CIN  
4 50 1E3  
6 50 1E3  
4
1
6 1E-12  
2 3E-12  
VCM1 99 7 1  
D1  
EOS  
*
5
3
7 DX  
1 POLY(1) (31,98) 1E-3 1  
* Reference Voltage  
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 0.5 0.5  
RREF 98 0 100E3  
*
* CMRR=80dB, ZERO AT 1kHz  
*
ECM1 30 98 POLY(2) (1,98) (2,98) 0 0.5 0.5  
RCM1 30 31 10E3  
RCM2 31 98 1  
CCM1 30 31 15.9E-9  
*
* Latch Section  
*
RX 80 51 100E3  
E1 10 98 (4,6) 1  
S1 10 11 (80,51) SLATCH1  
R2 11 12 1  
C3 12 98 10E-12  
E2 13 98 (12,98) 1  
R3 12 13 500  
*
* Power Supply Section  
*
REV. 0  
–9–  
AD8561  
GSY1 99 52 POLY(1) (99,50) 4E-3 -2.6E-4  
GSY2 52 50 POLY(1) (99,50) 3.7E-3 -.6E-3  
RSY 52 51 10  
*
* Gain Stage Av=250 fp=100MHz  
*
G2 98 20 (12,98) 0.25  
R1 20 98 1000  
C1 20 98 10E-13  
D2 20 21 DX  
D3 22 20 DX  
V1 99 21 DC 0.8  
V2 22 50 DC 0.8  
*
* Q Output  
*
Q3 99 41 46 NOX  
Q4 47 42 50 NOX  
RB1 43 41 200  
RB2 40 42 5E3  
CB1 99 41 10E-12  
CB2 42 50 5E-12  
RO1 46 45 2E3  
RO2 47 45 500  
EO1 98 43 POLY(1) (20,98) 0 1  
EO2 40 98 POLY(1) (20,98) 0 1  
*
* Q NOT Output  
*
Q5 99 61 66 NOX  
Q6 67 62 50 NOX  
RB3 63 61 200  
RB4 60 62 5E3  
CB3 99 61 10E-12  
CB4 62 50 5E-12  
RO3 66 65 2E3  
RO4 67 65 500  
EO3 63 98 POLY(1) (20,98) 0 1  
EO4 98 60 POLY(1) (20,98) 0 1  
*
* MODELS  
*
.MODEL PIX PNP(BF=100,IS=1E-16)  
.MODEL NOX NPN(BF=100,VAF=130,IS=1E-14)  
.MODEL DX D(IS=1E-16)  
.MODEL SLATCH1 VSWITCH(ROFF=1E6,RON=500,VOFF=2.1,VON=1.4)  
.ENDS AD8561  
–10–  
REV. 0  
AD8561  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead Plastic DIP  
(N-8)  
0.430 (10.92)  
0.348 (8.84)  
8
5
0.280 (7.11)  
0.240 (6.10)  
1
4
0.325 (8.25)  
0.300 (7.62)  
0.060 (1.52)  
0.015 (0.38)  
PIN 1  
0.195 (4.95)  
0.115 (2.93)  
0.210 (5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
0.022 (0.558) 0.100 0.070 (1.77)  
(2.54)  
0.014 (0.356)  
0.045 (1.15)  
BSC  
8-Lead Thin Shrink Small Outline  
(RU-8)  
0.122 (3.10)  
0.114 (2.90)  
8
1
5
4
PIN 1  
0.0256 (0.65)  
BSC  
0.006 (0.15)  
0.002 (0.05)  
0.0433  
(1.10)  
MAX  
0.028 (0.70)  
0.020 (0.50)  
8°  
0°  
0.0118 (0.30)  
0.0075 (0.19)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
8-Lead Small Outline IC  
(SO-8)  
0.1968 (5.00)  
0.1890 (4.80)  
8
1
5
4
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
PIN 1  
0.0098 (0.25)  
0.0040 (0.10)  
0.0688 (1.75)  
0.0532 (1.35)  
0.0196 (0.50)  
0.0099 (0.25)  
x 45°  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.0098 (0.25)  
0.0075 (0.19)  
0.0500 (1.27)  
0.0160 (0.41)  
REV. 0  
–11–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY