AD8591 [ADI]

CMOS Single Supply Rail-to-Rail Input/Output Operational Amplifiers with Shutdown; 具有关断功能的CMOS单电源轨到轨输入/输出运算放大器
AD8591
型号: AD8591
厂家: ADI    ADI
描述:

CMOS Single Supply Rail-to-Rail Input/Output Operational Amplifiers with Shutdown
具有关断功能的CMOS单电源轨到轨输入/输出运算放大器

运算放大器
文件: 总15页 (文件大小:230K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CMOS Single Supply  
Rail-to-Rail Input/Output  
Operational Amplifiers with Shutdown  
a
AD8591/AD8592/AD8594  
PIN CONFIGURATIONS  
6-Lead SOT  
FEATURES  
Single Supply Operation: +2.5 V to +6 V  
High Output Current: ؎250 mA  
Extremely Low Shutdown Supply Current: 100 nA  
Low Supply Current: 750 A/Amp  
Wide Bandwidth: 3 MHz  
(RT Suffix)  
1
2
3
6
5
4
V؉  
OUT A  
V؊  
AD8591  
SD  
؉IN A  
؊IN A  
Slew Rate: 5 V/s  
No Phase Reversal  
Very Low Input Bias Current  
High Impedance Outputs When in Shutdown Mode  
Unity Gain Stable  
10-Lead SOIC  
(RM Suffix)  
V+  
1
2
10  
9
OUT A  
–IN A  
APPLICATIONS  
Mobile Communication Handset Audio  
PC Audio  
PCMCIA/Modem Line Driving  
Battery Powered Instrumentation  
Data Acquisition  
OUT B  
AD8592  
(Not to Scale)  
+IN A  
V–  
3
4
8
7
6
–IN B  
+IN B  
SDB  
SDA  
5
ASIC Input or Output Amplifier  
LCD Display Reference Level Driver  
16-Lead Narrow SOIC  
(R Suffix)  
GENERAL DESCRIPTION  
The AD8591, AD8592 and AD8594 are single, dual and quad  
rail-to-rail input and output single supply amplifiers featuring  
250 mA output drive current and a power saving shutdown  
mode. The AD8592 includes an independent shutdown func-  
tion for each amplifier. When both amplifiers are in shutdown  
mode the total supply current is reduced to less than 1 µA. The  
AD8591 and AD8594 include a single master shutdown func-  
tion that reduces total supply current to less than 1 µA. All  
amplifier outputs are in a high impedance state when in shut-  
down mode.  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
OUT A  
؊IN A  
؉IN A  
V؉  
OUT D  
؊IN D  
؉IN D  
AD8594  
TOP VIEW  
(Not to Scale)  
V؊  
؉IN B  
؉IN C  
11 ؊IN C  
؊IN B  
OUT B  
NC  
10  
9
OUT C  
SD  
NC = NO CONNECT  
These amplifiers have very low input bias currents, making them  
suitable for integrators and diode amplification. Outputs are  
stable with virtually any capacitive load. Supply current is less  
than 750 µA per amplifier in active mode.  
16-Lead TSSOP  
(RU Suffix)  
1
OUT A  
؊IN A  
؉IN A  
OUT D  
؊IN D  
؉IN D  
V؊  
+IN C  
؊IN C  
16  
Applications for these amplifiers include audio amplification for  
portable computers, portable phone headsets, sound ports, sound  
cards and set-top boxes. The AD859x family is capable of driving  
heavy capacitive loads such as LCD panel reference levels.  
V؉  
؉IN B  
؊IN B  
AD8594  
OUT B  
NC  
OUT C  
SD  
8
9
The ability to swing rail-to-rail at both the input and output  
enables designers to buffer CMOS DACs, ASICs and other  
wide output swing devices in single supply systems.  
NC = NO CONNECT  
The AD8591, AD8592 and AD8594 are specified over the indus-  
trial (–40°C to +85°C) temperature range. The AD8591, single,  
is available in the tiny 6-lead SOT package. The AD8592, dual, is  
available in the 10-lead µSOIC surface mount package. The  
AD8594, quad, is available in 16-lead narrow SOIC and 16-lead  
TSSOP packages.  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
AD8591/AD8592/AD8594–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (VS = +2.7 V, VCM = +1.35 V, TA = +25؇C unless otherwise noted)  
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Units  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
25  
30  
50  
60  
25  
mV  
mV  
pA  
pA  
pA  
–40°C < TA < +85°C  
–40°C < TA < +85°C  
–40°C < TA < +85°C  
Input Bias Current  
Input Offset Current  
5
1
IOS  
30  
pA  
Input Voltage Range  
0
38  
+2.7  
V
dB  
V/mV  
µV/°C  
fA/°C  
fA/°C  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Offset Voltage Drift  
Bias Current Drift  
Offset Current Drift  
CMRR  
AVO  
VOS/T  
IB/T  
IOS/T  
VCM = 0 V to +2.7 V  
RL = 2 k, VO = +0.3 V to +2.4 V  
45  
25  
20  
50  
20  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IL = 10 mA  
–40°C to +85°C  
IL = 10 mA  
–40°C to +85°C  
+2.55 +2.61  
V
V
mV  
mV  
mA  
+2.5  
Output Voltage Low  
60  
100  
125  
Output Current  
Open-Loop Impedance  
IOUT  
ZOUT  
±250  
60  
f = 1 MHz, AV = 1  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
VS = +2.5 V to +6 V  
VO = 0 V  
–40°C < TA < +85°C  
All Amplifiers Shut Down  
–40°C < TA < +85°C  
45  
55  
dB  
1
1.25  
1
mA  
mA  
µA  
Supply Current Shutdown Mode  
ISD  
0.1  
1
µA  
ISD1  
ISD2  
Amplifier 1 Shut Down (AD8592)  
Amplifier 2 Shut Down (AD8592)  
1.4  
1.4  
mA  
mA  
SHUTDOWN INPUTS  
Logic High Voltage  
Logic Low Voltage  
VINH  
VINL  
IIN  
–40°C < TA < +85°C  
–40°C < TA < +85°C  
–40°C < TA < +85°C  
+1.6  
V
V
µA  
+0.5  
1
Logic Input Current  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
GBP  
Φo  
CS  
RL = 2 kΩ  
To 0.01%  
3.5  
1.4  
2.2  
67  
V/µs  
µs  
MHz  
Degrees  
dB  
Channel Separation  
f = 1 kHz, RL = 2 kΩ  
65  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
in  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
45  
30  
0.05  
nV/Hz  
nV/Hz  
pA/Hz  
Current Noise Density  
Specifications subject to change without notice.  
–2–  
REV. A  
AD8591/AD8592/AD8594  
ELECTRICAL CHARACTERISTICS (VS = +5.0 V, VCM = +2.5 V, TA = +25؇C unless otherwise noted)  
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Units  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
2
5
1
25  
30  
50  
60  
25  
30  
+5  
mV  
mV  
pA  
pA  
pA  
pA  
V
–40°C < TA < +85°C  
–40°C < TA < +85°C  
–40°C < TA < +85°C  
Input Bias Current  
Input Offset Current  
IOS  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Offset Voltage Drift  
Bias Current Drift  
Offset Current Drift  
CMRR  
AVO  
VOS/T  
IB/T  
IOS/T  
VCM = 0 V to +5 V  
RL = 2 k, VO = +0.5 V to +4.5 V  
–40°C < TA < +85°C  
38  
15  
47  
30  
20  
50  
20  
dB  
V/mV  
µV/°C  
fA/°C  
fA/°C  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IL = 10 mA  
–40°C to +85°C  
IL = 10 mA  
–40°C to +85°C  
+4.9  
+4.85  
+4.94  
50  
V
V
mV  
mV  
mA  
Output Voltage Low  
100  
125  
Output Current  
Open-Loop Impedance  
IOUT  
ZOUT  
±250  
40  
f = 1 MHz, AV = 1  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
VS = +2.5 V to +6 V  
VO = 0 V  
–40°C < TA < +85°C  
All Amplifiers Shut Down  
–40°C < TA < +85°C  
45  
55  
dB  
1.25  
1.75  
1
mA  
mA  
µA  
Supply Current-Shutdown Mode  
ISD  
0.1  
1
µA  
ISD1  
ISD2  
Amplifier 1 Shut Down (AD8592)  
Amplifier 2 Shut Down (AD8592)  
1.6  
1.6  
mA  
mA  
SHUTDOWN INPUTS  
Logic High Voltage  
Logic Low Voltage  
VINH  
VINL  
IIN  
–40°C < TA < +85°C  
–40°C < TA < +85°C  
–40°C < TA < +85°C  
+2.4  
V
V
µA  
+0.8  
1
Logic Input Current  
DYNAMIC PERFORMANCE  
Slew Rate  
Full-Power Bandwidth  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
Channel Separation  
SR  
BWP  
tS  
GBP  
Φo  
CS  
RL = 2 kΩ  
1% Distortion  
To 0.01%  
5
V/µs  
kHz  
µs  
MHz  
Degrees  
dB  
325  
1.6  
3
70  
65  
f = 1 kHz, RL = 10 kΩ  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
in  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
45  
30  
0.05  
nV/Hz  
nV/Hz  
pA/Hz  
Current Noise Density  
Specifications subject to change without notice.  
REV. A  
–3–  
AD8591/AD8592/AD8594  
ABSOLUTE MAXIMUM RATINGS1  
1
Package Type  
JA  
Units  
JC  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +6 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND to VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . ±6 V  
Output Short Circuit  
6-Lead SOT-23 (RT)  
10-Lead µSOIC (RM)  
16-Lead SOIC (R)  
230  
200  
120  
180  
92  
44  
36  
35  
°C/W  
°C/W  
°C/W  
°C/W  
Duration to GND2 . . . . . . . . . . . . Observe Derating Curves  
Storage Temperature Range  
16-Lead TSSOP (RU)  
NOTE  
1θJA is specified for worst case conditions, i.e., θJA is specified for device in socket  
R, RT, RM, RU Packages . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range  
for surface mount packages.  
AD8591/AD8592/AD8594 . . . . . . . . . . . . –40°C to +85°C  
Junction Temperature Range  
ORDERING GUIDE  
R, RT, RM, RU Packages . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering, 60 sec) . . . . . . .+300°C  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect device reliability.  
AD8591ART –40°C to +85°C 6-Lead SOT-23  
AD8592ARM –40°C to +85°C 10-Lead µSOIC  
–40°C to +85°C 16-Lead SOIC  
AD8594ARU –40°C to +85°C 16-Lead TSSOP RU-16  
RT-6  
RM-10  
R-16A  
AD8594AR  
2For supplies less than ±5 V the differential input voltage is limited to the supplies.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD8591/AD8592/AD8594 features proprietary ESD protection circuitry, permanent damage  
may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
Typical Performance Characteristics  
10k  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
1k  
V
= +5V  
S
V
= +2.7V  
S
T
= +25؇C  
T
= +25؇C  
A
A
1k  
100  
10  
100  
10  
SOURCE  
SINK  
SOURCE  
V
= +5V  
S
SINK  
1
1
V
= +2.7V  
60  
S
0.1  
0.01  
0.1  
0.01  
0.1  
1
10  
100  
1k  
0.1  
1
10  
100  
1k  
؊40 ؊20  
0
20  
40  
80  
100  
LOAD CURRENT – mA  
LOAD CURRENT – mA  
TEMPERATURE – ؇C  
Figure 1. Output Voltage to Supply  
Rail vs. Load Current  
Figure 2. Output Voltage to Supply  
Rail vs. Load Current  
Figure 3. Supply Current per  
Amplifier vs. Temperature  
–4–  
REV. A  
AD8591/AD8592/AD8594  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
؊2  
؊3  
؊4  
؊5  
؊6  
؊7  
؊8  
8
V
= +5V  
S
= +2.5V  
V
V
= +2.7V, +5V  
= V /2  
T
= +25؇C  
S
A
V
CM  
CM  
S
7
6
5
4
3
2
0.75  
1.25  
1.75  
2.25  
2.75  
3
؊50 ؊35 ؊15  
5
25  
45  
65  
85  
؊50 ؊35 ؊15  
5
25  
45  
65  
85  
SUPPLY VOLTAGE – ؎Volts  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
Figure 4. Supply Current per  
Amplifier vs. Supply Voltage  
Figure 5. Input Offset Voltage vs.  
Temperature  
Figure 6. Input Bias Current vs.  
Temperature  
4
3
2
1
0
8
80  
V
V
= +2.7V, +5V  
S
V
R
= +2.7V  
= NO LOAD  
= +25؇C  
S
= V /2  
V
= +5V  
CM  
S
S
7
6
5
4
3
2
1
60  
40  
20  
0
45  
L
T
= +25؇C  
A
T
A
90  
135  
180  
؊1  
؊2  
؊50 ؊35 ؊15  
5
25  
45  
65  
85  
0
1
2
3
4
5
1k  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE – ؇C  
COMMON-MODE VOLTAGE – Volts  
FREQUENCY – Hz  
Figure 7. Input Offset Current vs.  
Temperature  
Figure 8. Input Bias Current vs.  
Common-Mode Voltage  
Figure 9. Open-Loop Gain and Phase  
vs. Frequency  
5
5
80  
V
= +2.7V  
= 2k  
S
V
R
= +5V  
= NO LOAD  
= +25؇C  
V
= +5V  
S
S
R
T
L
60  
40  
20  
0
45  
L
R
= 2k⍀  
L
= +25؇C  
= 2.5V p-p  
4
3
2
1
0
4
3
2
1
0
A
T
A
T
= +25؇C  
= 4.9V p-p  
A
V
IN  
V
90  
IN  
135  
180  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 10. Open-Loop Gain and  
Phase vs. Frequency  
Figure 11. Closed-Loop Output  
Voltage Swing vs. Frequency  
Figure 12. Closed-Loop Output  
Voltage Swing vs. Frequency  
REV. A  
–5–  
AD8591/AD8592/AD8594  
110  
100  
200  
140  
120  
100  
80  
V
= +5V  
S
V
T
= +2.5V  
V
T
= +5V  
S
S
180  
160  
140  
120  
100  
80  
T
= +25؇C  
A
= +25؇C  
= +25؇C  
A
A
90  
80  
A
= 10  
60  
40  
V
+PSRR  
؊PSRR  
20  
70  
60  
50  
A
= 1  
60  
0
V
40  
؊20  
20  
؊40  
؊60  
0
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 13. Closed-Loop Output  
Impedance vs. Frequency  
Figure 14. Common-Mode Rejection  
Ratio vs. Frequency  
Figure 15. Power Supply Rejection  
Ratio vs. Frequency  
60  
60  
140  
V
= +5V  
S
V
= +2.5V  
= 2k⍀  
V
= +5V  
S
S
120  
100  
80  
T
= +25؇C  
A
R
R
= 2k  
= +25؇C  
L
L
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
T
= +25؇C  
T
A
A
+OS  
؊PSRR  
60  
40  
؊OS  
؊OS  
+PSRR  
+OS  
20  
0
؊20  
؊40  
؊60  
10  
100  
1k  
10k  
10  
100  
1k  
10k  
100  
1k  
10k  
100k  
1M  
10M  
CAPACITANCE – pF  
CAPACITANCE – pF  
FREQUENCY – Hz  
Figure 16. Power Supply Rejection  
Ratio vs. Frequency  
Figure 17. Small Signal Overshoot  
vs. Load Capacitance  
Figure 18. Small Signal Overshoot  
vs. Load Capacitance  
V
= ؎1.35V  
= 1  
S
A
R
T
V
L
100  
90  
= 2k⍀  
= +25؇C  
A
0V  
0V  
V
= ؎2.5V  
= ؎50mV  
= 1  
V
= ؎1.35V  
= ؎50mV  
= 1  
S
S
V
V
IN  
IN  
A
R
C
T
A
R
C
T
10  
V
L
L
V
L
L
= 2k⍀  
= 2k⍀  
0%  
= 300pF  
= +25؇C  
= 300pF  
= +25؇C  
500mV  
500ns  
A
A
500 ns/DIV  
500 ns/DIV  
Figure 19. Small Signal Transient  
Response  
Figure 20. Small Signal Transient  
Response  
Figure 21. Large Signal Transient  
Response  
–6–  
REV. A  
AD8591/AD8592/AD8594  
1
V
= +5V  
S
V
= ؎2.5V  
= 1  
1V  
10s  
S
T
= +25؇C  
A
A
R
T
V
L
100  
90  
100  
90  
= 2k⍀  
= +25؇C  
A
0.1  
V
= ؎2.5V  
= 1  
S
10  
10  
A
T
V
0%  
0%  
= +25؇C  
A
1V  
500mV  
500ns  
0.01  
1k  
10  
100  
10k  
100k  
FREQUENCY – Hz  
Figure 22. Large Signal Transient  
Response  
Figure 23. No Phase Reversal  
Figure 24. Current Noise Density vs.  
Frequency  
V
V
T
= +2.7V  
S
V
= +5V  
V
A
= +5V  
= 1000  
S
S
= +1.35V  
CM  
100  
90  
100  
90  
A
= 1000  
500  
400  
300  
200  
100  
V
V
= +25؇C  
A
T
= +25؇C  
T
= +25؇C  
A
A
FREQUENCY = 1kHz  
FREQUENCY = 10kHz  
10  
10  
0%  
0%  
MARKER 41V/ Hz  
MARKER 25.9 V/ Hz  
–12 –10 –8 –6 –4 –2  
0
2
4
INPUT OFFSET VOLTAGE – mV  
Figure 25. Voltage Noise Density vs.  
Frequency  
Figure 26. Voltage Noise Density vs.  
Frequency  
Figure 27. Input Offset Voltage  
Distribution  
V
V
T
= +5V  
S
= +2.5V  
CM  
500  
400  
300  
200  
100  
= +25؇C  
A
–12 –10 –8 –6 –4 –2  
0
2
4
INPUT OFFSET VOLTAGE – mV  
Figure 28. Input Offset Voltage  
Distribution  
REV. A  
–7–  
AD8591/AD8592/AD8594  
AD8591/AD8592/AD8594 APPLICATION SECTION  
Theory of Operation  
Output Phase Reversal  
The AD8591/AD8592/AD8594 are immune to output voltage  
phase reversal with an input voltage within the supply voltages  
of the device. However, if either of the device’s inputs exceeds  
+0.6 V outside of the supply rails, the output could exhibit  
phase reversal. This is due to the ESD protection diodes be-  
coming forward biased, thus causing the polarity of the input  
terminals of the device to switch.  
The AD859x family of amplifiers are all CMOS, high output drive,  
rail-to-rail input and output single supply amplifiers designed for  
low cost and high output current drive. The parts include a power  
saving shutdown function making the AD8591/AD8592/AD8594  
op amps ideal for portable multimedia and telecom applications.  
Figure 29 shows the simplified schematic for an AD8591/AD8592/  
AD8594 amplifier. Two input differential pairs, consisting of an  
n-channel pair (M1-M2) and a p-channel pair (M3-M4), provide  
a rail-to-rail input common-mode range. The outputs of the input  
differential pairs are combined in a compound folded-cascode  
stage, which drives the input to a second differential pair gain  
stage. The outputs of the second gain stage provide the gate volt-  
age drive to the rail-to-rail output stage.  
The technique recommended in the Input Overvoltage Protection  
section should be applied in applications where the possibility of  
input voltages exceeding the supply voltages exists.  
Output Short Circuit Protection  
To achieve high output current drive and rail-to-rail performance,  
the outputs of the AD859x family do not have internal short cir-  
cuit protection circuitry. Although these amplifiers are designed to  
sink or source as much as 250 mA of output current, shorting the  
output directly to the positive supply could damage or destroy the  
device. To protect the output stage, the maximum output current  
should be limited to ±250 mA.  
The rail-to-rail output stage consists of M15 and M16, which are  
configured in a complementary common-source configuration.  
As with any rail-to-rail output amplifier, the gain of the output  
stage, and thus the open-loop gain of the amplifier, is dependent  
on the load resistance. Also, the maximum output voltage swing  
is directly proportional to the load current. The difference be-  
tween the maximum output voltage to the supply rails, known as  
the dropout voltage, is determined by the AD8591/AD8592/  
AD8594 output transistors’ on-channel resistance. The output  
dropout voltage is given in Figure 1 and Figure 2.  
By placing a resistor in series with the output of the amplifier as  
shown in Figure 30, the output current can be limited. The  
minimum value for RX can be found from Equation 2.  
VSY  
250 mA  
RX  
(2)  
For a +5 V single supply application, RX should be at least 20 .  
Because RX is inside the feedback loop, VOUT is not affected. The  
tradeoff in using RX is a slight reduction in output voltage swing  
under heavy output current loads. RX will also increase the effec-  
tive output impedance of the amplifier to RO + RX, where RO is  
the output impedance of the device.  
V+  
100A  
*
*
*
*
50A  
100A  
20A  
M11  
INV  
M1  
M337  
M5  
M12  
SD  
M30  
M8  
V
B2  
+5V  
M3  
M4  
M15  
M16  
IN–  
IN+  
R
V
X
OUT  
IN  
M2  
20⍀  
AD8592  
V
OUT  
M6  
M7  
V
M9  
20A  
B3  
M14  
*
INV  
Figure 30. Output Short Circuit Protection  
Power Dissipation  
M340  
M13  
*
M10  
M31  
50A  
Although the AD859x family of amplifiers are able to provide  
load currents of up to 250 mA, proper attention should be  
given to not exceeding the maximum junction temperature for  
the device. The equation for finding the junction temperature is  
given as:  
V–  
*NOTE: ALL CURRENT SOURCES GO  
TO 0 A IN SHUTDOWN MODE  
Figure 29. AD8591/AD8592/AD8594 Simplified Schematic  
(3)  
TJ = PDISS × θJA + TA  
Input Voltage Protection  
Although not shown on the simplified schematic, ESD protec-  
tion diodes are connected from each input to each power supply  
rail. These diodes are normally reverse biased, but will turn on  
if either input voltage exceeds either supply rail by more than  
+0.6 V. Should this condition occur, the input current should  
be limited to less than ±5 mA. This can be done by placing a  
resistor in series with the input(s). The minimum resistor value  
should be:  
Where TJ = AD859x junction temperature  
P
DISS = AD859x power dissipation  
θ
JA = AD859x junction-to-ambient thermal resistance  
of the package; and  
TA = The ambient temperature of the circuit  
VIN, MAX  
5 mA  
RIN  
(1)  
–8–  
REV. A  
AD8591/AD8592/AD8594  
In any application, the absolute maximum junction temperature  
must be limited to +150°C. If this junction temperature is ex-  
ceeded, the device could suffer premature failure. If the output  
voltage and output current are in phase, for example, with a  
purely resistive load, the power dissipated by the AD859x can  
be found as:  
50mV  
100  
90  
47nF LOAD  
ONLY  
PDISS = ILOAD × VSY VOUT  
(4)  
(
)
SNUBBER  
IN CIRCUIT  
10  
0%  
10s  
50mV  
Where  
I
LOAD = AD859x output load current  
V
V
SY = AD859x supply voltage; and  
OUT = The output voltage  
Figure 33. Snubber Network Reduces Overshoot and  
Ringing Caused from Driving Heavy Capacitive Loads  
By calculating the power dissipation of the device and using the  
thermal resistance value for a given package type, the maximum  
allowable ambient temperature for an application can be found  
using Equation 3.  
The optimum values for the snubber network should be determined  
empirically based on the size of the capacitive load. Table I shows a  
few sample snubber network values for a given load capacitance.  
Capacitive Loading  
Table I. Snubber Networks for Large Capacitive Loads  
The AD859x exhibits excellent capacitive load driving capabilities  
and can drive up to 10 nF directly. Although the device is stable  
with large capacitive loads, there is a decrease in amplifier band-  
width as the capacitive load increases. Figure 31 shows a graph of  
the AD8592 unity gain bandwidth under various capacitive loads.  
Load Capacitance  
(CL)  
Snubber Network  
(RS, CS)  
0.47 nF  
4.7 nF  
47 nF  
300 , 0.1 µF  
30 , 1 µF  
5 , 1 µF  
4
V
R
T
= ؎2.5V  
= 1k⍀  
S
A PC-98 Compliant Headphone/Speaker Amplifier  
3.5  
3
L
= +25؇C  
Because of its high output current performance and shutdown  
feature, the AD8592 makes an excellent amplifier for driving an  
audio output jack in a computer application. Figure 34 shows  
how the AD8592 can be interfaced with an AC97 codec to drive  
A
2.5  
2
headphones or speakers.  
+5V  
1.5  
1
+5V  
10  
V
DD  
C1  
100F  
R4  
20⍀  
28  
35  
V
2
3
DD  
U1-A  
0.5  
0
1
NC  
4
R2  
2k⍀  
LEFT  
OUT  
+5V  
R1  
5
0.01  
0.1  
1
10  
100  
CAPACITIVE LOAD – nF  
AD1881  
(AC97)  
100k⍀  
Figure 31. Unity Gain Bandwidth vs. Capacitive Load  
When driving heavy capacitive loads directly from the AD859x  
output, a snubber network can be used to improve transient  
response. This network consists of a series R-C connected from  
the amplifier’s output to ground, placing it in parallel with the  
capacitive load. The configuration is shown in Figure 32. Al-  
though this network will not increase the bandwidth of the am-  
plifier, it will significantly reduce the amount of overshoot, as  
shown in Figure 33.  
6
C2  
100F  
R5  
20⍀  
36  
RIGHT  
OUT  
7
8
U1-B  
V
SS  
9
R3  
2k⍀  
NOTE: ADDITIONAL PINS  
OMITTED FOR CLARITY  
U1 = AD8592  
Figure 34. A PC-98 Compliant Headphone/Line Out Amplifier  
When headphones are plugged into the jack, the normalizing con-  
tacts disconnect from the audio contacts. This allows the voltage to  
the AD8592 shutdown pins to be pulled up to +5 V, activating the  
amplifiers. With no plug in the output jack, the shutdown voltage is  
pulled to 100 mV through the R1 and R3 + R5 voltage divider.  
This powers the AD8592 down when it is not needed, saving  
current from the power supply or battery.  
+5V  
V
AD8592  
OUT  
R
V
S
IN  
100mV p-p  
5⍀  
C
C
S
1F  
L
47nF  
Figure 32. Configuration for Snubber Network to  
Compensate for Capacitive Loads  
REV. A  
–9–  
AD8591/AD8592/AD8594  
If gain is required from the output amplifier, four additional  
resistors should be added as shown in Figure 35. The gain of  
the AD8592 can be set as:  
A Combined Microphone and Speaker Amplifier for  
Cellphone and Portable Headsets  
The dual amplifiers in the AD8592 make an efficient design for  
interfacing with a headset containing a microphone and speaker.  
Figure 36 demonstrates a simple method for constructing an  
interface to a codec.  
R7  
A
V
=
(5)  
R6  
+5V  
R3  
100k⍀  
R7  
20k⍀  
+5V  
V
V
DD  
R1  
2.2k⍀  
C1  
0.1F  
R2  
10k⍀  
+5V  
10  
+5V  
38  
35  
DD  
C1  
100F  
R4  
20⍀  
LEFT  
10  
OUT  
2
3
2
3
NC  
TO  
R6  
10k⍀  
U1-A  
U1-A  
CODEC  
1
1
NC  
4
4
R2  
2k⍀  
+5V  
R1  
5
R7  
1k⍀  
MIC + SPEAKER  
JACK  
5
+5V  
R8  
100k⍀  
V
REF  
100k⍀  
27  
V
REF  
FROM CODEC  
6
C2  
10F  
6
AD1881  
(AC97)  
7
8
C2  
100F  
R5  
20⍀  
R4  
10k⍀  
U1-B  
FROM CODEC  
MONO OUT  
(OR LEFT OUT)  
7
8
9
R6  
10k⍀  
U1-B  
9
R3  
2k⍀  
36  
RIGHT  
OUT  
U1 = AD8592  
(RIGHT OUT)  
R5  
10k⍀  
R6  
10k⍀  
(OPTIONAL)  
V
SS  
R7  
20k⍀  
U1 = AD8592  
Figure 36. A Speaker/Mic Headset Amplifier Circuit  
R7  
R6  
NOTE: ADDITIONAL PINS  
OMITTED FOR CLARITY  
A
=
= +6dB WITH VALUES SHOWN  
V
U1-A is used as a microphone preamplifier, where the gain of  
the preamplifier is set as R3/R2. R1 is used to bias an electret  
microphone and C1 blocks any dc voltages from the amplifier.  
U1-B is the speaker amplifier, and its gain is set at R5/R4. To  
sum a stereo output, R6 should be added, equal in value to R4.  
Figure 35. A PC-98 Compliant Headphone/Line Out  
Amplifier With Gain  
Input coupling capacitors are not required for either circuit as  
the reference voltage is supplied from the AD1881.  
Using the same principle as described in the previous section,  
the normalizing contact on the microphone/speaker jack can be  
used to put the AD8592 into shutdown when the headset is not  
plugged in. The AD8592 shutdown inputs can also be con-  
trolled with TTL or CMOS compatible logic, allowing micro-  
phone or speaker muting if desired.  
R4 and R5 help protect the AD8592 output in case the output  
jack or headphone wires accidentally get shorted to ground.  
The output coupling capacitors C1 and C2 block dc current  
from the headphones and create a high-pass filter with a corner  
frequency of:  
1
An Inexpensive Sample-and-Hold Circuit  
f –3 dB  
=
(6)  
The independent shutdown control of each amplifier in the  
AD8592 allows a degree of flexibility in circuit design. One par-  
ticular application for which this feature is useful is in designing a  
sample-and-hold circuit for data acquisition. Figure 37 shows a  
schematic of a simple, yet extremely effective sample-and-hold  
circuit using a single AD8592 and one capacitor.  
2π C1 R4 + RL  
(
)
Where RL is the resistance of the headphones.  
8
+5V  
SAMPLE  
AND HOLD  
OUTPUT  
9
2
3
10  
U1-B  
U1-A  
+5V  
6
1
7
4
C1  
1nF  
V
IN  
5
SAMPLE  
CLOCK  
U1 = AD8592  
Figure 37. An Efficient Sample-and-Hold Circuit  
–10–  
REV. A  
AD8591/AD8592/AD8594  
The U1-A amplifier is configured as a unity gain buffer driving a  
1 nF capacitor. The input signal is connected to the noninverting  
input, while the sample clock controls the shutdown for that  
amplifier. When the sample clock is high, the U1-A amplifier is  
active and the output follows VIN. Once the sample clock goes  
low, U1-A shuts down with the output of the amplifier going to  
a high impedance state, holding the voltage on the C1 capacitor.  
Single Supply Differential Line Driver  
Figure 39 shows a single supply differential line driver circuit that  
can drive a 600 load with less than 0.7% distortion from 20 Hz  
to 15 kHz with an input signal of 4 V p-p and a single +5 V supply.  
The design uses an AD8594 to mimic the performance of a fully  
balanced transformer based solution. However, this design occu-  
pies much less board space while maintaining low distortion and  
can operate down to dc. Like the transformer based design, either  
output can be shorted to ground for unbalanced line driver applica-  
tions without changing the circuit gain of 1.  
The U1-B amplifier is used as a unity gain buffer to prevent load-  
ing on C1. Because of the low input bias current of the U1-B  
CMOS input stage and the high impedance state of the U1-A  
output in shutdown, there is very little voltage droop from C1  
during the Hold period. This circuit can be used with sample  
frequencies as high as 500 kHz and as low as below 1 Hz. Even  
lower voltage droop can be achieved for very low sample rates  
by increasing the value of C1.  
R3  
10k⍀  
C3  
47F  
R5  
50⍀  
2
3
1
A2  
V
O1  
R6  
10k⍀  
R2  
R7  
10k⍀  
Direct Access Arrangement for PCMCIA Modems  
(Telephone Line Interface)  
10k⍀  
+5V  
+5V  
A1  
+5V  
Figure 38 illustrates a +5 V transmit/receive telephone line  
interface for 600 systems. It allows full duplex transmission of  
signals on a transformer-coupled 600 line in a differential  
manner. Amplifier A1 provides gain that can be adjusted to  
meet the modem output drive requirements. Both A1 and A2  
are configured to apply the largest possible signal on a single  
supply to the transformer. Because of the AD8594’s high output  
current drive and low dropout voltages, the largest signal avail-  
able on a single +5 V supply is approximately 4.5 V p-p into a  
600 transmission system. Amplifier A3 is configured as a  
difference amplifier for two reasons: (1) It prevents the transmit  
signal from interfering with the receive signal and (2) it extracts  
the receive signal from the transmission line for amplification by  
A4. Amplifier A4’s gain can be adjusted in the same manner as  
A1’s to meet the modem’s input signal requirements. Standard  
resistor values permit the use of SIP (Single In-line Package)  
format resistor arrays. Couple this with the AD8594 16-lead  
TSSOP or SOIC footprint, and this circuit offers a compact,  
cost effective solution.  
2
3
8
10  
C1  
22F  
10  
R8  
100k⍀  
1
R
7
L
A1  
7
600⍀  
9
V
4
4
IN  
C2  
1F  
R9  
100k⍀  
R1  
R11  
10k⍀  
R12  
10k⍀  
10k⍀  
A1, A2 = 1/2 AD8592  
C4  
R10  
R14  
50⍀  
8
47F  
10k⍀  
R3  
R2  
9
GAIN =  
A2  
V
O2  
7
R13  
10k⍀  
SET: R7, R10, R11 = R2  
SET: R6, R12, R13 = R3  
Figure 39. A Low Noise, Single Supply Differential  
Line Driver  
R8 and R9 set up the common-mode output voltage equal to  
half of the supply voltage. C1 is used to couple the input signal  
and can be omitted if the input’s dc voltage is equal to half of  
the supply voltage.  
The circuit can also be configured to provide additional gain if  
desired. The gain of the circuit is:  
VOUT  
VIN  
R3  
R2  
P1  
A
=
=
Tx GAIN  
V
(7)  
ADJUST  
R2  
9.09k⍀  
C1  
0.1F  
TRANSMIT  
TxA  
Where:  
VOUT = VO1 – VO2,  
R2 = R7 = R10 = R11 and,  
R3 = R6 = R12 = R13  
R1  
10k⍀  
TO TELEPHONE  
LINE  
2k⍀  
R3  
360⍀  
2
3
1
1:1  
A1  
R5  
5
6.2V  
6.2V  
Z
SHUTDOWN  
+5V  
O
10k⍀  
600⍀  
T1  
R6  
10k⍀  
6
8
7
MIDCOM  
671-8005  
R7  
10k⍀  
9
A2  
R8  
10k⍀  
10F  
R9  
R10  
P2  
10k⍀  
10k⍀  
Rx GAIN  
ADJUST  
R13  
10k14.3k⍀  
R14  
5
RECEIVE  
RxA  
2
3
R11  
10k⍀  
1
A3  
2k⍀  
8
7
6
C2  
0.1F  
R12  
10k⍀  
9
A4  
A1, A2 = 1/2 AD8592  
A3, A4 = 1/2 AD8592  
Figure 38. A Single Supply Direct Access Arrangement for  
PCMCIA Modems  
REV. A  
–11–  
AD8591/AD8592/AD8594  
SPICE Model for the AD8591/AD8592/AD8594 Amplifier  
The SPICE model for the AD8591/AD8592/AD8594 amplifier is  
one of the more realistic computer simulation macro-models  
available, providing a high degree of realism with respect to char-  
acteristics of the actual amplifier. This model, shown in Listing 1,  
is based on typical values for the device and can be downloaded  
from Analog Devices’ Internet site at www.analog.com.  
A number of secondary characteristics are also accurately por-  
trayed in the SPICE model. Flicker noise is accurately modeled  
with the 1/f corner frequency set through the KF and AF terms  
in the input stage transistors. C1 and C2 are used in the input  
section to create secondary poles to achieve an accurate phase  
margin characteristic for the model.  
The AD8591/AD8592/AD8594 shutdown circuitry is included  
in the model. Switches S1 through S7 deactivate the op amp  
circuitry in shutdown mode. The logic threshold for the shut-  
down circuitry is accurately modeled through the VSWITCH  
model parameters near the end of the listing. The active supply  
current versus supply voltage is also modeled through the volt-  
age-controlled current source GSY.  
The model uses a common source output stage to provide rail-  
to-rail performance. This allows realistic simulation of open-  
loop gain dependency on load resistance as well as maximum  
output voltage versus output current. Two differential pairs are  
used in the input stage of the model, simulating the rail-to-rail  
input stage of the AD8591/AD8592/AD8594 amplifier.  
The EOS voltage source establishes the input offset voltage and  
is also used to simulate the common-mode rejection power  
supply rejection, and input voltage noise characteristics for the  
model. In addition, G2, R2 and CF are used to help set the  
open-loop gain and gain-bandwidth product of the model.  
Characteristics of this model are based on typical values for the  
AD8591/AD8592/AD8594 amplifier at +27°C. The model’s  
characteristics are optimized specifically at +27°C, and may lose  
accuracy at different simulation temperatures.  
–12–  
REV. A  
AD8591/AD8592/AD8594  
Listing 1: AD859x SPICE Macro-Model  
* AD8592 SPICE Macro-Model Typical Values  
* 9/98, Ver. 1  
* TAM / ADSC  
*
* Copyright 1998 by Analog Devices  
*
* Refer to “README.DOC” file for License  
* Statement. Use of this  
* model indicates your acceptance of the  
* terms and provisions in  
* the License Statement.  
*
* Node Assignments  
*
noninverting input  
*
|
|
|
|
|
|
1
inverting input  
*
|
|
|
|
|
2
positive supply  
*
|
|
|
|
negative supply  
*
|
|
|
output  
|
|
*
shutdown  
*
|
.SUBCKT AD8592  
99 50 45 80  
*
* INPUT STAGE  
*
M1  
M2  
4
6
1 3 3 PIX L=0.8E-6 W=125E-6  
7 3 3 PIX L=0.8E-6 W=125E-6  
RC1 4 50 4E3  
RC2 6 50 4E3  
C1  
4
6 2E-12  
I1 99 8 100E-6  
M3 10 1 12 12 NIX L=0.8E-6 W=125E-6  
M4 11 7 12 12 NIX L=0.8E-6 W=125E-6  
RC3 10 99 4E3  
RC4 11 99 4E3  
C2 10 11 2E-12  
I2 13 50 100E-6  
EOS  
+1E-3 1 1 1  
IOS 2 2.5E-12  
V1 99 9 0.9  
D1 9 DX  
7
2 POLY(3) (21,98) (73,98) (61,0)  
1
3
V2 14 50 0.9  
D2 14 12 DX  
S1  
3
8 (82,98) SOPEN  
S2 99 8 (98,82) SCLOSE  
S3 12 13 (82,98) SOPEN  
S4 13 50 (98,82) SCLOSE  
*
* CMRR=64dB, ZERO AT 20kHz  
*
ECM1 20 98 POLY(2) (1,98) (2,98) 0 .5 .5  
RCM1 20 21 79.6E3  
CCM1 20 21 100E-12  
RCM2 21 98 50  
*
* PSRR=80dB, ZERO AT 200Hz  
*
RPS1 70 0 1E6  
RPS2 71 0 1E6  
CPS1 99 70 1E-5  
REV. A  
–13–  
AD8591/AD8592/AD8594  
CPS2 50 71 1E-5  
EPSY 98 72 POLY(2) (70,0) (0,71) 0 1 1  
RPS3 72 73 1.59E6  
CPS3 72 73 500E-12  
RPS4 73 98 80  
*
* INTERNAL VOLTAGE REFERENCE  
*
EREF 98 0 POLY(2) (99,0) (50,0) 0 .5 .5  
GSY 99 50 POLY(1) (99,50) 20E-6 10E-7  
*
* SHUTDOWN SECTION  
*
E1 81 98 (80,50) 1  
R1 81 82 1E3  
C3 82 98 1E-9  
*
* VOLTAGE NOISE REFERENCE OF 30nV/rt(Hz)  
*
VN1 60 0 0  
RN1 60 0 16.45E-3  
HN 61 0 VN1 30  
RN2 61 0 1  
*
* GAIN STAGE  
*
G2 98 30 POLY(2) (4,6) (10,11) 0 2.19E-5 +2.19E-5  
R2 30 98 13E6  
CF 45 30 5E-12  
S5 30 98 (98,82) SCLOSE  
D3 30 31 DX  
D4 32 30 DX  
V3 99 31 0.6  
V4 32 50 0.6  
*
* OUTPUT STAGE  
*
M5 45 46 99 99 POX L=0.8E-6 W=16E-3  
M6 45 47 50 50 NOX L=0.8E-6 W=16E-3  
EG1 99 48 POLY(1) (98,30) 1.06 1  
EG2 49 50 POLY(1) (30,98) 1.05 1  
RG1 48 46 10E3  
RG2 49 47 10E3  
S6 46 99 (98,82) SCLOSE  
S7 47 50 (98,82) SCLOSE  
*
* MODELS  
*
.MODEL PIX PMOS (LEVEL=2,KP=20E-6,VTO=-0.7, LAMBDA=0.01,AF=1,KF=1E-31)  
.MODEL NIX NMOS (LEVEL=2,KP=20E-6,VTO=0.7, LAMBDA=0.01,AF=1,KF=1E-31)  
.MODEL POX PMOS (LEVEL=2,KP=8E-6,VTO=-1, LAMBDA=0.067)  
.MODEL NOX NMOS (LEVEL=2,KP=13.4E-6,VTO=1, LAMBDA=0.067)  
.MODEL SOPEN VSWITCH(VON=2.4,VOFF=0.8, RON=10,ROFF=1E9)  
.MODEL SCLOSE VSWITCH(VON=-0.8,VOFF=-2.4, RON=10,ROFF=1E9)  
.MODEL DX D(IS=1E-14)  
.ENDS AD8592  
–14–  
REV. A  
AD8591/AD8592/AD8594  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
6-Lead SOT  
(RT-6)  
10-Lead SOIC  
(RM-10)  
0.124 (3.15)  
0.112 (2.84)  
0.122 (3.10)  
0.106 (2.70)  
10  
1
6
5
6
1
5
2
4
0.071 (1.80)  
0.059 (1.50)  
0.118 (3.00)  
0.098 (2.50)  
0.124 (3.15)  
0.112 (2.84)  
0.199 (5.05)  
0.187 (4.75)  
3
PIN 1  
0.037 (0.95) BSC  
PIN 1  
0.0197 (0.50) BSC  
0.075 (1.90)  
BSC  
0.122 (3.10)  
0.110 (2.79)  
0.120 (3.05)  
0.112 (2.84)  
0.051 (1.30)  
0.035 (0.90)  
0.057 (1.45)  
0.035 (0.90)  
0.038 (0.97)  
0.030 (0.76)  
0.043 (1.09)  
0.037 (0.94)  
10؇  
0؇  
6؇  
0؇  
0.020 (0.50)  
0.010 (0.25)  
0.022 (0.55)  
0.014 (0.35)  
0.059 (0.15)  
0.000 (0.00)  
SEATING  
PLANE  
SEATING  
PLANE  
0.009 (0.23)  
0.003 (0.08)  
0.006 (0.15)  
0.002 (0.05)  
0.016 (0.41)  
0.006 (0.15)  
0.022 (0.56)  
0.021 (0.53)  
0.011 (0.28)  
0.003 (0.08)  
16-Lead Thin Shrink Small Outline  
(RU-16)  
16-Lead Narrow Body SO  
(R-16A)  
0.3937 (10.00)  
0.3859 (9.80)  
0.201 (5.10)  
0.193 (4.90)  
16  
1
9
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
16  
9
8
8
0.2284 (5.80)  
0.0688 (1.75)  
0.0532 (1.35)  
PIN 1  
0.0196 (0.50)  
x 45°  
0.0098 (0.25)  
0.0040 (0.10)  
0.0099 (0.25)  
1
8°  
0°  
PIN 1  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.0500 (1.27)  
0.0160 (0.41)  
0.0099 (0.25)  
0.0075 (0.19)  
0.006 (0.15)  
0.002 (0.05)  
0.0433  
(1.10)  
MAX  
0.028 (0.70)  
0.020 (0.50)  
8؇  
0؇  
0.0256 0.0118 (0.30)  
(0.65)  
BSC  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
0.0075 (0.19)  
REV. A  
–15–  

相关型号:

AD8591ART

CMOS Single Supply Rail-to-Rail Input/Output Operational Amplifiers with Shutdown
ADI

AD8591ART-REEL

CMOS Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers with Shutdown
ADI

AD8591ART-REEL

OP-AMP, 30000 uV OFFSET-MAX, 2.2 MHz BAND WIDTH, PDSO6, SOT-23, 6 PIN
ROCHESTER

AD8591ART-REEL7

IC OP-AMP, 30000 uV OFFSET-MAX, 2.2 MHz BAND WIDTH, PDSO6, SOT-23, 6 PIN, Operational Amplifier
ADI

AD8591ART-REEL7

OP-AMP, 30000 uV OFFSET-MAX, 2.2 MHz BAND WIDTH, PDSO6, SOT-23, 6 PIN
ROCHESTER

AD8591ARTZ

CMOS Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers with Shutdown
ADI

AD8591ARTZ-REEL

CMOS Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers with Shutdown
ADI

AD8591ARTZ-REEL7

CMOS Single Supply RRIO Op Amp with ±250 mA Output Current and Shutdown Mode
ADI

AD8591SD

Operational Amplifiers Selection Guide
ADI

AD8591_15

CMOS Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers with Shutdown
ADI

AD8592

CMOS Single Supply Rail-to-Rail Input/Output Operational Amplifiers with Shutdown
ADI

AD8592ARM

CMOS Single Supply Rail-to-Rail Input/Output Operational Amplifiers with Shutdown
ADI