AD8604ARU-REEL [ADI]

Precision CMOS Single-Supply Rail-to-Rail Input/Output Wideband Operational Amplifiers; 精密CMOS单电源轨到轨输入/输出宽带运算放大器
AD8604ARU-REEL
型号: AD8604ARU-REEL
厂家: ADI    ADI
描述:

Precision CMOS Single-Supply Rail-to-Rail Input/Output Wideband Operational Amplifiers
精密CMOS单电源轨到轨输入/输出宽带运算放大器

运算放大器 放大器电路 光电二极管
文件: 总20页 (文件大小:291K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision CMOS Single-Supply  
Rail-to-Rail Input/Output Wideband  
Operational Amplifiers  
AD8601/AD8602/AD8604  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Low Offset Voltage: 500 V Max  
Single-Supply Operation: 2.7 V to 5.5 V  
Low Supply Current: 750 A/Amplifier  
Wide Bandwidth: 8 MHz  
Slew Rate: 5 V/s  
Low Distortion  
No Phase Reversal  
Low Input Currents  
Unity Gain Stable  
14-Lead TSSOP  
(RU Suffix)  
5-Lead SOT-23  
(RT Suffix)  
OUT A  
؊IN A  
؉IN A  
V؉  
1
2
3
4
5
6
7
V؉  
14  
13  
12  
11  
10  
9
OUT D  
؊IN D  
؉IN D  
V؊  
OUT A  
5
4
1
2
V؊  
AD8601  
؉IN  
؊IN  
3
AD8604  
؉IN B  
؊IN B  
OUT B  
؉IN C  
؊IN C  
OUT C  
APPLICATIONS  
Current Sensing  
Barcode Scanners  
PA Controls  
8
8-Lead MSOP  
(RM Suffix)  
Battery-Powered Instrumentation  
Multipole Filters  
Sensors  
ASIC Input or Output Amplifiers  
Audio  
14-Lead SOIC  
(R Suffix)  
1
2
3
4
8
7
6
5
OUT A  
V؉  
؊IN A  
OUT B  
AD8602  
؉IN A  
V؊  
؊IN B  
؉IN B  
OUT A  
OUT D  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
؊IN A  
؉IN A  
V؉  
؊IN D  
؉IN D  
V؊  
GENERAL DESCRIPTION  
The AD8601, AD8602, and AD8604 are single, dual, and quad  
rail-to-rail input and output single-supply amplifiers featuring very  
low offset voltage and wide signal bandwidth. These amplifiers  
use a new, patented trimming technique that achieves superior  
performance without laser trimming. All are fully specified to  
operate on a 3 V to 5 V single supply.  
AD8604  
؉IN B  
؊IN B  
OUT B  
؉IN C  
؊IN C  
OUT C  
8-Lead SOIC  
(R Suffix)  
8
OUT A  
1
2
3
4
V؉  
8
7
6
5
؊IN A  
OUT B  
The combination of low offsets, very low input bias currents,  
and high speed make these amplifiers useful in a wide variety of  
applications. Filters, integrators, diode amplifiers, shunt current  
sensors, and high impedance sensors all benefit from the combi-  
nation of performance features. Audio and other ac applications  
benefit from the wide bandwidth and low distortion. For the  
most cost-sensitive applications, the D grades offer this ac per-  
formance with lower dc precision at a lower price point.  
AD8602  
؉IN A  
V؊  
؊IN B  
؉IN B  
The AD8601, AD8602, and AD8604 are specified over the  
extended industrial (–40°C to +125°C) temperature range. The  
AD8601, single, is available in the tiny 5-lead SOT-23 package.  
The AD8602, dual, is available in 8-lead MSOP and narrow  
SOIC surface-mount packages. The AD8604, quad, is available  
in 14-lead TSSOP and narrow SOIC packages.  
Applications for these amplifiers include audio amplification for  
portable devices, portable phone headsets, bar code scanners,  
portable instruments, cellular PA controls, and multipole filters.  
The ability to swing rail-to-rail at both the input and output  
enables designers to buffer CMOS ADCs, DACs, ASICs, and  
other wide output swing devices in single-supply systems.  
SOT, MSOP, and TSSOP versions are available in tape and  
reel only.  
REV. D  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD8601/AD8602/AD8604–SPECIFICATIONS  
(VS = 3 V, VCM = VS/2, TA = 25؇C, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
A Grade  
Typ  
D Grade  
Typ Max Unit  
Parameter  
Symbol  
Conditions  
Min  
Max  
Min  
INPUT CHARACTERISTICS  
Offset Voltage (AD8601/AD8602) VOS  
0 V VCM 1.3 V  
80  
500  
700  
1,100  
750  
1,800  
2,100  
600  
800  
1,600  
800  
2,200  
2,400  
60  
1,100 6,000 µV  
7,000 µV  
–40°C TA +85°C  
–40°C TA +125°C  
7,000 µV  
0 V VCM 3 V  
*
350  
80  
1,300 6,000 µV  
7,000 µV  
7,000 µV  
1,100 6,000 µV  
7,000 µV  
7,000 µV  
1,300 6,000 µV  
7,000 µV  
–40°C TA +85°C  
–40°C TA +125°C  
VCM = 0 V to 1.3 V  
–40°C TA +85°C  
–40°C TA +125°C  
Offset Voltage (AD8604)  
VOS  
V
CM = 0 V to 3.0 V  
*
350  
–40°C TA +85°C  
–40°C TA +125°C  
7,000 µV  
Input Bias Current  
Input Offset Current  
IB  
0.2  
25  
150  
0.1  
0.2  
25  
200  
200  
pA  
pA  
–40°C TA +85°C  
–40°C TA +125°C  
100  
1,000  
30  
50  
500  
150  
0.1  
1,000 pA  
IOS  
100  
100  
500  
3
pA  
pA  
pA  
V
–40°C TA +85°C  
–40°C TA +125°C  
Input Voltage Range  
0
3
0
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
CMRR  
AVO  
VCM = 0 V to 3 V  
VO = 0.5 V to 2.5 V,  
RL = 2 k, VCM = 0 V  
68  
83  
52  
65  
dB  
30  
100  
2
20  
60  
2
V/mV  
µV/°C  
Offset Voltage Drift  
VOS/T  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IL = 1.0 mA  
–40°C TA +125°C  
IL = 1.0 mA  
2.92  
2.88  
2.95  
20  
2.92  
2.88  
2.95  
20  
V
V
mV  
mV  
mA  
Output Voltage Low  
35  
50  
35  
50  
–40°C TA +125°C  
Output Current  
Closed-Loop Output Impedance  
IOUT  
ZOUT  
30  
12  
30  
12  
f = 1 MHz, AV = 1  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
VS = 2.7 V to 5.5 V  
VO = 0 V  
–40°C TA +125°C  
67  
80  
680  
56  
72  
680  
dB  
1,000 µA  
1,300 µA  
1,000  
1,300  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
GBP  
o  
RL = 2 kΩ  
To 0.01%  
5.2  
<0.5  
8.2  
50  
5.2  
<0.5  
8.2  
50  
V/µs  
µs  
MHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
en  
in  
f = 1 kHz  
f = 10 kHz  
33  
18  
0.05  
33  
18  
0.05  
nV/Hz  
nV/Hz  
pA/Hz  
Current Noise Density  
*For VCM between 1.3 V and 1.8 V, VOS may exceed specified value.  
Specifications subject to change without notice.  
–2–  
REV. D  
AD8601/AD8602/AD8604  
(VS = 5.0 V, VCM = VS/2, TA = 25؇C, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
A Grade  
Typ  
D Grade  
Typ Max Unit  
Parameter  
Symbol  
Conditions  
Min  
Max  
Min  
INPUT CHARACTERISTICS  
Offset Voltage (AD8601/AD8602) VOS  
0 V VCM 5 V  
–40°C TA +125°C  
VCM = 0 V to 5 V  
80  
80  
0.2  
500  
1,300  
600  
1,700  
60  
100  
1,000  
30  
1,300 6,000 µV  
7,000 µV  
1,300 6,000 µV  
7,000 µV  
Offset Voltage (AD8604)  
Input Bias Current  
VOS  
IB  
–40°C TA +125°C  
0.2  
200  
200  
pA  
pA  
–40°C TA +85°C  
–40°C TA +125°C  
1,000 pA  
Input Offset Current  
IOS  
0.1  
6
25  
0.1  
6
25  
100  
100  
500  
5
pA  
pA  
pA  
V
–40°C TA +85°C  
–40°C TA +125°C  
50  
500  
5
Input Voltage Range  
0
0
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
CMRR  
AVO  
VCM = 0 V to 5 V  
VO = 0.5 V to 4.5 V,  
RL = 2 k, VCM = 0 V  
74  
30  
89  
80  
56  
20  
67  
60  
dB  
V/mV  
Offset Voltage Drift  
VOS/T  
2
2
µV/°C  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
IL = 1.0 mA  
4.925 4.975  
4.925 4.975  
V
IL = 10 mA  
–40°C TA +125°C  
IL = 1.0 mA  
IL = 10 mA  
–40°C TA +125°C  
4.7  
4.6  
4.77  
4.7  
4.6  
4.77  
V
V
Output Voltage Low  
VOL  
15  
125  
30  
175  
250  
15  
125  
30  
175  
250  
mV  
mV  
mV  
mA  
Output Current  
IOUT  
50  
10  
50  
10  
Closed-Loop Output Impedance  
ZOUT  
f = 1 MHz, AV = 1  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
VS = 2.7 V to 5.5 V  
VO = 0 V  
–40°C TA +125°C  
67  
80  
750  
56  
72  
750  
dB  
1,200 µA  
1,500 µA  
1,200  
1,500  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Full Power Bandwidth  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
BWp  
GBP  
o  
RL = 2 kΩ  
6
6
V/µs  
To 0.01%  
<1.0  
360  
8.4  
55  
<1.0  
360  
8.4  
55  
µs  
< 1% Distortion  
kHz  
MHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
en  
in  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
33  
18  
0.05  
33  
18  
0.05  
nV/Hz  
nV/Hz  
pA/Hz  
Current Noise Density  
Specifications subject to change without notice.  
REV. D  
–3–  
AD8601/AD8602/AD8604  
ABSOLUTE MAXIMUM RATINGS*  
Package Type  
*
Unit  
JA  
JC  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND to VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Storage Temperature Range  
R, RM, RT, RU Packages . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range  
5-Lead SOT-23 (RT)  
8-Lead SOIC (R)  
8-Lead MSOP (RM)  
14-Lead SOIC (R)  
14-Lead TSSOP (RU)  
230  
158  
210  
120  
180  
92  
43  
45  
36  
35  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
AD8601/AD8602/AD8604 . . . . . . . . . . . . –40°C to +125°C  
Junction Temperature Range  
*JA is specified for worst-case conditions, i.e., JA is specified for device in  
socket for PDIP packages; JA is specified for device soldered onto a circuit  
board for surface-mount packages.  
R, RM, RT, RU Packages . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300°C  
ESD  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 kV HBM  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
Branding  
AD8601ART-R2  
AD8601ART-REEL  
AD8601ART-REEL7  
AD8601DRT-R2  
AD8601DRT-REEL  
AD8601DRT-REEL7  
AD8602AR  
AD8602AR-REEL7  
AD8602AR-R2  
AD8602DR  
AD8602DR-REEL  
AD8602DR-REEL7  
AD8602ARM-R2  
AD8602ARM-REEL  
AD8602DRM-REEL  
AD8604AR  
AD8604AR-REEL  
AD8604AR-REEL7  
AD8604DR  
AD8604DR-REEL  
AD8604ARU  
AD8604ARU-REEL  
AD8604DRU  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
RT-5  
RT-5  
RT-5  
RT-5  
RT-5  
RT-5  
R-8  
R-8  
R-8  
R-8  
R-8  
AAA  
AAA  
AAA  
AAD  
AAD  
AAD  
8-Lead SOIC  
R-8  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
RM-8  
RM-8  
RM-8  
R-14  
R-14  
R-14  
R-14  
R-14  
RU-14  
RU-14  
RU-14  
RU-14  
ABA  
ABA  
ABD  
AD8604DRU-REEL  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD8601/AD8602/AD8604 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions  
are recommended to avoid performance degradation or loss of functionality.  
–4–  
REV. D  
Typical Performance Characteristics–  
AD8601/AD8602/AD8604  
60  
3,000  
2,500  
2,000  
1,500  
1,000  
V
T
= 5V  
= 25؇C TO 85؇C  
S
A
V
T
= 3V  
= 25؇C  
= 0V TO 3V  
S
A
50  
40  
30  
V
CM  
20  
10  
0
500  
0
؊1.0 ؊0.8 ؊0.6 ؊0.4 ؊0.2  
0
0
1
2
3
4
5
6
7
8
9
10  
0.2  
0.4  
0.6  
0.8  
1.0  
1.0  
10  
INPUT OFFSET VOLTAGE – mV  
TCVOS – V/؇C  
TPC 1. Input Offset Voltage Distribution  
TPC 4. Input Offset Voltage Drift Distribution  
1.5  
3,000  
2,500  
2,000  
1,500  
1,000  
V
T
= 3V  
= 25؇C  
S
A
V
T
= 5V  
= 25؇C  
= 0V TO 5V  
S
A
1.0  
0.5  
V
CM  
0
؊0.5  
؊1.0  
؊1.5  
؊2.0  
500  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
؊1.0 ؊0.8 ؊0.6 ؊0.4 ؊0.2  
0
0.2  
0.4  
0.6  
0.8  
COMMON-MODE VOLTAGE – V  
INPUT OFFSET VOLTAGE – mV  
TPC 2. Input Offset Voltage Distribution  
TPC 5. Input Offset Voltage vs. Common-Mode Voltage  
60  
50  
1.5  
V
T
= 5V  
= 25؇C  
V
T
= 3V  
= 25؇C TO 85؇C  
S
S
A
A
1.0  
0.5  
40  
30  
20  
10  
0
0
؊0.5  
؊1.0  
؊1.5  
؊2.0  
0
1
2
3
4
5
0
1
2
3
4
5
6
7
8
9
COMMON-MODE VOLTAGE – V  
TCVOS – V/؇C  
TPC 6. Input Offset Voltage vs. Common-Mode Voltage  
TPC 3. Input Offset Voltage Drift Distribution  
REV. D  
–5–  
AD8601/AD8602/AD8604  
300  
30  
25  
20  
15  
10  
5
V
= 3V  
V = 3V  
S
S
250  
200  
150  
100  
50  
0
0
؊40 ؊25 ؊10  
5
20  
35  
50  
65  
80  
95 110 125  
؊40 ؊25 ؊10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
TPC 7. Input Bias Current vs. Temperature  
TPC 10. Input Offset Current vs. Temperature  
300  
250  
200  
150  
100  
50  
30  
V
= 5V  
V
= 5V  
S
S
25  
20  
15  
10  
5
0
0
؊40 ؊25 ؊10  
5
20  
35  
50  
65  
80  
95 110 125  
؊40 ؊25 ؊10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
TPC 8. Input Bias Current vs. Temperature  
TPC 11. Input Offset Current vs. Temperature  
5
10k  
V
T
= 2.7V  
= 25؇C  
S
A
V
T
= 5V  
= 25؇C  
S
A
4
3
1k  
100  
10  
SOURCE  
SINK  
2
1
0
1
0.1  
0.001  
0.01  
0.1  
1
10  
100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
LOAD CURRENT – mA  
COMMON-MODE VOLTAGE – V  
TPC 9. Input Bias Current vs. Common-Mode Voltage  
TPC 12. Output Voltage to Supply Rail vs. Load Current  
–6–  
REV. D  
AD8601/AD8602/AD8604  
10k  
1k  
35  
30  
25  
V
T
= 5V  
= 25؇C  
S
A
V
= 2.7V  
S
SOURCE  
SINK  
V
@ 1mA LOAD  
OL  
100  
10  
20  
15  
10  
1
5
0
0.1  
0.001  
0.01  
0.1  
1
10  
100  
؊40 ؊25 ؊10  
5
20  
35  
50  
65  
80  
95 110 125  
LOAD CURRENT – mA  
TEMPERATURE – ؇C  
TPC 13. Output Voltage to Supply Rail vs. Load Current  
TPC 16. Output Voltage Swing vs. Temperature  
5.1  
2.67  
V
= 5V  
S
V
= 2.7V  
S
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
2.66  
2.65  
2.64  
2.63  
2.62  
V
@ 1mA LOAD  
OH  
V
@ 1mA LOAD  
OH  
V
@ 10mA LOAD  
OH  
؊40 ؊25 ؊10  
5
20  
35  
50  
65  
80  
95 110 125  
؊40 ؊25 ؊10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
TPC 14. Output Voltage Swing vs. Temperature  
TPC 17. Output Voltage Swing vs. Temperature  
250  
V
R
= 3V  
= NO LOAD  
= 25؇C  
S
V
= 5V  
S
100  
80  
L
T
A
200  
150  
60  
45  
90  
40  
20  
V
@ 10mA LOAD  
OL  
135  
180  
100  
50  
0
0
–20  
–40  
–60  
V
@ 1mA LOAD  
OL  
؊40 ؊25 ؊10  
5
20  
35  
50  
65  
80  
95 110 125  
1k  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE – ؇C  
FREQUENCY – Hz  
TPC 15. Output Voltage Swing vs. Temperature  
TPC 18. Open-Loop Gain and Phase vs. Frequency  
REV. D  
–7–  
AD8601/AD8602/AD8604  
3.0  
2.5  
2.0  
1.5  
V
R
= 5V  
= NO LOAD  
= 25؇C  
S
100  
80  
L
T
A
V
V
R
= 2.7V  
= 2.6V p-p  
= 2k⍀  
= 25؇C  
= 1  
S
IN  
60  
40  
20  
45  
L
T
A
90  
A
V
135  
180  
0
–20  
–40  
–60  
1.0  
0.5  
0
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 19. Open-Loop Gain and Phase vs. Frequency  
TPC 22. Closed-Loop Output Voltage Swing vs. Frequency  
6
5
V
T
= 3V  
= 25؇C  
S
A
A
A
A
= 100  
= 10  
= 1  
V
V
V
40  
20  
0
V
V
= 5V  
S
= 4.9V p-p  
= 2k⍀  
= 25؇C  
= 1  
IN  
4
3
R
T
L
A
A
V
2
1
0
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 20. Closed-Loop Gain vs. Frequency  
TPC 23. Closed-Loop Output Voltage Swing vs. Frequency  
200  
V
T
= 5V  
= 25؇C  
V
T
= 3V  
= 25؇C  
S
S
180  
160  
140  
120  
100  
80  
A
A
A
A
A
= 100  
= 10  
= 1  
V
V
V
40  
20  
0
A
= 100  
V
A
= 10  
V
A
= 1  
V
60  
40  
20  
0
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 21. Closed-Loop Gain vs. Frequency  
TPC 24. Output Impedance vs. Frequency  
–8–  
REV. D  
AD8601/AD8602/AD8604  
200  
180  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
V
T
= 5V  
= 25؇C  
V
T
= 5V  
= 25؇C  
S
A
S
A
A
= 100  
V
60  
A
= 10  
V
40  
A
= 1  
V
60  
20  
40  
0
20  
؊20  
0
؊40  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 25. Output Impedance vs. Frequency  
TPC 28. Power Supply Rejection Ratio vs. Frequency  
70  
160  
140  
120  
100  
80  
V
T
= 3V  
= 25؇C  
S
A
V
= 2.7V  
=
S
60  
50  
40  
30  
20  
10  
0
R
L
T
= 25؇C  
= 1  
A
A
V
؊OS  
60  
40  
+OS  
20  
0
؊20  
؊40  
1k  
10k  
100k  
1M  
10M 20M  
10  
100  
CAPACITANCE – pF  
1k  
FREQUENCY – Hz  
TPC 26. Common-Mode Rejection Ratio vs. Frequency  
TPC 29. Small Signal Overshoot vs. Load Capacitance  
160  
70  
V
T
= 5V  
= 25؇C  
S
A
V
= 5V  
=
140  
120  
100  
80  
S
60  
50  
40  
30  
20  
10  
0
R
L
T
= 25؇C  
= 1  
A
A
V
60  
40  
20  
0
؊20  
؊40  
؊OS  
+OS  
1k  
10k  
100k  
1M  
10M 20M  
10  
100  
1k  
FREQUENCY – Hz  
CAPACITANCE – pF  
TPC 27. Common-Mode Rejection Ratio vs. Frequency  
TPC 30. Small Signal Overshoot vs. Load Capacitance  
REV. D  
–9–  
AD8601/AD8602/AD8604  
1.2  
0.1  
0.01  
V
T
= 5V  
= 25؇C  
S
A
V
= 5V  
S
R
= 600⍀  
L
1.0  
0.8  
0.6  
0.4  
0.2  
0
R
= 2k⍀  
L
G = 10  
R
= 10k⍀  
L
R
= 600⍀  
R
= 2k⍀  
L
L
G = 1  
R
= 10k⍀  
L
0.001  
0.0001  
؊40 ؊25 ؊10  
5
20  
35  
50  
65  
80  
95 110 125  
20  
100  
1k  
FREQUENCY – Hz  
10k 20k  
TEMPERATURE – ؇C  
TPC 34. Total Harmonic Distortion + Noise vs. Frequency  
TPC 31. Supply Current per Amplifier vs. Temperature  
1.0  
64  
V
= 3V  
S
V
T
= 2.7V  
= 25؇C  
S
A
56  
48  
40  
0.8  
0.6  
0.4  
0.2  
32  
24  
16  
8
0
0
؊40 ؊25 ؊10  
5
20  
35  
50  
65  
80  
95 110 125  
0
5
10  
15  
20  
25  
FREQUENCY – kHz  
TEMPERATURE – ؇C  
TPC 32. Supply Current per Amplifier vs. Temperature  
TPC 35. Voltage Noise Density vs. Frequency  
208  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
T
= 2.7V  
= 25؇C  
S
A
182  
156  
130  
104  
78  
52  
26  
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
1
2
3
4
5
6
FREQUENCY – kHz  
SUPPLY VOLTAGE – V  
TPC 33. Supply Current per Amplifier vs. Supply Voltage  
TPC 36. Voltage Noise Density vs. Frequency  
–10–  
REV. D  
AD8601/AD8602/AD8604  
208  
182  
156  
130  
V
T
= 5V  
= 25؇C  
S
V
T
= 5V  
= 25؇C  
A
S
A
104  
78  
52  
26  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
TIME – 1s/DIV  
FREQUENCY – kHz  
TPC 37. Voltage Noise Density vs. Frequency  
TPC 40. 0.1 Hz to 10 Hz Input Voltage Noise  
64  
V
= 5V  
S
V
T
= 5V  
= 25؇C  
R
C
T
= 10k  
= 200pF  
= 25؇C  
S
L
L
56  
48  
40  
A
A
32  
24  
16  
8
200ns/DIV  
50.0mV/DIV  
0
0
5
10  
15  
20  
25  
FREQUENCY – kHz  
TPC 38. Voltage Noise Density vs. Frequency  
TPC 41. Small Signal Transient Response  
V
= 2.7V  
S
V
T
= 2.7V  
= 25؇C  
S
R
C
T
= 10k⍀  
= 200pF  
= 25؇C  
L
L
A
A
50.0mV/DIV  
200ns/DIV  
TIME – 1s/DIV  
TPC 39. 0.1 Hz to 10 Hz Input Voltage Noise  
TPC 42. Small Signal Transient Response  
REV. D  
–11–  
AD8601/AD8602/AD8604  
V
= 5V  
V
= 5V  
S
S
R
A
T
= 10k⍀  
= 1  
= 25؇C  
R
C
A
= 10k⍀  
= 200pF  
= 1  
L
V
L
L
V
IN  
A
V
A
T
= 25؇C  
V
OUT  
TIME – 400ns/DIV  
TIME – 2.0s/DIV  
TPC 43. Large Signal Transient Response  
TPC 46. No Phase Reversal  
V
= 2.7V  
= 10k⍀  
= 200pF  
= 1  
S
V
= 5V  
S
R
C
A
L
L
R
V
= 10k⍀  
= 2V p-p  
= 25؇C  
L
O
A
V
A
T
T
= 25؇C  
V
IN  
+0.1%  
ERROR  
V
OUT  
؊0.1%  
ERROR  
V
TRACE – 0.5V/DIV  
IN  
V
TRACE – 10mV/DIV  
OUT  
TIME – 100ns/DIV  
TIME – 400ns/DIV  
TPC 44. Large Signal Transient Response  
TPC 47. Settling Time  
2.0  
1.5  
V
= 2.7V  
= 10k⍀  
= 1  
S
V
T
= 2.7V  
= 25؇C  
S
A
R
A
T
L
V
= 25؇C  
V
A
IN  
1.0  
0.1%  
0.1%  
0.01%  
0.5  
V
0
OUT  
؊0.5  
؊1.0  
؊1.5  
؊2.0  
0.01%  
300  
350  
400  
450  
500  
550  
600  
TIME – 2.0s/DIV  
SETTLING TIME – ns  
TPC 45. No Phase Reversal  
TPC 48. Output Swing vs. Settling Time  
–12–  
REV. D  
AD8601/AD8602/AD8604  
Rail-to-Rail Input Stage  
5
4
3
2
V
T
= 5V  
= 25؇C  
The input common-mode voltage range of the AD860x extends  
to both positive and negative supply voltages. This maximizes the  
usable voltage range of the amplifier, an important feature for  
single-supply and low voltage applications. This rail-to-rail  
input range is achieved by using two input differential pairs, one  
NMOS and one PMOS, placed in parallel. The NMOS pair is  
active at the upper end of the common-mode voltage range, and  
the PMOS pair is active at the lower end.  
S
A
1
0
0.1%  
0.1%  
0.01%  
0.01%  
؊1  
؊2  
The NMOS and PMOS input stages are separately trimmed  
using DigiTrim to minimize the offset voltage in both differen-  
tial pairs. Both NMOS and PMOS input differential pairs are  
active in a 500 mV transition region, when the input common-  
mode voltage is between approximately 1.5 V and 1 V below the  
positive supply voltage. Input offset voltage will shift slightly in  
this transition region, as shown in TPCs 5 and 6. Common-  
mode rejection ratio will also be slightly lower when the input  
common-mode voltage is within this transition band. Compared  
to the Burr Brown OPA2340 rail-to-rail input amplifier, shown  
in Figure 1, the AD860x, shown in Figure 2, exhibits lower  
offset voltage shift across the entire input common-mode range,  
including the transition region.  
؊3  
؊4  
؊5  
0
200  
400  
600  
800  
1,000  
SETTLING TIME – ns  
TPC 49. Output Swing vs. Settling Time  
THEORY OF OPERATION  
The AD8601/AD8602/AD8604 family of amplifiers are rail-to-  
rail input and output precision CMOS amplifiers that operate  
from 2.7 V to 5.0 V of power supply voltage. These amplifiers  
use Analog Devices’ DigiTrim® technology to achieve a higher  
degree of precision than available from most CMOS amplifiers.  
DigiTrim technology is a method of trimming the offset volt-  
age of the amplifier after it has already been assembled. The  
advantage in post-package trimming lies in the fact that it cor-  
rects any offset voltages due to the mechanical stresses of  
assembly. This technology is scalable and used with every  
package option, including SOT-23-5, providing lower offset  
voltages than previously achieved in these small packages.  
0.7  
0.4  
0.1  
؊0.2  
؊0.5  
؊0.8  
؊1.1  
؊1.4  
The DigiTrim process is done at the factory and does not add  
additional pins to the amplifier. All AD860x amplifiers are  
available in standard op amp pinouts, making DigiTrim com-  
pletely transparent to the user. The AD860x can be used in any  
precision op amp application.  
The input stage of the amplifier is a true rail-to-rail architecture,  
allowing the input common-mode voltage range of the op amp  
to extend to both positive and negative supply rails. The voltage  
swing of the output stage is also rail-to-rail and is achieved by  
using an NMOS and PMOS transistor pair connected in a com-  
mon-source configuration. The maximum output voltage swing  
is proportional to the output current, and larger currents will  
limit how close the output voltage can get to the supply rail.  
This is a characteristic of all rail-to-rail output amplifiers. With  
1 mA of output current, the output voltage can reach within  
20 mV of the positive rail and within 15 mV of the negative rail.  
At light loads of >100 k, the output swings within ~1 mV of  
the supplies.  
0
1
2
3
4
5
V
– V  
CM  
Figure 1. Burr Brown OPA2340UR Input Offset  
Voltage vs. Common-Mode Voltage, 24 SOIC  
Units @ 25°C  
0.7  
0.4  
0.1  
؊0.2  
؊0.5  
؊0.8  
؊1.1  
؊1.4  
The open-loop gain of the AD860x is 80 dB, typical, with a load  
of 2 k. Because of the rail-to-rail output configuration, the  
gain of the output stage and the open-loop gain of the amplifier  
are dependent on the load resistance. Open-loop gain will de-  
crease with smaller load resistances. Again, this is a characteristic  
inherent to all rail-to-rail output amplifiers.  
0
1
2
3
4
5
V
– V  
CM  
Figure 2. AD8602AR Input Offset Voltage vs.  
Common-Mode Voltage, 300 SOIC Units @ 25°C  
REV. D  
–13–  
AD8601/AD8602/AD8604  
Input Overvoltage Protection  
10pF  
(OPTIONAL)  
As with any semiconductor device, if a condition could exist  
that would cause the input voltage to exceed the power supply,  
the device’s input overvoltage characteristic must be considered.  
Excess input voltage will energize internal PN junctions in the  
AD860x, allowing current to flow from the input to the supplies.  
4.7M  
V
OUT  
4.7V/A  
D1  
AD8601  
This input current will not damage the amplifier, provided it is  
limited to 5 mA or less. This can be ensured by placing a resis-  
tor in series with the input. For example, if the input voltage  
could exceed the supply by 5 V, the series resistor should be at  
least (5 V/5 mA) = 1 k. With the input voltage within the  
supply rails, a minimal amount of current is drawn into the  
inputs, which, in turn, causes a negligible voltage drop across  
the series resistor. Therefore, adding the series resistor will  
not adversely affect circuit performance.  
Figure 3. Amplifier Photodiode Circuit  
High- and Low-Side Precision Current Monitoring  
Because of its low input bias current and low offset voltage, the  
AD860x can be used for precision current monitoring. The true  
rail-to-rail input feature of the AD860x allows the amplifier to  
monitor current on either high-side or low-side. Using both  
amplifiers in an AD8602 provides a simple method for monitoring  
both current supply and return paths for load or fault detec-  
tion. Figures 4 and 5 demonstrate both circuits.  
Overdrive Recovery  
Overdrive recovery is defined as the time it takes the output of  
an amplifier to come off the supply rail when recovering from  
an overload signal. This is tested by placing the amplifier in a  
closed-loop gain of 10 with an input square wave of 2 V p-p while  
the amplifier is powered from either 5 V or 3 V.  
3V  
R2  
2.49k  
MONITOR  
OUTPUT  
Q1  
The AD860x has excellent recovery time from overload condi-  
tions. The output recovers from the positive supply rail within  
200 ns at all supply voltages. Recovery from the negative rail is  
within 500 ns at 5 V supply, decreasing to within 350 ns when  
the device is powered from 2.7 V.  
2N3904  
3V  
R1  
100⍀  
1/2 AD8602  
RETURN TO  
Power-On Time  
GROUND  
R
SENSE  
0.1⍀  
Power-on time is important in portable applications, where the  
supply voltage to the amplifier may be toggled to shut down the  
device to improve battery life. Fast power-up behavior ensures  
that the output of the amplifier will quickly settle to its final  
voltage, improving the power-up speed of the entire system.  
Once the supply voltage reaches a minimum of 2.5 V, the AD860x  
will settle to a valid output within 1 µs. This turn-on response  
time is faster than many other precision amplifiers, which can  
take tens or hundreds of microseconds for their outputs to settle.  
Figure 4. A Low-Side Current Monitor  
R
SENSE  
I
L
0.1  
V+  
3V  
3V  
R1  
100⍀  
1/2  
AD8602  
Using the AD8602 in High Source Impedance Applications  
The CMOS rail-to-rail input structure of the AD860x allows  
these amplifiers to have very low input bias currents, typically  
0.2 pA. This allows the AD860x to be used in any application  
that has a high source impedance or must use large value resis-  
tances around the amplifier. For example, the photodiode  
amplifier circuit shown in Figure 3 requires a low input bias  
current op amp to reduce output voltage error. The AD8601  
minimizes offset errors due to its low input bias current and low  
offset voltage.  
Q1  
2N3905  
MONITOR  
OUTPUT  
R2  
2.49k⍀  
Figure 5. A High-Side Current Monitor  
Voltage drop is created across the 0.1 resistor that is propor-  
tional to the load current. This voltage appears at the inverting  
input of the amplifier due to the feedback correction around the  
op amp. This creates a current through R1 which, in turn, pulls  
current through R2. For the low-side monitor, the monitor  
output voltage is given by  
The current through the photodiode is proportional to the inci-  
dent light power on its surface. The 4.7 Mresistor converts  
this current into a voltage, with the output of the AD8601  
increasing at 4.7 V/µA. The feedback capacitor reduces excess  
noise at higher frequencies by limiting the bandwidth of the  
circuit to  
RSENSE  
Monitor Output = 3V R2 ×  
× I  
L   
(2)  
1
R1  
BW =  
(1)  
2π 4.7 MC  
(
)
F
Using a 10 pF feedback capacitor limits the bandwidth to approxi-  
mately 3.3 kHz.  
–14–  
REV. D  
AD8601/AD8602/AD8604  
For the high-side monitor, the monitor output voltage is  
The AD8601, AD7476, and AD5320 are all available in space-  
saving SOT-23 packages.  
RSENSE  
Monitor Output = R2 ×  
× I  
L
PC100 Compliance for Computer Audio Applications  
Because of its low distortion and rail-to-rail input and output,  
the AD860x is an excellent choice for low-cost, single-supply  
audio applications, ranging from microphone amplification to  
line output buffering. TPC 34 shows the total harmonic distor-  
tion plus noise (THD + N) figures for the AD860x. In unity  
gain, the amplifier has a typical THD + N of 0.004%, or –86 dB,  
even with a load resistance of 600 . This is compliant with the  
PC100 specification requirements for audio in both portable  
and desktop computers.  
(3)  
R1  
Using the components shown, the monitor output transfer func-  
tion is 2.5 V/A.  
Using the AD8601 in Single-Supply Mixed-Signal Applications  
Single-supply mixed-signal applications requiring 10 or more  
bits of resolution demand both a minimum of distortion and a  
maximum range of voltage swing to optimize performance. To  
ensure that the A/D or D/A converters achieve their best perfor-  
mance, an amplifier often must be used for buffering or signal  
conditioning. The 750 µV maximum offset voltage of the  
AD8601 allows the amplifier to be used in 12-bit applications  
powered from a 3 V single supply, and its rail-to-rail input  
and output ensure no signal clipping.  
Figure 8 shows how an AD8602 can be interfaced with an AC’97  
codec to drive the line output. Here, the AD8602 is used as a  
unity-gain buffer from the left and right outputs of the AC’97  
codec. The 100 µF output coupling capacitors block dc cur-  
rent and the 20 series resistors protect the amplifier from  
short circuits at the jack.  
Figure 6 shows the AD8601 used as an input buffer amplifier to  
the AD7476, a 12-bit 1 MHz A/D converter. As with most A/D  
converters, total harmonic distortion (THD) increases with  
higher source impedances. By using the AD8601 in a buffer  
configuration, the low output impedance of the amplifier mini-  
mizes THD while the high input impedance and low bias current  
of the op amp minimizes errors due to source impedance. The  
8 MHz gain-bandwidth product of the AD8601 ensures no  
signal attenuation up to 500 kHz, which is the maximum Nyquist  
frequency for the AD7476.  
5V  
5V  
V
DD  
2
3
C1  
R4  
20⍀  
8
100F  
28  
35  
V
DD  
1
U1-A  
4
R2  
2k⍀  
LEFT  
OUT  
AD1881  
(AC'97)  
3V  
5V  
REF193  
0.1F  
5
C2  
100F  
SUPPLY  
R5  
20⍀  
36  
RIGHT  
OUT  
1F  
TANT  
10F  
0.1F  
7
680nF  
U1-B  
V
SS  
6
R3  
2k⍀  
4
3
V
DD  
5
2
SCLK  
SDATA  
CS  
1
R
V
S
IN  
NOTE: ADDITIONAL PINS  
OMITTED FOR CLARITY  
C/P  
AD8601  
U1 = AD8602D  
V
GND  
IN  
Figure 8. A PC100 Compliant Line Output Amplifier  
SPICE Model  
AD7476/AD7477  
SERIAL  
INTERFACE  
The SPICE macro-model for the AD860x amplifier is available  
and can be downloaded from the Analog Devices website at  
www.analog.com. The model will accurately simulate a number  
of both dc and ac parameters, including open-loop gain,  
bandwidth, phase margin, input voltage range, output voltage  
swing versus output current, slew rate, input voltage noise,  
CMRR, PSRR, and supply current versus supply voltage. The  
model is optimized for performance at 27°C. Although it will  
function at different temperatures, it may lose accuracy with  
respect to the actual behavior of the AD860x.  
Figure 6. A Complete 3 V 12-Bit 1 MHz A/D  
Conversion System  
Figure 7 demonstrates how the AD8601 can be used as an output  
buffer for the DAC for driving heavy resistive loads. The AD5320  
is a 12-bit D/A converter that can be used with clock frequen-  
cies up to 30 MHz and signal frequencies up to 930 kHz. The  
rail-to-rail output of the AD8601 allows it to swing within 100 mV  
of the positive supply rail while sourcing 1 mA of current. The  
total current drawn from the circuit is less than 1 mA, or 3 mW  
from a 3 V single supply.  
3V  
1F  
V
OUT  
4
3
5
2
0V TO 3.0V  
4
5
6
1
3-WIRE  
SERIAL  
INTERFACE  
1
AD5320  
AD8601  
R
L
2
Figure 7. Using the AD8601 as a DAC Output  
Buffer to Drive Heavy Loads  
REV. D  
–15–  
AD8601/AD8602/AD8604  
OUTLINE DIMENSIONS  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
5-Lead Small Outline Transistor Package [SOT-23]  
(RT-5)  
Dimensions shown in millimeters  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
2.90 BSC  
5
1
4
3
14  
8
7
2.80 BSC  
1.60 BSC  
2
4.50  
4.40  
4.30  
6.40  
BSC  
PIN 1  
0.95 BSC  
1
1.90  
BSC  
1.30  
1.15  
0.90  
PIN 1  
1.05  
1.00  
0.80  
0.65  
BSC  
0.20  
0.09  
1.20  
1.45 MAX  
0.22  
0.08  
0.75  
0.60  
0.45  
MAX  
8؇  
0؇  
0.15  
0.05  
10؇  
5؇  
0؇  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.15 MAX  
0.60  
0.45  
0.30  
0.50  
0.30  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-153AB-1  
COMPLIANT TO JEDEC STANDARDS MO-178AA  
14-Lead Standard Small Outline Package [SOIC]  
(R-14)  
8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters and (inches)  
Dimensions shown in millimeters  
8.75 (0.3445)  
8.55 (0.3366)  
3.00  
BSC  
14  
1
8
7
8
5
4
4.00 (0.1575)  
3.80 (0.1496)  
6.20 (0.2441)  
5.80 (0.2283)  
4.90  
BSC  
3.00  
BSC  
1
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
1.75 (0.0689)  
1.35 (0.0531)  
؋
 45؇  
PIN 1  
0.25 (0.0098)  
0.10 (0.0039)  
0.65 BSC  
8؇  
0؇  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
PLANE  
1.10 MAX  
0.15  
0.00  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
COPLANARITY  
0.10  
0.80  
0.60  
0.40  
8؇  
0؇  
0.38  
0.22  
0.23  
0.08  
COMPLIANT TO JEDEC STANDARDS MS-012AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
8-Lead Standard Small Outline Package [SOIC]  
(R-8)  
Dimensions shown in millimeters and (inches)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
؋
 45؇  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8؇  
0.51 (0.0201)  
0.31 (0.0122)  
0؇ 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
–16–  
REV. D  
AD8601/AD8602/AD8604  
Revision History  
Location  
Page  
11/03—Data Sheet changed from REV. C to REV. D.  
Changes to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3/03—Data Sheet changed from REV. B to REV. C.  
Changes to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
3/03—Data Sheet changed from REV. A to REV. B.  
Change to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Change to FUNCTIONAL BLOCK DIAGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Change to TPC 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Changes to Figures 4 and 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Changes to Equations 2 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, 15  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
REV. D  
–17–  
–18–  
–19–  
–20–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY