AD8604ARZ-REEL7 [ADI]

Precision CMOS, Single-Supply, Rail-to-Rail, Input/Output Wideband Operational Amplifiers; 精密CMOS单电源,轨到轨输入/输出宽带运算放大器
AD8604ARZ-REEL7
型号: AD8604ARZ-REEL7
厂家: ADI    ADI
描述:

Precision CMOS, Single-Supply, Rail-to-Rail, Input/Output Wideband Operational Amplifiers
精密CMOS单电源,轨到轨输入/输出宽带运算放大器

运算放大器
文件: 总24页 (文件大小:356K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision CMOS, Single-Supply, Rail-to-Rail,  
Input/Output Wideband Operational Amplifiers  
AD8601/AD8602/AD8604  
FEATURES  
PIN CONFIGURATIONS  
Low offset voltage: 500 μV maximum  
Single-supply operation: 2.7 V to 5.5 V  
Low supply current: 750 μA/Amplifier  
Wide bandwidth: 8 MHz  
Slew rate: 5 V/μs  
OUT A  
V–  
1
5
V+  
AD8601  
TOP VIEW  
2
(Not to Scale)  
+IN  
3
4
–IN  
Figure 1. 5-Lead SOT-23 (RJ Suffix)  
Low distortion  
No phase reversal  
Low input currents  
Unity-gain stable  
Qualified for automotive applications  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8602  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Figure 2. 8-Lead MSOP (RM Suffix) and 8-Lead SOIC (R-Suffix)  
APPLICATIONS  
1
2
3
4
5
6
7
OUT A  
–IN A  
+IN A  
V+  
14  
13  
12  
11  
OUT D  
–IN D  
+IN D  
V–  
Current sensing  
Barcode scanners  
PA controls  
Battery-powered instrumentation  
Multipole filters  
Sensors  
ASIC input or output amplifiers  
Audio  
AD8604  
TOP VIEW  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
10 +IN C  
9
8
–IN C  
OUT C  
Figure 3. 14-Lead TSSOP (RU Suffix) and 14-Lead SOIC (R Suffix)  
GENERAL DESCRIPTION  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
OUT A  
–IN A  
+IN A  
V+  
OUT D  
–IN D  
+IN D  
V–  
The AD8601, AD8602, and AD8604 are single, dual, and quad  
rail-to-rail, input and output, single-supply amplifiers featuring  
very low offset voltage and wide signal bandwidth. These amplifiers  
use a new, patented trimming technique that achieves superior  
performance without laser trimming. All are fully specified to  
operate on a 3 V to 5 V single supply.  
AD8604  
TOP VIEW  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
NC  
+IN C  
–IN C  
OUT C  
NC  
The combination of low offsets, very low input bias currents,  
and high speed make these amplifiers useful in a wide variety  
of applications. Filters, integrators, diode amplifiers, shunt  
current sensors, and high impedance sensors all benefit from  
the combination of performance features. Audio and other ac  
applications benefit from the wide bandwidth and low distortion.  
For the most cost-sensitive applications, the D grades offer this  
ac performance with lower dc precision at a lower price point.  
NC = NO CONNECT  
Figure 4. 16-Lead Shrink Small Outline QSOP (RQ Suffix)  
The AD8601, AD8602, and AD8604 are specified over the  
extended industrial (−40°C to +125°C) temperature range. The  
AD8601, single, is available in a tiny, 5-lead SOT-23 package. The  
AD8602, dual, is available in 8-lead MSOP and 8-lead, narrow  
SOIC surface-mount packages. The AD8604, quad, is available  
in 14-lead TSSOP, 14-lead SOIC, and 16-lead QSOP packages.  
See the Ordering Guide for automotive grades.  
Applications for these amplifiers include audio amplification for  
portable devices, portable phone headsets, bar code scanners,  
portable instruments, cellular PA controls, and multipole filters.  
The ability to swing rail-to-rail at both the input and output  
enables designers to buffer CMOS ADCs, DACs, ASICs, and  
other wide output swing devices in single-supply systems.  
Rev. G  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2000–2011 Analog Devices, Inc. All rights reserved.  
 
AD8601/AD8602/AD8604  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Input Overvoltage Protection................................................... 16  
Overdrive Recovery ................................................................... 16  
Power-On Time .......................................................................... 16  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Pin Configurations ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ...................................................................... 15  
Rail-to-Rail Input Stage ............................................................. 15  
Using the AD8602 in High Source Impedance  
Applications ................................................................................ 16  
High Side and Low Side, Precision Current Monitoring...... 16  
Using the AD8601 in Single-Supply, Mixed Signal  
Applications ................................................................................ 17  
PC100 Compliance for Computer Audio Applications ........ 17  
SPICE Model............................................................................... 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 22  
Automotive Products................................................................. 22  
REVISION HISTORY  
1/11—Rev. F to Rev. G  
11/03—Rev. C to Rev. D  
Changes to Ordering Guide .......................................................... 22  
Change to Automotive Products Section .................................... 22  
Changes to Features ..........................................................................1  
Changes to Ordering Guide.............................................................4  
5/10—Rev. E to Rev. F  
3/03—Rev. B to Rev. C  
Changes to Features Section and General Description  
Section................................................................................................ 1  
Changes to Ordering Guide .......................................................... 22  
Added Automotive Products Section .......................................... 22  
Changes to Features ..........................................................................1  
3/03—Rev. A to Rev. B  
Change to Features............................................................................1  
Change to Functional Block Diagrams...........................................1  
Change to TPC 39 .......................................................................... 11  
Changes to Figures 4 and 5 ........................................................... 14  
Changes to Equations 2 and 3................................................. 14, 15  
Updated Outline Dimensions....................................................... 16  
2/10—Rev. D to Rev. E  
Add 16-Lead QSOP............................................................Universal  
Changes to Table 3 and Table 4....................................................... 5  
Updated Outline Dimensions....................................................... 19  
Changes to Ordering Guide .......................................................... 22  
Rev. G | Page 2 of 24  
 
AD8601/AD8602/AD8604  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VS = 3 V, VCM = VS/2, TA = 25°C, unless otherwise noted.  
Table 1.  
A Grade  
Typ  
D Grade  
Typ  
Parameter  
Symbol  
Conditions  
Min  
Max  
Min  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage (AD8601/AD8602)  
VOS  
0 V ≤ VCM ≤ 1.3 V  
80  
500  
700  
1100  
750  
1800  
2100  
600  
800  
1600  
800  
2200  
2400  
60  
100  
1000  
30  
50  
500  
3
1100  
6000  
7000  
7000  
6000  
7000  
7000  
6000  
7000  
7000  
6000  
7000  
7000  
200  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
pA  
pA  
pA  
pA  
pA  
pA  
V
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
0 V ≤ VCM ≤ 3 V1  
350  
80  
1300  
1100  
1300  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
VCM = 0 V to 1.3 V  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Offset Voltage (AD8604)  
VOS  
CM = 0 V to 3.0 V1  
350  
V
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Bias Current  
IB  
0.2  
25  
150  
0.1  
0.2  
25  
150  
0.1  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
200  
1000  
100  
100  
500  
Input Offset Current  
IOS  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
0
0
3
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
CMRR  
AVO  
VCM = 0 V to 3 V  
VO = 0.5 V to 2.5 V,  
RL = 2 kΩ, VCM = 0 V  
68  
30  
83  
100  
52  
20  
65  
60  
dB  
V/mV  
Offset Voltage Drift  
ΔVOS/ΔT  
2
2
μV/°C  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IL = 1.0 mA  
–40°C ≤ TA ≤ +125°C  
IL = 1.0 mA  
2.92  
2.88  
2.95  
20  
2.92  
2.88  
2.95  
20  
V
V
mV  
mV  
mA  
Ω
Output Voltage Low  
35  
50  
35  
50  
−40°C ≤ TA ≤ +125°C  
Output Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
IOUT  
ZOUT  
30  
12  
30  
12  
f = 1 MHz, AV = 1  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
VS = 2.7 V to 5.5 V  
VO = 0 V  
−40°C ≤ TA ≤ +125°C  
67  
80  
680  
56  
72  
680  
dB  
μA  
μA  
1000  
1300  
1000  
1300  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
RL = 2 kΩ  
To 0.01%  
5.2  
<0.5  
8.2  
50  
5.2  
<0.5  
8.2  
50  
V/μs  
μs  
MHz  
Degrees  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
tS  
GBP  
Φo  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
in  
f = 1 kHz  
f = 10 kHz  
33  
18  
0.05  
33  
18  
0.05  
nV/√Hz  
nV/√Hz  
pA/√Hz  
Current Noise Density  
1 For VCM between 1.3 V and 1.8 V, VOS may exceed specified value.  
Rev. G | Page 3 of 24  
 
 
AD8601/AD8602/AD8604  
VS = 5.0 V, VCM = VS/2, TA = 25°C, unless otherwise noted.  
Table 2.  
A Grade  
Typ  
D Grade  
Typ  
Parameter  
Symbol  
VOS  
Conditions  
Min  
Max  
Min  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage (AD8601/AD8602)  
0 V ≤ VCM ≤ 5 V  
−40°C ≤ TA ≤ +125°C  
VCM = 0 V to 5 V  
80  
80  
0.2  
500  
1300  
600  
1700  
60  
100  
1000  
30  
1300  
1300  
0.2  
6000  
7000  
6000  
7000  
200  
200  
1000  
100  
100  
500  
5
μV  
μV  
μV  
μV  
pA  
pA  
pA  
pA  
pA  
pA  
V
Offset Voltage (AD8604)  
Input Bias Current  
VOS  
−40°C ≤ TA ≤ +125°C  
IB  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
0.1  
6
25  
0.1  
6
25  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
50  
500  
5
Input Voltage Range  
0
0
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
CMRR  
AVO  
VCM = 0 V to 5 V  
VO = 0.5 V to 4.5 V,  
RL = 2 kΩ, VCM = 0 V  
74  
30  
89  
80  
56  
20  
67  
60  
dB  
V/mV  
Offset Voltage Drift  
OUTPUT CHARACTERISTICS  
Output Voltage High  
ΔVOS/ΔT  
VOH  
2
2
μV/°C  
IL = 1.0 mA  
4.925 4.975  
4.925 4.975  
V
IL = 10 mA  
−40°C ≤ TA ≤ +125°C  
IL = 1.0 mA  
IL = 10 mA  
−40°C ≤ TA ≤ +125°C  
4.7  
4.6  
4.77  
4.7  
4.6  
4.77  
V
V
Output Voltage Low  
VOL  
15  
125  
30  
175  
250  
15  
125  
30  
175  
250  
mV  
mV  
mV  
mA  
Ω
Output Current  
IOUT  
50  
10  
50  
10  
Closed-Loop Output Impedance  
POWER SUPPLY  
ZOUT  
f = 1 MHz, AV = 1  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
VS = 2.7 V to 5.5 V  
VO = 0 V  
−40°C ≤ TA ≤ +125°C  
67  
80  
750  
56  
72  
750  
dB  
μA  
μA  
1200  
1500  
1200  
1500  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Full Power Bandwidth  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
BWp  
GBP  
Φo  
RL = 2 kΩ  
To 0.01%  
<1% distortion  
6
6
V/μs  
μs  
kHz  
MHz  
Degrees  
<1.0  
360  
8.4  
55  
<1.0  
360  
8.4  
55  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
in  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
33  
18  
0.05  
33  
18  
0.05  
nV/√Hz  
nV/√Hz  
pA/√Hz  
Current Noise Density  
Rev. G | Page 4 of 24  
AD8601/AD8602/AD8604  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
THERMAL RESISTANCE  
θJA is specified for worst-case conditions, that is, a device  
soldered onto a circuit board for surface-mount packages using  
a standard 4-layer board.  
Parameter  
Rating  
Supply Voltage  
Input Voltage  
6 V  
GND to VS  
6 V  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
Differential Input Voltage  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature Range (Soldering, 60 sec)  
ESD  
Table 4. Thermal Resistance  
Package Type  
θJA  
θJC  
92  
45  
45  
36  
35  
36  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
5-Lead SOT-23 (RJ)  
8-Lead SOIC (R)  
8-Lead MSOP (RM)  
14-Lead SOIC (R)  
14-Lead TSSOP (RU)  
16-Lead QSOP (RQ)  
190  
120  
142  
115  
112  
115  
2 kV HBM  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. G | Page 5 of 24  
 
AD8601/AD8602/AD8604  
TYPICAL PERFORMANCE CHARACTERISTICS  
3,000  
60  
50  
40  
30  
20  
V
T
= 3V  
= 25°C  
V
T
= 5V  
= 25°C TO 85°C  
S
A
S
A
V
= 0V TO 3V  
CM  
2,500  
2,000  
1,500  
1,000  
500  
0
10  
0
–1.0 –0.8 –0.6 –0.4 –0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
1
2
3
4
5
6
7
8
9
10  
3.0  
5
INPUT OFFSET VOLTAGE (mV)  
TCVOS (µV/°C)  
Figure 5. Input Offset Voltage Distribution  
Figure 8. Input Offset Voltage Drift Distribution  
3,000  
2,500  
2,000  
1,500  
1,000  
1.5  
1.0  
V
T
= 3V  
= 25°C  
S
A
V
= 5V  
= 25°C  
S
T
A
V
= 0V TO 5V  
CM  
0.5  
0
–0.5  
–1.0  
500  
0
–1.5  
–2.0  
–1.0 –0.8 –0.6 –0.4 –0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
INPUT OFFSET VOLTAGE (mV)  
COMMON-MODE VOLTAGE (V)  
Figure 6. Input Offset Voltage Distribution  
Figure 9. Input Offset Voltage vs. Common-Mode Voltage  
60  
50  
40  
30  
20  
1.5  
1.0  
V
T
= 5V  
= 25°C  
S
A
V
T
= 3V  
= 25°C TO 85°C  
S
A
0.5  
0
–0.5  
–1.0  
10  
0
–1.5  
–2.0  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
TCVOS (µV/°C)  
COMMON-MODE VOLTAGE (V)  
Figure 7. Input Offset Voltage Drift Distribution  
Figure 10. Input Offset Voltage vs. Common-Mode Voltage  
Rev. G | Page 6 of 24  
 
 
 
AD8601/AD8602/AD8604  
300  
250  
30  
25  
V
= 3V  
V = 3V  
S
S
200  
150  
20  
15  
100  
10  
50  
0
5
0
–40 –25 10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Input Bias Current vs. Temperature  
Figure 14. Input Offset Current vs. Temperature  
300  
250  
30  
25  
V
= 5V  
V = 5V  
S
S
200  
150  
20  
15  
100  
10  
50  
0
5
0
–40 –25 10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. Input Bias Current vs. Temperature  
Figure 15. Input Offset Current vs. Temperature  
5
10k  
V
T
= 2.7V  
= 25°C  
V
T
= 5V  
= 25°C  
S
S
A
A
4
3
2
1k  
100  
10  
SOURCE  
SINK  
1
1
0
0.1  
0.001  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0.01  
0.1  
1
10  
100  
COMMON-MODE VOLTAGE (V)  
LOAD CURRENT (mA)  
Figure 13. Input Bias Current vs. Common-Mode Voltage  
Figure 16. Output Voltage to Supply Rail vs. Load Current  
Rev. G | Page 7 of 24  
AD8601/AD8602/AD8604  
35  
30  
25  
10k  
V
T
= 5V  
= 25°C  
V
= 2.7V  
S
A
S
1k  
100  
10  
20  
15  
10  
SOURCE  
V
@ 1mA LOAD  
OH  
SINK  
1
5
0
0.1  
0.001  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
0.01  
0.1  
1
10  
100  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
Figure 17. Output Voltage to Supply Rail vs. Load Current  
Figure 20. Output Voltage Swing vs. Temperature  
5.1  
5.0  
2.67  
V
= 2.7V  
S
V
= 5V  
S
2.66  
2.65  
2.64  
V
@ 1mA LOAD  
OH  
4.9  
4.8  
V
@ 1mA LOAD  
OH  
V
@ 10mA LOAD  
OH  
4.7  
2.63  
2.62  
4.6  
4.5  
–40 –25 10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 18. Output Voltage Swing vs. Temperature  
Figure 21. Output Voltage Swing vs. Temperature  
120  
100  
80  
250  
–90  
–45  
0
V
R
= 3V  
= NO LOAD  
= 25°C  
V
= 5V  
S
S
L
T
A
200  
150  
100  
45  
90  
60  
PHASE  
GAIN  
40  
V
@ 10mA LOAD  
OH  
20  
135  
180  
0
–20  
–40  
–60  
–80  
225  
270  
50  
0
315  
360  
V
@ 1mA LOAD  
OH  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
1k  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 19. Output Voltage Swing vs. Temperature  
Figure 22. Open-Loop Gain and Phase vs. Frequency  
Rev. G | Page 8 of 24  
AD8601/AD8602/AD8604  
120  
100  
80  
3.0  
2.5  
–90  
–45  
0
V
R
= 5V  
= NO LOAD  
= 25°C  
S
L
T
A
V
V
R
= 2.7V  
= 2.6V p-p  
= 2k  
= 25°C  
= 1  
S
IN  
45  
90  
60  
L
2.0  
1.5  
T
A
PHASE  
40  
A
V
20  
135  
180  
0
GAIN  
1.0  
–20  
–40  
–60  
–80  
225  
270  
0.5  
0
315  
360  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. Open-Loop Gain and Phase vs. Frequency  
Figure 26. Closed-Loop Output Voltage Swing vs. Frequency  
6
5
V
T
= 3V  
= 25°C  
S
A
A
= 100  
= 10  
V
40  
V
V
R
= 5V  
S
= 4.9V p-p  
= 2kΩ  
= 25°C  
= 1  
IN  
A
V
4
3
L
20  
0
T
A
A
V
A
= 1  
V
2
1
0
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 27. Closed-Loop Output Voltage Swing vs. Frequency  
Figure 24. Closed-Loop Gain vs. Frequency  
200  
180  
160  
V
T
= 5V  
= 25°C  
S
A
V
T
= 3V  
= 25°C  
S
A
A
= 100  
V
40  
20  
0
140  
120  
A
= 10  
V
A
= 100  
V
100  
80  
A
= 1  
V
A
= 10  
V
60  
40  
20  
0
A
= 1  
V
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 25. Closed-Loop Gain vs. Frequency  
Figure 28. Output Impedance vs. Frequency  
Rev. G | Page 9 of 24  
AD8601/AD8602/AD8604  
200  
160  
140  
120  
100  
80  
V
T
= 5V  
= 25°C  
V
T
= 5V  
S
S
= 25°C  
180  
160  
A
A
140  
120  
A
= 100  
V
60  
100  
80  
A
= 10  
V
40  
A
= 1  
V
20  
60  
40  
20  
0
0
–20  
–40  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 29. Output Impedance vs. Frequency  
Figure 32. Power Supply Rejection Ratio vs. Frequency  
160  
140  
120  
100  
80  
70  
60  
50  
40  
V
R
= 2.7V  
V
T
= 3V  
= 25°C  
S
S
=
L
A
T
= 25°C  
= 1  
A
A
V
–OS  
60  
+OS  
30  
20  
10  
0
40  
20  
0
–20  
–40  
10  
100  
CAPACITANCE (pF)  
1k  
1k  
10k  
100k  
1M  
10M 20M  
FREQUENCY (Hz)  
Figure 30. Common-Mode Rejection Ratio vs. Frequency  
Figure 33. Small Signal Overshoot vs. Load Capacitance  
160  
140  
120  
100  
80  
70  
60  
50  
40  
V
R
= 5V  
V
T
= 5V  
= 25°C  
S
S
=
L
A
T
= 25°C  
= 1  
A
A
V
–OS  
+OS  
60  
30  
20  
10  
0
40  
20  
0
–20  
–40  
10  
100  
CAPACITANCE (pF)  
1k  
1k  
10k  
100k  
1M  
10M 20M  
FREQUENCY (Hz)  
Figure 31. Common-Mode Rejection Ratio vs. Frequency  
Figure 34. Small Signal Overshoot vs. Load Capacitance  
Rev. G | Page 10 of 24  
AD8601/AD8602/AD8604  
0.1  
0.01  
1.2  
1.0  
V
T
= 5V  
= 25°C  
S
A
V
= 5V  
S
R
= 600Ω  
L
R
= 2kΩ  
G = 10  
L
R
= 10kΩ  
L
0.8  
0.6  
R
= 600Ω  
L
R
= 2kΩ  
L
G = 1  
R
= 10kΩ  
L
0.001  
0.4  
0.2  
0
0.0001  
20  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
–40 –25 10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 38. Total Harmonic Distortion + Noise vs. Frequency  
Figure 35. Supply Current per Amplifier vs. Temperature  
64  
1.0  
0.8  
V
T
= 2.7V  
= 25°C  
S
A
V
= 3V  
S
56  
48  
40  
32  
0.6  
0.4  
24  
16  
8
0.2  
0
0
0
5
10  
15  
20  
25  
–40 –25 10  
5
20  
35  
50  
65  
80  
95 110 125  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
Figure 39. Voltage Noise Density vs. Frequency  
Figure 36. Supply Current per Amplifier vs. Temperature  
208  
0.8  
V
T
= 2.7V  
= 25°C  
S
A
182  
156  
130  
104  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
78  
52  
26  
0
0.1  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
1
2
3
4
5
6
FREQUENCY (kHz)  
SUPPLY VOLTAGE (V)  
Figure 40. Voltage Noise Density vs. Frequency  
Figure 37. Supply Current per Amplifier vs. Supply Voltage  
Rev. G | Page 11 of 24  
 
AD8601/AD8602/AD8604  
208  
V
T
= 5V  
= 25°C  
S
A
V
T
= 5V  
= 25°C  
S
A
182  
156  
130  
104  
78  
52  
26  
0
TIME (1s/DIV)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
FREQUENCY (kHz)  
Figure 44. 0.1 Hz to 10 Hz Input Voltage Noise  
Figure 41. Voltage Noise Density vs. Frequency  
64  
V
R
C
= 5V  
S
V
T
= 5V  
= 25°C  
S
A
= 10k  
= 200pF  
= 25°C  
L
L
56  
48  
40  
32  
T
A
24  
16  
8
50mV/DIV  
200ns/DIV  
0
0
5
10  
15  
20  
25  
FREQUENCY (kHz)  
Figure 42. Voltage Noise Density vs. Frequency  
Figure 45. Small Signal Transient Response  
V
T
= 2.7V  
= 25°C  
S
A
V
R
C
= 2.7V  
S
= 10kΩ  
= 200pF  
= 25°C  
L
L
T
A
50mV/DIV  
200ns/DIV  
TIME (1s/DIV)  
Figure 46. Small Signal Transient Response  
Figure 43. 0.1 Hz to 10 Hz Input Voltage Noise  
Rev. G | Page 12 of 24  
AD8601/AD8602/AD8604  
V
V
= 5V  
V
= 5V  
S
IN  
S
R
C
A
= 10kΩ  
= 200pF  
= 1  
R
A
T
= 10kΩ  
= 1  
= 25°C  
L
L
L
V
A
V
A
T
= 25°C  
V
OUT  
TIME (400ns/DIV)  
TIME (2µs/DIV)  
Figure 47. Large Signal Transient Response  
Figure 50. No Phase Reversal  
V
= 2.7V  
V
= 5V  
S
S
R
C
A
= 10kΩ  
= 200pF  
= 1  
R
V
T
= 10kΩ  
= 2V p-p  
= 25°C  
L
L
L
O
A
V
A
T
= 25°C  
V
IN  
+0.1%  
ERROR  
V
OUT  
–0.1%  
ERROR  
V
TRACE – 0.5V/DIV  
IN  
V
TRACE – 10mV/DIV  
OUT  
TIME (400ns/DIV)  
TIME (100ns/DIV)  
Figure 48. Large Signal Transient Response  
Figure 51. Settling Time  
2.0  
V
= 2.7V  
= 10kΩ  
= 1  
S
V
T
= 2.7V  
= 25°C  
S
A
R
L
V
A
A
T
1.5  
1.0  
0.5  
0
V
IN  
= 25°C  
0.1%  
0.01%  
V
OUT  
–0.5  
–1.0  
–1.5  
–2.0  
0.1%  
0.01%  
TIME (2µs/DIV)  
300  
350  
400  
450  
500  
550  
600  
SETTLING TIME (ns)  
Figure 49. No Phase Reversal  
Figure 52. Output Swing vs. Settling Time  
Rev. G | Page 13 of 24  
AD8601/AD8602/AD8604  
5
V
T
= 5V  
= 25°C  
S
4
3
A
2
1
0.1% 0.01%  
0.1% 0.01%  
0
–1  
–2  
–3  
–4  
–5  
0
200  
400  
600  
800  
1,000  
SETTLING TIME (ns)  
Figure 53. Output Swing vs. Settling Time  
Rev. G | Page 14 of 24  
AD8601/AD8602/AD8604  
THEORY OF OPERATION  
The AD8601/AD8602/AD8604 family of amplifiers are rail-to-rail  
input and output, precision CMOS amplifiers that operate from  
2.7 V to 5.0 V of the power supply voltage. These amplifiers use  
Analog Devices, Inc., DigiTrim® technology to achieve a higher  
degree of precision than available from most CMOS amplifiers.  
DigiTrim technology is a method of trimming the offset voltage  
of the amplifier after it has been assembled. The advantage in post-  
package trimming lies in the fact that it corrects any offset voltages  
due to the mechanical stresses of assembly. This technology is  
scalable and used with every package option, including the 5-lead  
SOT-23, providing lower offset voltages than previously achieved in  
these small packages.  
The NMOS and PMOS input stages are separately trimmed using  
DigiTrim to minimize the offset voltage in both differential pairs.  
Both NMOS and PMOS input differential pairs are active in a  
500 mV transition region, when the input common-mode voltage  
is between approximately 1.5 V and 1 V below the positive supply  
voltage. The input offset voltage shifts slightly in this transition  
region, as shown in Figure 9 and Figure 10 .The common-mode  
rejection ratio is also slightly lower when the input common-  
mode voltage is within this transition band. Compared to the  
Burr-Brown OPA2340UR rail-to-rail input amplifier, shown in  
Figure 54, the AD860x, shown in Figure 55, exhibits lower  
offset voltage shift across the entire input common-mode  
range, including the transition region.  
The DigiTrim process is completed at the factory and does not  
add additional pins to the amplifier. All AD860x amplifiers are  
available in standard op amp pinouts, making DigiTrim completely  
transparent to the user. The AD860x can be used in any precision  
op amp application.  
0.7  
0.4  
0.1  
The input stage of the amplifier is a true rail-to-rail architecture,  
allowing the input common-mode voltage range of the op amp  
to extend to both positive and negative supply rails. The voltage  
swing of the output stage is also rail-to-rail and is achieved by  
using an NMOS and PMOS transistor pair connected in a  
common-source configuration. The maximum output voltage  
swing is proportional to the output current, and larger currents  
limit how close the output voltage can get to the supply rail,  
which is a characteristic of all rail-to-rail output amplifiers.  
With 1 mA of output current, the output voltage can reach  
within 20 mV of the positive rail and within 15 mV of the  
negative rail. At light loads of >100 kΩ, the output swings  
within ~1 mV of the supplies.  
–0.2  
–0.5  
–0.8  
–1.1  
–1.4  
0
1
2
3
4
5
V
(V)  
CM  
Figure 54. Burr-Brown OPA2340UR Input Offset Voltage vs.  
Common-Mode Voltage, 24 SOIC Units @ 25°C  
0.7  
0.4  
0.1  
The open-loop gain of the AD860x is 80 dB, typical, with a load  
of 2 kΩ. Because of the rail-to-rail output configuration, the gain  
of the output stage and the open-loop gain of the amplifier are  
dependent on the load resistance. Open-loop gain decreases with  
smaller load resistances. Again, this is a characteristic inherent  
to all rail-to-rail output amplifiers.  
–0.2  
–0.5  
–0.8  
–1.1  
RAIL-TO-RAIL INPUT STAGE  
The input common-mode voltage range of the AD860x extends  
to both the positive and negative supply voltages. This maximizes  
the usable voltage range of the amplifier, an important feature  
for single-supply and low voltage applications. This rail-to-rail  
input range is achieved by using two input differential pairs, one  
NMOS and one PMOS, placed in parallel. The NMOS pair is  
active at the upper end of the common-mode voltage range, and  
the PMOS pair is active at the lower end.  
–1.4  
0
1
2
3
4
5
V
(V)  
CM  
Figure 55. AD8602AR Input Offset Voltage vs. Common-Mode Voltage,  
300 SOIC Units @ 25°C  
Rev. G | Page 15 of 24  
 
 
 
AD8601/AD8602/AD8604  
The current through the photodiode is proportional to the incident  
light power on its surface. The 4.7 MΩ resistor converts this current  
into a voltage, with the output of the AD8601 increasing at 4.7 V/μA.  
The feedback capacitor reduces excess noise at higher frequencies  
by limiting the bandwidth of the circuit to  
INPUT OVERVOLTAGE PROTECTION  
As with any semiconductor device, if a condition could exist  
that could cause the input voltage to exceed the power supply,  
the device’s input overvoltage characteristic must be considered.  
Excess input voltage energizes the internal PN junctions in the  
AD860x, allowing current to flow from the input to the supplies.  
1
BW =  
(1)  
2π  
(
4.7 Mꢀ CF  
)
This input current does not damage the amplifier, provided it is  
limited to 5 mA or less. This can be ensured by placing a resistor in  
series with the input. For example, if the input voltage could  
exceed the supply by 5 V, the series resistor should be at least  
(5 V/5 mA) = 1 kΩ. With the input voltage within the supply  
rails, a minimal amount of current is drawn into the inputs,  
which, in turn, causes a negligible voltage drop across the series  
resistor. Therefore, adding the series resistor does not adversely  
affect circuit performance.  
Using a 10 pF feedback capacitor limits the bandwidth to  
approximately 3.3 kHz.  
10pF  
(OPTIONAL)  
4.7MΩ  
V
D1  
OUT  
4.7V/µA  
AD8601  
OVERDRIVE RECOVERY  
Figure 56. Amplifier Photodiode Circuit  
Overdrive recovery is defined as the time it takes the output of  
an amplifier to come off the supply rail when recovering from  
an overload signal. This is tested by placing the amplifier in a  
closed-loop gain of 10 with an input square wave of 2 V p-p  
while the amplifier is powered from either 5 V or 3 V.  
HIGH SIDE AND LOW SIDE, PRECISION CURRENT  
MONITORING  
Because of its low input bias current and low offset voltage, the  
AD860x can be used for precision current monitoring. The true  
rail-to-rail input feature of the AD860x allows the amplifier to  
monitor current on either the high side or the low side. Using both  
amplifiers in an AD8602 provides a simple method for monitoring  
both current supply and return paths for load or fault detection.  
Figure 57 and Figure 58 demonstrate both circuits.  
3V  
The AD860x has excellent recovery time from overload conditions.  
The output recovers from the positive supply rail within 200 ns  
at all supply voltages. Recovery from the negative rail is within  
500 ns at a 5 V supply, decreasing to within 350 ns when the  
device is powered from 2.7 V.  
POWER-ON TIME  
R2  
The power-on time is important in portable applications where  
the supply voltage to the amplifier may be toggled to shut down  
the device to improve battery life. Fast power-up behavior ensures  
that the output of the amplifier quickly settles to its final voltage,  
improving the power-up speed of the entire system. When the  
supply voltage reaches a minimum of 2.5 V, the AD860x settles to  
a valid output within 1 μs. This turn-on response time is faster  
than many other precision amplifiers, which can take tens or  
hundreds of microseconds for their outputs to settle.  
249k  
MONITOR  
OUTPUT  
Q1  
2N3904  
3V  
R1  
100Ω  
1/2 AD8602  
RETURN TO  
GROUND  
R
SENSE  
0.1Ω  
Figure 57. Low-Side Current Monitor  
USING THE AD8602 IN HIGH SOURCE IMPEDANCE  
APPLICATIONS  
R
0.1  
SENSE  
I
L
V+  
3V  
The CMOS rail-to-rail input structure of the AD860x allows  
these amplifiers to have very low input bias currents, typically  
0.2 pA. This allows the AD860x to be used in any application  
that has a high source impedance or must use large value  
resistances around the amplifier. For example, the photodiode  
amplifier circuit shown in Figure 56 requires a low input bias  
current op amp to reduce output voltage error. The AD8601  
minimizes offset errors due to its low input bias current and low  
offset voltage.  
3V  
R1  
100Ω  
1/2 AD8602  
Q1  
2N3905  
MONITOR  
OUTPUT  
R2  
2.49kΩ  
Figure 58. High-Side Current Monitor  
Rev. G | Page 16 of 24  
 
 
 
 
AD8601/AD8602/AD8604  
Voltage drop is created across the 0.1 Ω resistor that is  
proportional to the load current. This voltage appears at the  
inverting input of the amplifier due to the feedback correction  
around the op amp. This creates a current through R1, which  
in turn, pulls current through R2. For the low side monitor, the  
monitor output voltage is given by  
Figure 60 demonstrates how the AD8601 can be used as an  
output buffer for the DAC for driving heavy resistive loads. The  
AD5320 is a 12-bit DAC that can be used with clock frequencies  
up to 30 MHz and signal frequencies up to 930 kHz. The rail-  
to-rail output of the AD8601 allows it to swing within 100 mV  
of the positive supply rail while sourcing 1 mA of current. The  
total current drawn from the circuit is less than 1 mA, or 3 mW  
from a 3 V single supply.  
R
SENSE  
Monitor Output = 3V R2×  
× I  
(2)  
L
R1  
3V  
For the high side monitor, the monitor output voltage is  
1µF  
R
SENSE  
V
4
3
OUT  
0V TO 3V  
Monitor Output = R2×  
× I  
L
(3)  
5
2
1
4
5
6
R1  
3-WIRE  
SERIAL  
INTERFACE  
1
AD5320  
R
AD8601  
L
Using the components shown, the monitor output transfer  
function is 2.5 V/A.  
Figure 60. Using the AD8601 as a DAC Output Buffer to Drive Heavy Loads  
USING THE AD8601 IN SINGLE-SUPPLY, MIXED  
SIGNAL APPLICATIONS  
The AD8601, AD7476, and AD5320 are all available in space-  
saving SOT-23 packages.  
Single-supply, mixed signal applications requiring 10 or more  
bits of resolution demand both a minimum of distortion and a  
maximum range of voltage swing to optimize performance. To  
ensure that the ADCs or DACs achieve their best performance, an  
amplifier often must be used for buffering or signal conditioning.  
The 750 μV maximum offset voltage of the AD8601 allows the  
amplifier to be used in 12-bit applications powered from a 3 V  
single supply, and its rail-to-rail input and output ensure no  
signal clipping.  
PC100 COMPLIANCE FOR COMPUTER AUDIO  
APPLICATIONS  
Because of its low distortion and rail-to-rail input and output,  
the AD860x is an excellent choice for low cost, single-supply  
audio applications, ranging from microphone amplification  
to line output buffering. Figure 38 shows the total harmonic  
distortion plus noise (THD + N) figures for the AD860x. In  
unity gain, the amplifier has a typical THD + N of 0.004%, or  
−86 dB, even with a load resistance of 600 Ω. This is compliant  
with the PC100 specification requirements for audio in both  
portable and desktop computers.  
Figure 59 shows the AD8601 used as an input buffer amplifier  
to the AD7476, a 12-bit, 1 MSPS ADC. As with most ADCs,  
total harmonic distortion (THD) increases with higher source  
impedances. By using the AD8601 in a buffer configuration, the  
low output impedance of the amplifier minimizes THD while  
the high input impedance and low bias current of the op amp  
minimizes errors due to source impedance. The 8 MHz gain  
bandwidth product of the AD8601 ensures no signal attenua-  
tion up to 500 kHz, which is the maximum Nyquist frequency  
for the AD7476.  
Figure 61 shows how an AD8602 can be interfaced with an AC’97  
codec to drive the line output. Here, the AD8602 is used as a  
unity-gain buffer from the left and right outputs of the AC’97  
codec. The 100 μF output coupling capacitors block dc current  
and the 20 Ω series resistors protect the amplifier from short  
circuits at the jack.  
5V  
5V  
REF193  
SUPPLY  
V
V
25  
29  
35  
1µF  
TANT  
DD  
DD  
5V  
0.1µF 10µF  
0.1µF  
680nF  
C1  
100µF  
R4  
20Ω  
2
3
8
1
A
4
3
V
5
2
SCLK  
SDATA  
CS  
LEFT  
OUT  
DD  
R2  
2kΩ  
4
1
V
R
IN  
S
µC/µP  
AD1881  
(AC’97)  
AD8602  
GND  
C2  
100µF  
AD7476/AD7477  
R5  
20Ω  
AD8601  
5
6
36  
26  
RIGHT  
OUT  
7
SERIAL  
INTERFACE  
B
V
R3  
SS  
2kΩ  
Figure 59. A Complete 3 V 12-Bit 1 MHz Analog-to-Digital Conversion System  
AD8602  
NOTES  
1. ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 61. A PC100-Compliant Line Output Amplifier  
Rev. G | Page 17 of 24  
 
 
 
 
AD8601/AD8602/AD8604  
SPICE MODEL  
The SPICE macro-model for the AD860x amplifier can be down-  
loaded at www.analog.com. The model accurately simulates a  
number of both dc and ac parameters, including open-loop gain,  
bandwidth, phase margin, input voltage range, output voltage  
swing vs. output current, slew rate, input voltage noise, CMRR,  
PSRR, and supply current vs. supply voltage. The model is  
optimized for performance at 27°C. Although it functions at  
different temperatures, it may lose accuracy with respect to the  
actual behavior of the AD860x.  
Rev. G | Page 18 of 24  
 
AD8601/AD8602/AD8604  
OUTLINE DIMENSIONS  
3.00  
2.90  
2.80  
5
1
4
3
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
2
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
0.20 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
0.55  
0.45  
0.35  
0.15 MAX  
0.05 MIN  
10°  
5°  
0°  
SEATING  
PLANE  
0.60  
BSC  
0.50 MAX  
0.35 MIN  
COMPLIANT TO JEDEC STANDARDS MO-178-AA  
Figure 62. 5-Lead Small Outline Transistor Package [SOT-23]  
(RJ-5)  
Dimensions shown in millimeters  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 63. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
Rev. G | Page 19 of 24  
 
AD8601/AD8602/AD8604  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 64. 8-Lead Standard Small Outline Package [SOIC_N]  
(R-8)  
Dimensions shown in millimeters and (inches)  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
BSC  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 65. 14-Lead Standard Small Outline Package [SOIC_N]  
(R-14)  
Dimensions shown in millimeters and (inches)  
Rev. G | Page 20 of 24  
AD8601/AD8602/AD8604  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 66. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
0.197 (5.00)  
0.193 (4.90)  
0.189 (4.80)  
16  
1
9
0.158 (4.01)  
0.154 (3.91)  
0.244 (6.20)  
0.150 (3.81)  
0.236 (5.99)  
0.228 (5.79)  
8
0.010 (0.25)  
0.069 (1.75)  
0.006 (0.15)  
0.020 (0.51)  
0.010 (0.25)  
0.065 (1.65)  
0.049 (1.25)  
0.053 (1.35)  
0.010 (0.25)  
0.004 (0.10)  
0.041 (1.04)  
REF  
SEATING  
PLANE  
8°  
0°  
0.025 (0.64)  
BSC  
0.050 (1.27)  
0.016 (0.41)  
COPLANARITY  
0.004 (0.10)  
0.012 (0.30)  
0.008 (0.20)  
COMPLIANT TO JEDEC STANDARDS MO-137-AB  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 67. 16-Lead Shrink Small Outline Package [QSOP]  
(RQ-16)  
Dimensions shown in inches and (millimeters)  
Rev. G | Page 21 of 24  
AD8601/AD8602/AD8604  
ORDERING GUIDE  
Model1, 2  
Temperature Range  
Package Description  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
Package Option  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
Branding  
AAA  
AAA  
AAA  
AAA  
AAA  
AAD  
AAD  
AD8601ARTZ-R2  
AD8601ARTZ-REEL  
AD8601ARTZ-REEL7  
AD8601WARTZ-RL  
AD8601WARTZ-R7  
AD8601WDRTZ-REEL  
AD8601WDRTZ-REEL7  
AD8602AR  
AD8602AR-REEL  
AD8602AR-REEL7  
AD8602ARZ  
AD8602ARZ-REEL  
AD8602ARZ-REEL7  
AD8602WARZ-RL  
AD8602WARZ-R7  
AD8602ARM-REEL  
AD8602ARMZ  
AD8602ARMZ-REEL  
AD8602DR  
AD8602DR-REEL  
AD8602DR-REEL7  
AD8602DRZ  
AD8602DRZ-REEL  
AD8602DRZ-REEL7  
AD8602DRM-REEL  
AD8602DRMZ-REEL  
AD8604ARZ  
AD8604ARZ-REEL  
AD8604ARZ-REEL7  
AD8604DRZ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
R-14  
R-14  
R-14  
R-14  
R-14  
RU-14  
RU-14  
RU-14  
RU-14  
RU-14  
RU-14  
RQ-16  
RQ-16  
RQ-16  
ABA  
ABA  
ABA  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
ABD  
ABD  
8-Lead MSOP  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
16-Lead QSOP  
16-Lead QSOP  
16-Lead QSOP  
AD8604DRZ-REEL  
AD8604ARUZ  
AD8604ARUZ-REEL  
AD8604DRU  
AD8604DRU -REEL  
AD8604DRUZ  
AD8604DRUZ-REEL  
AD8604ARQZ  
AD8604ARQZ-RL  
AD8604ARQZ-R7  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The AD8601W/AD8602W models are available with controlled manufacturing to support the quality and reliability requirements of  
automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore,  
designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for  
use in automotive applications. Contact your local Analog Devices Account Representative for specific product ordering information and  
to obtain the specific Automotive Reliability reports for these models.  
Rev. G | Page 22 of 24  
 
 
AD8601/AD8602/AD8604  
NOTES  
Rev. G | Page 23 of 24  
AD8601/AD8602/AD8604  
NOTES  
©20 0–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D01525-0-1/11(G)  
Rev. G | Page 24 of 24  
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY