AD8605ACBZ-REEL [ADI]

Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers; 精密,低噪声, CMOS ,轨到轨输入/输出运算放大器
AD8605ACBZ-REEL
型号: AD8605ACBZ-REEL
厂家: ADI    ADI
描述:

Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers
精密,低噪声, CMOS ,轨到轨输入/输出运算放大器

运算放大器
文件: 总24页 (文件大小:733K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision, Low Noise, CMOS, Rail-to-Rail,  
Input/Output Operational Amplifiers  
AD8605/AD8606/AD8608  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
BALL A1  
CORNER  
Low offset voltage: 65 μV maximum  
Low input bias currents: 1 pA maximum  
Low noise: 8 nV/√Hz  
OUTA  
A1  
V+  
A2  
OUTB  
A3  
Wide bandwidth: 10 MHZ  
High open-loop gain: 1000 V/mV  
Unity gain stable  
–INA  
B1  
–INB  
B3  
Single-supply operation: 2.7 V to 5.5 V  
5-ball WLCSP for single (AD8605) and 8-ball WLCSP for  
dual (AD8606)  
+INA  
C1  
V–  
C2  
+INB  
C3  
OUT  
V–  
1
2
5
4
V+  
AD8605  
TOP VIEW  
(Not to Scale)  
AD8606  
TOP VIEW  
APPLICATIONS  
–IN  
3
+IN  
(BALL SIDE DOWN)  
Photodiode amplification  
Battery-powered instrumentation  
Multipole filters  
Sensors  
Barcode scanners  
Audio  
Figure 1. 5-Lead SOT-23 (RJ Suffix)  
Figure 2. 8-Ball WLCSP (CB Suffix)  
TOP VIEW  
(BUMP SIDE DOWN)  
1
2
3
4
5
6
7
14  
OUT D  
OUT A  
–IN A  
+IN A  
V+  
OUT  
1
V+  
5
13 –IN D  
12  
11  
10  
9
+IN D  
V–  
AD8608  
TOP VIEW  
(Not to Scale)  
V–  
2
GENERAL DESCRIPTION  
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
+IN  
3
–IN  
4
The AD8605, AD8606, and AD86081 are single, dual, and quad  
rail-to-rail input and output, single-supply amplifiers. They  
feature very low offset voltage, low input voltage and current  
noise, and wide signal bandwidth. They use the Analog Devices,  
Inc. patented DigiTrim® trimming technique, which achieves  
superior precision without laser trimming.  
8
AD8605 ONLY  
Figure 3. 5-Ball WLCSP (CB Suffix)  
Figure 4. 14-Lead SOIC_N (R Suffix)  
OUT A  
OUT D  
–IN D  
+IN D  
V–  
+IN C  
–IN C  
OUT C  
1
14  
–IN A  
+IN A  
V+  
+IN B  
–IN B  
AD8608  
TOP VIEW  
(Not to Scale)  
1 AD8606 8  
TOP VIEW  
OUT A  
V+  
–IN A  
+IN A  
V–  
OUT B  
–IN B  
+IN B  
The combination of low offsets, low noise, very low input bias  
currents, and high speed makes these amplifiers useful in a  
wide variety of applications. Filters, integrators, photodiode  
amplifiers, and high impedance sensors all benefit from the  
combination of performance features. Audio and other ac  
applications benefit from the wide bandwidth and low  
distortion. Applications for these amplifiers include optical  
control loops, portable and loop-powered instrumentation,  
and audio amplification for portable devices.  
(Not to Scale)  
4
5
8
7
OUT B  
Figure 5. 8-Lead MSOP (RM Suffix),  
8-Lead SOIC_N (R Suffix)  
Figure 6. 14-Lead TSSOP (RU Suffix)  
The AD8605, AD8606, and AD8608 are specified over the  
extended industrial temperature range (−40°C to +125°C). The  
AD8605 single is available in 5-lead SOT-23 and 5-ball WLCSP  
packages. The AD8606 dual is available in an 8-lead MSOP, an  
8-ball WLSCP, and a narrow SOIC surface-mounted package.  
The AD8608 quad is available in a 14-lead TSSOP package and  
a narrow 14-lead SOIC package. The 5-ball and 8-ball WLCSP  
offer the smallest available footprint for any surface-mounted  
operational amplifier. The WLCSP, SOT-23, MSOP, and TSSOP  
versions are available in tape-and-reel only.  
1 Protected by U.S. Patent No. 5,969,657; other patents pending.  
Rev. H  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2002–2008 Analog Devices, Inc. All rights reserved.  
 
 
AD8605/AD8606/AD8608  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
THD + Noise............................................................................... 15  
Total Noise Including Source Resistors................................... 16  
Channel Separation.................................................................... 16  
Capacitive Load Drive ............................................................... 16  
Light Sensitivity.......................................................................... 17  
WLCSP Assembly Considerations........................................... 17  
I-V Conversion Applications........................................................ 18  
Photodiode Preamplifier Applications.................................... 18  
Audio and PDA Applications ................................................... 18  
Instrumentation Amplifiers...................................................... 19  
DAC Conversion ........................................................................ 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 22  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 3  
5 V Electrical Specifications............................................................ 4  
2.7 V Electrical Specifications......................................................... 6  
Absolute Maximum Ratings............................................................ 8  
ESD Caution.................................................................................. 8  
Typical Performance Characteristics ............................................. 9  
Applications Information .............................................................. 15  
Output Phase Reversal............................................................... 15  
Maximum Power Dissipation ................................................... 15  
Input Overvoltage Protection ................................................... 15  
Rev. H | Page 2 of 24  
AD8605/AD8606/AD8608  
REVISION HISTORY  
Updated Outline Dimensions................................................... 19  
Changes to Ordering Guide...................................................... 20  
2/08—Rev. G to Rev. H  
Changes to Features ..................................................................... 1  
Changes to Table 1 ....................................................................... 4  
Changes to Table 2 ....................................................................... 6  
Changes to Figure 11 ................................................................... 9  
Changes to Figure 13, Figure 14, and Figure 16 Captions.... 10  
Changes to Figure 15, Figure 17, and Figure 18..................... 10  
Changes to Figure 34 and Figure 35 Captions........................ 13  
Changes to Figure 36 ................................................................. 13  
Changes to Figure 37 Caption .................................................. 14  
Changes to Figure 38 and Figure 41 ........................................ 14  
Changes to Figure 45 ................................................................. 15  
Changes to Audio and PDA Applications Section................. 18  
Changes to Figure 52 ................................................................. 18  
Changes to Ordering Guide...................................................... 22  
7/03—Rev. B to Rev. C  
Changes to Features.......................................................................1  
Change to General Description....................................................1  
Addition to Functional Block Diagrams.....................................1  
Addition to Absolute Maximum Ratings....................................4  
Addition to Ordering Guide.........................................................4  
Change to Equation in Maximum Power Dissipation  
Section .......................................................................................... 11  
Added Light Sensitivity Section................................................ 12  
Added New Figure 8; Renumbered Subsequently.................. 13  
Added New MicroCSP Assembly Considerations Section.... 13  
Changes to Figure 9 .................................................................... 13  
Change to Equation in Photodiode Preamplifier  
Applications Section .................................................................. 13  
Changes to Figure 12 .................................................................. 14  
Change to Equation in D/A Conversion Section.................... 14  
Updated Outline Dimensions ................................................... 15  
10/07—Rev. F to Rev. G  
Changes to Figure 2...................................................................... 1  
Updated Outline Dimensions................................................... 20  
8/07—Rev. E to Rev. F  
3/03—Rev. A to Rev. B  
Added 8-Ball WLCSP Package.....................................Universal  
Changes to Features ..................................................................... 1  
Changes to Table 1 ....................................................................... 3  
Changes to Table 2 ....................................................................... 5  
Changes to Table 4 ....................................................................... 7  
Updated Outline Dimensions................................................... 19  
Changes to Ordering Guide...................................................... 21  
Changes to Functional Block Diagram .......................................1  
Changes to Absolute Maximum Ratings.....................................4  
Changes to Ordering Guide ........................................................ 4  
Changes to Figure 9 ................................................................... 13  
Updated Outline Dimensions.................................................... 15  
11/02—Rev. 0 to Rev. A  
Change to Electrical Characteristics............................................2  
Changes to Absolute Maximum Ratings.....................................4  
Changes to Ordering Guide .........................................................4  
Change to TPC 6 ...........................................................................5  
Updated Outline Dimensions.................................................... 15  
1/06—Rev. D to Rev. E  
Changes to Table 1 ....................................................................... 3  
Changes to Table 2 ....................................................................... 5  
Changes to Table 4 ....................................................................... 6  
Changes to Figure 12 Caption .................................................... 8  
Changes to Figure 26 and Figure 27 Captions........................ 11  
Changes to Figure 33 Caption .................................................. 12  
Changes to Figure 44 ................................................................. 14  
Updated Outline Dimensions................................................... 19  
Changes to Ordering Guide...................................................... 20  
5/02—Revision 0: Initial Version  
5/04—Rev. C to Rev. D  
Updated Format..............................................................Universal  
Edit to Light Sensitivity Section ............................................... 16  
Rev. H | Page 3 of 24  
 
AD8605/AD8606/AD8608  
5 V ELECTRICAL SPECIFICATIONS  
VS = 5 V, VCM = VS/2, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
VOS  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
AD8605/AD8606 (Except WLCSP)  
AD8608  
AD8605/AD8606/AD8608  
VS = 3.5 V, VCM = 3 V  
VS = 3.5 V, VCM = 2.7 V  
VS = 5 V, VCM = 0 V to 5 V  
−40°C < TA < +125°C  
20  
20  
80  
65  
75  
300  
750  
1
μV  
μV  
μV  
μV  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
V
Input Bias Current  
AD8605/AD8606  
AD8605/AD8606  
AD8608  
AD8608  
Input Offset Current  
IB  
0.2  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
50  
250  
100  
300  
0.5  
20  
IOS  
0.1  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
75  
5
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 5 V  
−40°C < TA < +125°C  
RL = 2 kΩ, VO = 0.5 V to 4.5 V  
85  
75  
300  
100  
90  
1000  
dB  
dB  
V/mV  
Large Signal Voltage Gain  
Offset Voltage Drift  
AD8605/AD8606  
AD8608  
ΔVOS/ΔT  
ΔVOS/ΔT  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
1
1.5  
4.5  
6.0  
μV/°C  
μV/°C  
INPUT CAPACITANCE  
Common-Mode Input Capacitance  
Differential Input Capacitance  
OUTPUT CHARACTERISTICS  
Output Voltage High  
CCOM  
CDIFF  
8.8  
2.6  
pF  
pF  
VOH  
IL = 1 mA  
IL = 10 mA  
4.96  
4.7  
4.98  
4.79  
V
V
−40°C < TA < +125°C  
IL = 1 mA  
IL= 10 mA  
4.6  
V
Output Voltage Low  
VOL  
20  
170  
40  
210  
290  
mV  
mV  
mV  
mA  
Ω
−40°C < TA < +125°C  
Output Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
IOUT  
ZOUT  
80  
1
f = 1 MHz, AV = 1  
Power Supply Rejection Ratio  
AD8605/AD8606  
PSRR  
VS = 2.7 V to 5.5 V  
VS = 2.7 V to 5.5 V  
VS = 2.7 V to 5.5 V  
−40°C < TA < +125°C  
IOUT = 0 mA  
80  
75  
77  
70  
95  
92  
92  
90  
1
dB  
dB  
dB  
dB  
mA  
mA  
AD8605/AD8606 WLCSP  
AD8608  
Supply Current/Amplifier  
ISY  
1.2  
1.4  
−40°C < TA < +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Unity Gain Bandwidth Product  
Phase Margin  
SR  
tS  
GBP  
ΦM  
RL = 2 kΩ, CL = 16 pF  
To 0.01%, 0 V to 2 V step, AV = 1  
5
V/μs  
μs  
MHz  
Degrees  
<1  
10  
65  
Rev. H | Page 4 of 24  
 
AD8605/AD8606/AD8608  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
2.3  
8
6.5  
0.01  
3.5  
12  
μV p-p  
nV/√Hz  
nV/√Hz  
pA/√Hz  
Current Noise Density  
in  
f = 1 kHz  
Rev. H | Page 5 of 24  
AD8605/AD8606/AD8608  
2.7 V ELECTRICAL SPECIFICATIONS  
VS = 2.7 V, VCM = VS/2, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
AD8605/AD8606 (Except WLCSP)  
AD8608  
AD8605/AD8606/AD8608  
VS = 3.5 V, VCM = 3 V  
20  
20  
80  
65  
75  
300  
750  
1
μV  
μV  
μV  
μV  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
V
VS = 3.5 V, VCM = 2.7 V  
VS = 2.7 V, VCM = 0 V to 2.7 V  
−40°C < TA < +125°C  
Input Bias Current  
AD8605/AD8606  
AD8605/AD8606  
AD8608  
AD8608  
Input Offset Current  
IB  
0.2  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
50  
250  
100  
300  
0.5  
20  
IOS  
0.1  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
75  
2.7  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 2.7 V  
−40°C < TA < +125°C  
RL = 2 kΩ, VO = 0.5 V to 2.2 V  
80  
70  
110  
95  
85  
350  
dB  
dB  
V/mV  
Large Signal Voltage Gain  
Offset Voltage Drift  
AD8605/AD8606  
AD8608  
ΔVOS/ΔT  
ΔVOS/ΔT  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
1
1.5  
4.5  
6.0  
μV/°C  
μV/°C  
INPUT CAPACITANCE  
Common-Mode Input Capacitance  
Differential Input Capacitance  
OUTPUT CHARACTERISTICS  
Output Voltage High  
CCOM  
CDIFF  
8.8  
2.6  
pF  
pF  
VOH  
VOL  
IL = 1 mA  
−40°C < TA < +125°C  
IL = 1 mA  
2.6  
2.6  
2.66  
25  
V
V
mV  
mV  
mA  
Ω
Output Voltage Low  
40  
50  
−40°C < TA < +125°C  
Output Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
IOUT  
ZOUT  
30  
1.2  
f = 1 MHz, AV = 1  
Power Supply Rejection Ratio  
AD8605/AD8606  
AD8605/AD8606 WLCSP  
AD8608  
PSRR  
VS = 2.7 V to 5.5 V  
VS = 2.7 V to 5.5 V  
VS = 2.7 V to 5.5 V  
−40°C < TA < +125°C  
IOUT = 0 mA  
80  
75  
77  
70  
95  
92  
92  
90  
dB  
dB  
dB  
dB  
mA  
mA  
Supply Current/Amplifier  
ISY  
1.15  
1.4  
1.5  
−40°C < TA < +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Unity Gain Bandwidth Product  
Phase Margin  
SR  
tS  
GBP  
ΦM  
RL = 2 kΩ, CL = 16 pF  
To 0.01%, 0 V to 1 V step, AV = 1  
5
<0.5  
9
V/μs  
μs  
MHz  
Degrees  
50  
Rev. H | Page 6 of 24  
 
AD8605/AD8606/AD8608  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
2.3  
8
6.5  
0.01  
3.5  
12  
μV p-p  
nV/√Hz  
nV/√Hz  
pA/√Hz  
Current Noise Density  
in  
f = 1 kHz  
Rev. H | Page 7 of 24  
AD8605/AD8606/AD8608  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Parameter  
Table 4.  
Package Type  
1
Rating  
6 V  
GND to VS  
6 V  
θJA  
θJC  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Supply Voltage  
Input Voltage  
Differential Input Voltage  
Output Short-Circuit Duration to GND Observe Derating Curves  
Storage Temperature Range  
All Packages  
Operating Temperature Range  
All Packages  
Junction Temperature Range  
All Packages  
5-Ball WLCSP (CB)  
5-Lead SOT-23 (RJ)  
8-Ball WLCSP (CB)  
8-Lead MSOP (RM)  
8-Lead SOIC_N (R)  
14-Lead SOIC_N (R)  
14-Lead TSSOP (RU)  
170  
240  
115  
206  
157  
105  
148  
92  
44  
56  
36  
23  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
1 θJA is specified for the worst-case conditions, that is, a device soldered in a  
circuit board for surface-mount packages.  
Lead Temperature (Soldering, 60 sec) 300°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. H | Page 8 of 24  
 
AD8605/AD8606/AD8608  
TYPICAL PERFORMANCE CHARACTERISTICS  
4500  
0.30  
0.25  
V
T
V
= 5V  
= 25°C  
S
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
A
= 0V TO 5V  
0.20  
CM  
0.15  
0.10  
0.05  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
0
–300  
–200  
–100  
0
100  
200  
300  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
(V)  
3.5  
4.0  
4.5  
5.0  
OFFSET VOLTAGE (µV)  
V
CM  
Figure 7. Input Offset Voltage Distribution  
Figure 10. Input Offset Voltage vs. Common-Mode Voltage  
(200 Units, 5 Wafer Lots, Including Process Skews)  
24  
20  
16  
12  
8
360  
320  
280  
240  
200  
160  
120  
80  
V
T
V
= 5V  
V
= ±5V  
S
A
S
= –40°C TO +125°C  
= 2.5V  
CM  
AD8605/AD8606  
AD8608  
4
40  
0
0
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8  
TCVOS (µV/°C)  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
Figure 8. AD8608 Input Offset Voltage Drift Distribution  
Figure 11. Input Bias Current vs. Temperature  
20  
18  
16  
14  
12  
10  
8
1k  
V
T
= 5V  
S
V
T
= 5V  
= 25°C  
S
A
= –40°C TO +125°C  
= 2.5V  
A
V
CM  
100  
10  
1
SOURCE  
SINK  
6
4
2
0.1  
0.001  
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
TCVOS (µV/°C)  
0.01  
0.1  
LOAD CURRENT (mA)  
1
10  
Figure 12. Output Saturation Voltage vs. Load Current  
Figure 9. AD8605/AD8606 Input Offset Voltage Drift Distribution  
Rev. H | Page 9 of 24  
 
AD8605/AD8606/AD8608  
6
5
4
3
2
1
0
5.00  
V
@ 1mA LOAD  
OH  
4.95  
4.90  
4.85  
4.80  
4.75  
4.70  
V
= 5V  
S
V
V
T
R
A
= 5V  
S
= 4.9V p-p  
= 25°C  
= 2k  
= 1  
IN  
A
L
V
V
@ 10mA LOAD  
OH  
1k  
10k  
100k  
1M  
10M  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 16. Closed-Loop Output Voltage Swing (FPBW)  
Figure 13. Output Voltage Swing High vs. Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
= 5V  
S
V
= 5V  
S
V
@ 10mA LOAD  
OL  
A
= 100  
V
A
= 10  
A
= 1  
V
V
V
@ 1mA LOAD  
OL  
1k  
10k  
100k  
1M  
10M  
100M  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 17. Output Impedance vs. Frequency  
Figure 14. Output Voltage Swing Low vs. Temperature  
120  
110  
100  
90  
100  
80  
225  
180  
135  
90  
V
= 5V  
V
R
C
= ±2.5V  
= 2kΩ  
= 20pF  
= 64°  
S
S
L
L
60  
Φ
M
40  
80  
20  
45  
70  
0
0
60  
–20  
–40  
–60  
–80  
–100  
–45  
–90  
–135  
–180  
–225  
50  
40  
30  
20  
10k  
100k  
1M  
10M  
40M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 15. Open-Loop Gain and Phase vs. Frequency  
Figure 18. Common-Mode Rejection Ratio (CMRR) vs. Frequency  
Rev. H | Page 10 of 24  
AD8605/AD8606/AD8608  
140  
120  
100  
80  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 5V  
S
60  
40  
20  
0
–20  
–40  
–60  
1k  
10k  
100k  
1M  
10M  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0 3.5  
4.0  
4.5  
5.0  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
Figure 19. PSRR vs. Frequency  
Figure 22. Supply Current/Amplifier vs. Supply Voltage  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
S
= 5V  
V
R
= 5V  
S
=
L
T
= 25°C  
= 1  
A
A
V
+OS  
–OS  
0
10  
100  
1k  
TIME (1s/DIV)  
CAPACITANCE (pF)  
Figure 23. 0.1 Hz to 10 Hz Input Voltage Noise  
Figure 20. Small Signal Overshoot vs. Load Capacitance  
2.0  
V
S
= ±2.5V  
= 10k  
= 200pF  
= 1  
R
C
A
L
L
V
1.5  
1.0  
0.5  
V
= 2.7V  
S
V
= 5V  
S
0
TIME (200ns/DIV)  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 24. Small Signal Transient Response  
Figure 21. Supply Current/Amplifier vs. Temperature  
Rev. H | Page 11 of 24  
AD8605/AD8606/AD8608  
36  
32  
28  
24  
20  
16  
12  
8
V
= ±2.5V  
= 10kΩ  
= 200pF  
= 1  
S
V
= ±2.5V  
S
R
C
A
L
L
V
4
TIME (400ns/DIV)  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
FREQUENCY (kHz)  
Figure 25. Large Signal Transient Response  
Figure 28. Voltage Noise Density vs. Frequency  
53.6  
46.9  
40.2  
33.5  
26.8  
20.1  
13.4  
6.7  
V
R
A
= ±2.5V  
= 10kΩ  
= –100  
= 50mV  
S
V
= ±2.5V  
S
L
2.5V  
V
V
OUT  
V
IN  
0V  
0V  
V
IN  
–50mV  
0
TIME (400ns/DIV)  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (kHz)  
Figure 26. Positive Overload Recovery  
Figure 29. Voltage Noise Density vs. Frequency  
119.2  
104.3  
89.4  
74.5  
59.6  
44.7  
29.8  
14.9  
0
V
R
A
= ±2.5V  
= 10k  
S
V
= ±2.5V  
S
L
=
–100  
V
0V  
V
= 50mV  
IN  
–2.5V  
50mV  
0V  
TIME (1µs/DIV)  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (Hz)  
Figure 27. Negative Overload Recovery  
Figure 30. Voltage Noise Density vs. Frequency  
Rev. H | Page 12 of 24  
AD8605/AD8606/AD8608  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
2.680  
2.675  
2.670  
2.665  
2.660  
2.655  
2.650  
V
T
= 2.7V  
= 25°C  
= 0V TO 2.7V  
S
V
= 2.7V  
S
A
V
CM  
V
@ 1mA LOAD  
OH  
–200  
–100  
0
100  
200  
300  
2.7  
10  
–40 –25 –10  
5
20  
35  
50  
65 80  
95 110 125  
–300  
OFFSET VOLTAGE (µV)  
TEMPERATURE (°C)  
Figure 31. Input Offset Voltage Distribution  
Figure 34. Output Voltage Swing High vs. Temperature  
0.045  
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0
300  
200  
100  
0
V
T
= 2.7V  
= 25°C  
V = 2.7V  
S
S
A
V
@ 1mA LOAD  
OL  
–100  
–200  
–300  
0
0
0.9  
1.8  
–40 –25 –10  
5
20  
35  
50  
65 80  
95 110 125  
COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 32. Input Offset Voltage vs. Common-Mode Voltage  
(200 Units, 5 Wafer Lots, Including Process Skews)  
Figure 35. Output Voltage Swing Low vs. Temperature  
1k  
100  
80  
225  
180  
135  
90  
V
= 2.7V  
= 25°C  
S
A
V
R
C
= 2.7V  
= 2kΩ  
= 20pF  
S
T
L
L
60  
ΦM = 52.5°  
100  
10  
1
40  
SOURCE  
20  
45  
0
0
SINK  
–20  
–40  
–60  
–80  
–100  
–45  
–90  
–135  
–180  
–225  
0.1  
0.001  
0.1  
LOAD CURRENT (mA)  
0.01  
1
10k  
100k  
1M  
10M  
40M  
FREQUENCY (Hz)  
Figure 33. Output Saturation Voltage vs. Load Current  
Figure 36. Open-Loop Gain and Phase vs. Frequency  
Rev. H | Page 13 of 24  
AD8605/AD8606/AD8608  
3.0  
V
= 2.7V  
S
2.5  
V
V
T
R
A
= 2.7V  
= 2.6V p-p  
= 25°C  
= 2kΩ  
= 1  
S
IN  
A
2.0  
1.5  
1.0  
0.5  
0
L
V
TIME (1s/DIV)  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 40. 0.1 Hz to 10 Hz Input Voltage Noise  
Figure 37. Closed-Loop Output Voltage Swing vs. Frequency (FPBW)  
100  
V
= ±1.35V  
= 10k  
= 200pF  
= 1  
S
V
= 2.7V  
S
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
R
C
A
L
L
V
A
= 100  
V
A
= 10  
V
A
= 1  
V
10k  
100k  
1M  
10M  
100M  
TIME (200ns/DIV)  
1k  
FREQUENCY (Hz)  
Figure 41. Small Signal Transient Response  
Figure 38. Output Impedance vs. Frequency  
60  
50  
40  
30  
20  
10  
0
V
= 1.35V  
= 10kΩ  
= 200pF  
= 1  
V
= 2.7V  
= 25°C  
= 1  
S
S
R
C
A
T
L
L
V
A
A
V
–OS  
+OS  
10  
100  
1k  
TIME (400ns/DIV)  
CAPACITANCE (pF)  
Figure 39. Small Signal Overshoot vs. Load Capacitance  
Figure 42. Large Signal Transient Response  
Rev. H | Page 14 of 24  
AD8605/AD8606/AD8608  
APPLICATIONS INFORMATION  
OUTPUT PHASE REVERSAL  
V
V
A
R
= ±2.5V  
= 6V p-p  
= 1  
S
IN  
V
OUT  
Phase reversal is defined as a change in polarity at the output of  
the amplifier when a voltage that exceeds the maximum input  
common-mode voltage drives the input.  
V
L
= 10kΩ  
V
Phase reversal can cause permanent damage to the amplifier; it  
can also cause system lockups in feedback loops. The AD8605  
does not exhibit phase reversal even for inputs exceeding the  
supply voltage by more than 2 V.  
IN  
MAXIMUM POWER DISSIPATION  
Power dissipated in an IC causes the die temperature to  
increase, which can affect the behavior of the IC and the  
application circuit performance.  
TIME (4µs/DIV)  
Figure 43. No Phase Reversal  
The absolute maximum junction temperature of the AD8605/  
AD8606/AD8608 is 150°C. Exceeding this temperature could  
damage or destroy the device.  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
SOIC-14  
The maximum power dissipation of the amplifier is calculated  
according to  
TSSOP-14  
TJ TA  
SOIC-8  
PDISS  
=
θJA  
MSOP-8  
where:  
WLCSP-5  
TJ is the junction temperature.  
TA is the ambient temperature.  
5-LEAD SOT-23  
θJA is the junction-to-ambient thermal resistance.  
–45  
–20  
5
30  
55  
80  
105  
130  
Figure 44 compares the maximum power dissipation with  
temperature for the various AD860x family packages.  
AMBIENT TEMPERATURE (°C)  
Figure 44. Maximum Power Dissipation vs. Ambient Temperature  
INPUT OVERVOLTAGE PROTECTION  
0.1  
V
A
B
= ±2.5V  
= 1  
= 80kHz  
SY  
The AD8605 has internal protective circuitry. However, if the  
voltage applied at either input exceeds the supplies by more  
than 2.5 V, external resistors should be placed in series with  
the inputs. The resistor values can be determined by  
V
W
0.01  
0.001  
VIN VS  
5mA  
RS +200Ω  
The remarkable low input offset current of the AD8605 (<1 pA)  
allows the use of larger value resistors. With a 10 kꢀ resistor at  
the input, the output voltage has less than 10 nV of error voltage.  
A 10 kꢀ resistor has less than 13 nV/√Hz of thermal noise at  
room temperature.  
0.0001  
20  
100  
1k  
10k 20k  
FREQUENCY (Hz)  
THD + NOISE  
Figure 45. THD + Noise vs. Frequency  
Total harmonic distortion is the ratio of the input signal in V rms  
to the total harmonics in V rms throughout the spectrum.  
Harmonic distortion adds errors to precision measurements  
and adds unpleasant sonic artifacts to audio systems.  
The AD8605 has a low total harmonic distortion. Figure 45 shows  
that the AD8605 has less than 0.005% or −86 dB of THD + N  
over the entire audio frequency range. The AD8605 is configured  
in positive unity gain, which is the worst case, and with a load  
of 10 kꢀ.  
Rev. H | Page 15 of 24  
 
 
 
AD8605/AD8606/AD8608  
A snubber network, shown in Figure 48, helps reduce the signal  
overshoot to a minimum and maintain stability. Although this  
circuit does not recover the loss of bandwidth induced by large  
capacitive loads, it greatly reduces the overshoot and ringing.  
This method does not reduce the maximum output swing of the  
amplifier.  
TOTAL NOISE INCLUDING SOURCE RESISTORS  
The low input current noise and input bias current of the  
AD8605 make it the ideal amplifier for circuits with substantial  
input source resistance, such as photodiodes. Input offset voltage  
increases by less than 0.5 nV per 1 kꢀ of source resistance at  
room temperature and increases to 10 nV at 85°C. The total  
noise density of the circuit is  
0
–20  
–40  
2
2
en  
= en  
+
(
inRS  
)
+ 4kTRS  
,TOTAL  
where:  
–60  
en is the input voltage noise density of the AD8605.  
in is the input current noise density of the AD8605.  
RS is the source resistance at the noninverting terminal.  
k is Boltzmann’s constant (1.38 × 10−23 J/K).  
–80  
–100  
–120  
–140  
–160  
–180  
T is the ambient temperature in Kelvin (T = 273 + °C).  
For example, with RS = 10 kꢀ, the total voltage noise density is  
roughly 15 nV/√Hz.  
For RS < 3.9 kꢀ, en dominates and en, TOTAL ≈ en.  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
The current noise of the AD8605 is so low that its total density does  
not become a significant term unless RS is greater than 6 Mꢀ.  
Figure 46. Channel Separation vs. Frequency  
The total equivalent rms noise over a specific bandwidth is  
expressed as  
V
= ±2.5V  
= 1  
= 10kΩ  
= 1000pF  
S
A
R
C
V
L
L
En =  
(
en,TOTAL  
)
BW  
where BW is the bandwidth in hertz.  
Note that the previous analysis is valid for frequencies greater  
than 100 Hz and assumes relatively flat noise, above 10 kHz. For  
lower frequencies, flicker noise (1/f) must be considered.  
CHANNEL SEPARATION  
Channel separation, or inverse crosstalk, is a measure of the signal  
feed from one amplifier (channel) to another on the same IC.  
The AD8606 has a channel separation of greater than −160 dB  
up to frequencies of 1 MHz, allowing the two amplifiers to  
amplify ac signals independently in most applications.  
TIME (10µs/DIV)  
Figure 47. AD8606 Capacitive Load Drive Without Snubber  
CAPACITIVE LOAD DRIVE  
V+  
The AD860x can drive large capacitive loads without oscillation.  
Figure 47 shows the output of the AD8606 in response to a  
200 mV input signal. In this case, the amplifier is configured  
in positive unity gain, worst case for stability, while driving a  
1000 pF load at its output. Driving larger capacitive loads in  
unity gain can require the use of additional circuitry.  
4
2
200mV  
1
AD8605  
V
3
IN  
R
R
C
L
S
L
8
C
S
V–  
Figure 48. Snubber Network Configuration  
Rev. H | Page 16 of 24  
 
 
 
AD8605/AD8606/AD8608  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
Figure 49 shows a scope of the output at the snubber circuit.  
The overshoot is reduced from over 70% to less than 5%, and  
the ringing is eliminated by the snubber. Optimum values for RS  
and CS are determined experimentally.  
2
3mW/cm  
V
= ±2.5V  
= 1  
S
A
R
R
C
C
V
L
S
L
S
= 10kΩ  
= 90Ω  
2
2mW/cm  
= 1000pF  
= 700pF  
2
1mW/cm  
0
350  
450  
550  
650  
750  
850  
WAVELENGTH (nm)  
Figure 50. AD8605ACB Input Bias Current Response to Direct Illumination of  
Varying Intensity and Wavelength  
When the WLCSP package is assembled on the board with the  
bump side of the die facing the PCB, reflected light from the  
PCB surface is incident on active silicon circuit areas and results  
in the increased IB. No performance degradation occurs due to  
illumination of the backside (substrate) of the AD8605ACB.  
The AD8605ACB is particularly sensitive to incident light with  
wavelengths in the near infrared range (NIR, 700 nm to 1000 nm).  
Photons in this waveband have a longer wavelength and lower  
energy than photons in the visible (400 nm to 700 nm) and near  
ultraviolet (NUV, 200 nm to 400 nm) bands; therefore, they can  
penetrate more deeply into the active silicon. Incident light with  
wavelengths greater than 1100 nm has no photoelectric effect  
on the AD8605ACB because silicon is transparent to wavelengths  
in this range. The spectral content of conventional light sources  
varies. Sunlight has a broad spectral range, with peak intensity  
in the visible band that falls off in the NUV and NIR bands;  
fluorescent lamps have significant peaks in the visible but not  
the NUV or NIR bands.  
TIME (10µs/DIV)  
Figure 49. Capacitive Load Drive with Snubber  
Table 5 summarizes a few optimum values for capacitive loads.  
Table 5.  
CL (pF)  
RS (Ω)  
100  
70  
CS (pF)  
1000  
1000  
800  
500  
1000  
2000  
60  
An alternate technique is to insert a series resistor inside the  
feedback loop at the output of the amplifier. Typically, the value  
of this resistor is approximately 100 ꢀ. This method also reduces  
overshoot and ringing but causes a reduction in the maximum  
output swing.  
LIGHT SENSITIVITY  
The AD8605ACB (WLCSP package option) is essentially a  
silicon die with additional postfabrication dielectric and  
intermetallic processing designed to contact solder bumps  
on the active side of the chip. With this package type, the die  
is exposed to ambient light and is subject to photoelectric  
effects. Light sensitivity analysis of the AD8605ACB mounted  
on standard PCB material reveals that only the input bias  
current (IB) parameter is impacted when the package is  
illuminated directly by high intensity light. No degradation in  
electrical performance is observed due to illumination by low  
intensity (0.1 mW/cm2) ambient light. Figure 50 shows that IB  
increases with increasing wavelength and intensity of incident  
light; IB can reach levels as high as 4500 pA at a light intensity of  
3 mW/cm2 and a wavelength of 850 nm. The light intensities  
shown in Figure 50 are not normal for most applications, that is,  
even though direct sunlight can have intensities of 50 mW/cm2,  
office ambient light can be as low as 0.1 mW/cm2.  
Efforts have been made at a product level to reduce the effect of  
ambient light; the under bump metal (UBM) has been designed  
to shield the sensitive circuit areas on the active side (bump  
side) of the die. However, if an application encounters any light  
sensitivity with the AD8605ACB, shielding the bump side of the  
WLCSP package with opaque material should eliminate this  
effect. Shielding can be accomplished using materials such as  
silica-filled liquid epoxies that are used in flip-chip underfill  
techniques.  
WLCSP ASSEMBLY CONSIDERATIONS  
For detailed information on the WLCSP PCB assembly and  
reliability, see Application Note AN-617, MicroCSP™ Wafer  
Level Chip Scale Package.  
Rev. H | Page 17 of 24  
 
 
 
 
AD8605/AD8606/AD8608  
I-V CONVERSION APPLICATIONS  
At room temperature, the AD8605 has an input bias current of  
0.2 pA and an offset voltage of 100 μV. Typical values of RD are  
in the range of 1 Gꢀ.  
PHOTODIODE PREAMPLIFIER APPLICATIONS  
The low offset voltage and input current of the AD8605 make  
it an excellent choice for photodiode applications. In addition,  
the low voltage and current noise make the amplifier ideal for  
application circuits with high sensitivity.  
For the circuit shown in Figure 51, the output error voltage is  
approximately 100 μV at room temperature, increasing to about  
1 mV at 85°C.  
C
F
10pF  
The maximum achievable signal bandwidth is  
R
F
ft  
10M  
f MAX  
=
2πRF CF  
PHOTODIODE  
V
OS  
where ft is the unity gain frequency of the amplifier.  
C
50pF  
D
AD8605  
R
I
AUDIO AND PDA APPLICATIONS  
D
D
V
OUT  
The low distortion and wide dynamic range of the AD860x  
make it a great choice for audio and PDA applications,  
including microphone amplification and line output buffering.  
Figure 51. Equivalent Circuit for Photodiode Preamp  
Figure 52 shows a typical application circuit for headphone/  
line-out amplification.  
The input bias current of the amplifier contributes an error  
term that is proportional to the value of RF.  
R1 and R2 are used to bias the input voltage at half the supply,  
which maximizes the signal bandwidth range. C1 and C2 are  
used to ac couple the input signal. C1, R1, and R2 form a high-  
pass filter whose corner frequency is 1/[2π(R1||R2)C1].  
The offset voltage causes a dark current induced by the shunt  
resistance of the Diode RD. These error terms are combined at  
the output of the amplifier. The error voltage is written as  
The high output current of the AD8606 allows it to drive heavy  
resistive loads.  
RF  
RD  
EO =VOS 1+  
+ RF IB  
The circuit in Figure 52 is tested to drive a 16 ꢀ headphone. The  
THD + N is maintained at approximately −60 dB throughout the  
audio range.  
Typically, RF is smaller than RD, thus RF/RD can be ignored.  
5V  
R1  
20kΩ  
C1  
1µF  
8
C3  
R4  
100µF  
20Ω  
R2  
20kΩ  
3
2
1/2  
V1  
500mV  
AD8606  
1
R3 HEADPHONES  
1kΩ  
4
5V  
R7  
20kΩ  
C2  
1µF  
8
C4  
R6  
100µF  
5
6
20Ω  
1/2  
R8  
20kΩ  
V2  
500mV  
AD8606  
7
R5  
1kΩ  
4
Figure 52. Single-Supply Headphone/Speaker Amplifier  
Rev. H | Page 18 of 24  
 
 
 
AD8605/AD8606/AD8608  
INSTRUMENTATION AMPLIFIERS  
The low offset voltage and low noise of the AD8605 make it an  
ideal amplifier for instrumentation applications.  
R
R
R
V
REF  
C
F
R
F
Difference amplifiers are widely used in high accuracy circuits  
to improve the common-mode rejection ratio. Figure 53 shows  
a simple difference amplifier. Figure 54 shows the common-  
mode rejection for a unity gain configuration and for a gain of 10.  
R2  
R2  
R2  
V+  
V
OS  
AD8605  
Making (R4/R3) = (R2/R1) and choosing 0.01% tolerance yields  
a CMRR of 74 dB and minimizes the gain error at the output.  
R1  
R2  
1k  
10kΩ  
V–  
V1  
Figure 55. Simplified Circuit of the DAC8143 with AD8605 Output Buffer  
5V  
R4 R2  
=
To optimize the performance of the DAC, insert a capacitor in  
the feedback loop of the AD8605 to compensate the amplifier  
for the pole introduced by the output capacitance of the DAC.  
Typical values for CF range from 10 pF to 30 pF; it can be  
adjusted for the best frequency response. The total error at the  
output of the op amp can be computed by  
R3 R1  
R2  
R1  
AD8605  
V
OUT  
V
=
(V2 – V1)  
OUT  
R3  
1kΩ  
R4  
10kΩ  
V2  
RF  
Req  
EO =VOS 1 +  
Figure 53. Difference Amplifier, AV = 10  
120  
100  
80  
V
= ±2.5V  
SY  
where Req is the equivalent resistance seen at the output of the  
DAC. As previously mentioned, Req is code dependent and  
varies with the input. A typical value for Req is 15 kꢀ.  
Choosing a feedback resistor of 10 kꢀ yields an error of less  
than 200 μV.  
A
= 10  
V
A
= 1  
V
60  
Figure 56 shows the implementation of a dual-stage buffer  
at the output of a DAC. The first stage is used as a buffer.  
Capacitor C1 with Req creates a low-pass filter, and thus,  
provides phase lead to compensate for frequency response.  
The second stage of the AD8606 is used to provide voltage  
gain at the output of the buffer.  
40  
20  
0
100  
1k  
10k  
100k  
1M  
10M  
Grounding the positive input terminals in both stages reduces  
errors due to the common-mode output voltage. Choosing R1,  
R2, and R3 to match within 0.01% yields a CMRR of 74 dB and  
maintains minimum gain error in the circuit.  
FREQUENCY (Hz)  
Figure 54. Difference Amplifier CMRR vs. Frequency  
DAC CONVERSION  
The low input bias current and offset voltage of the AD8605  
make it an excellent choice for buffering the output of a current  
output DAC.  
R
R3  
20k  
CS  
15V  
Figure 55 shows a typical implementation of the AD8605 at the  
output of a 12-bit DAC.  
R2  
10kΩ  
C1  
33pF  
V
R
FB  
DD  
R1  
OUT1  
AGND  
10kΩ  
The DAC8143 output current is converted to a voltage by the  
feedback resistor. The equivalent resistance at the output of the  
DAC varies with the input code, as does the output capacitance.  
V
AD7545  
OUT  
V
REF  
R
V
P
IN  
1/2  
DB11  
1/2  
AD8606  
AD8606  
R4  
5kΩ  
Figure 56. Bipolar Operation  
Rev. H | Page 19 of 24  
 
 
 
 
 
AD8605/AD8606/AD8608  
OUTLINE DIMENSIONS  
0.50 REF  
SEATING  
0.94  
0.90  
0.86  
0.37  
0.36  
0.35  
PLANE  
2
1
0.87  
A
B
C
0.23  
0.18  
0.14  
BALL 1  
IDENTIFIER  
1.33  
0.50  
1.29  
1.25  
0.21  
0.17  
0.14  
0.12  
TOP VIEW  
(BALL SIDE DOWN)  
0.20  
0.50  
BOTTOM VIEW  
(BALL SIDE UP)  
Figure 57. 5-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-5-1)  
Dimensions shown in millimeters  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
PIN 1  
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
1.45 MAX  
0.22  
0.08  
10°  
5°  
0°  
0.15 MAX  
0.50  
0.30  
0.60  
0.45  
0.30  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178-AA  
Figure 58. 5-Lead Small Outline Transistor Package [SOT-23]  
(RJ-5)  
Dimensions shown in millimeters  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 59. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
Rev. H | Page 20 of 24  
 
AD8605/AD8606/AD8608  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 60. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
0.675  
0.595  
0.515  
1.480  
1.430  
SEATING  
PLANE  
1.380  
3
2
1
A
B
C
0.340  
0.320  
0.300  
BALL 1  
IDENTIFIER  
1.825  
1.775  
1.725  
0.50  
BALL PITCH  
TOP VIEW  
(BALL SIDE DOWN)  
BOTTOM VIEW  
(BALL SIDE UP)  
0.380  
0.355  
0.330  
0.27  
0.24  
0.21  
Figure 61. 8-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-8-1)  
Dimensions shown in millimeters  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
BSC  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 62. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-14)  
Dimensions shown in millimeters and (inches)  
Rev. H | Page 21 of 24  
AD8605/AD8606/AD8608  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65  
BSC  
1.05  
1.00  
0.80  
0.20  
0.09  
1.20  
MAX  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 63. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
5-Ball WLCSP  
5-Ball WLCSP  
5-Ball WLCSP  
5-Ball WLCSP  
Package Option  
CB-5-1  
CB-5-1  
CB-5-1  
CB-5-1  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
RJ-5  
Branding  
B3A  
B3A  
A1J  
A1J  
B3A  
B3A  
B3A  
B3A#  
B3A#  
B3A#  
B6A  
B6A  
B6A#  
B6A#  
AD8605ACB-REEL  
AD8605ACB-REEL7  
AD8605ACBZ-REEL1  
AD8605ACBZ-REEL71  
AD8605ART-R2  
AD8605ART-REEL  
AD8605ART-REEL7  
AD8605ARTZ-R21  
AD8605ARTZ-REEL1  
AD8605ARTZ-REEL71  
AD8606ARM-R2  
AD8606ARM-REEL  
AD8606ARMZ-R21  
AD8606ARMZ-REEL1  
AD8606AR  
AD8606AR-REEL  
AD8606AR-REEL7  
AD8606ARZ1  
AD8606ARZ-REEL1  
AD8606ARZ-REEL71  
AD8606ACBZ-REEL1  
AD8606ACBZ-REEL71  
AD8608AR  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Ball WLCSP  
RJ-5  
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
CB-8-1  
CB-8-1  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
RU-14  
RU-14  
RU-14  
RU-14  
B6A#  
B6A#  
8-Ball WLCSP  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
AD8608AR-REEL  
AD8608AR-REEL7  
AD8608ARZ1  
AD8608ARZ-REEL1  
AD8608ARZ-REEL71  
AD8608ARU  
AD8608ARU-REEL  
AD8608ARUZ1  
AD8608ARUZ-REEL1  
1 Z = RoHS Compliant Part, # denotes RoHS compliant (except for CB-5-1). Product may be top or bottom marked.  
Rev. H | Page 22 of 24  
 
 
AD8605/AD8606/AD8608  
NOTES  
Rev. H | Page 23 of 24  
AD8605/AD8606/AD8608  
NOTES  
©2002–2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02731-0-2/08(H)  
Rev. H | Page 24 of 24  
 

相关型号:

AD8605ACBZ-REEL7

Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers
ADI

AD8605ART

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8605ART-R2

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8605ART-REEL

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8605ART-REEL7

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8605ARTZ

Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers
ADI

AD8605ARTZ-R2

Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers
ADI

AD8605ARTZ-REEL

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8605ARTZ-REEL7

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8605_08

Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers
ADI

AD8605_15

Precision, Low Noise, CMOS, Rail-to-Rail
ADI

AD8606

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI