AD8620ARZ-REEL [ADI]

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifier; 精密,极低噪声,低输入偏置电流,宽带宽JFET运算放大器
AD8620ARZ-REEL
型号: AD8620ARZ-REEL
厂家: ADI    ADI
描述:

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifier
精密,极低噪声,低输入偏置电流,宽带宽JFET运算放大器

运算放大器 放大器电路 光电二极管
文件: 总24页 (文件大小:1008K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision, Very Low Noise,  
Low Input Bias Current, Wide  
Bandwidth JFET Operational Amplifier  
AD8610/AD8620  
PIN CONFIGURATIONS  
FEATURES  
Low noise: 6 nV/√Hz  
NULL  
–IN  
1
2
3
4
8
7
6
5
NC  
Low offset voltage: 100 μV maximum  
Low input bias current: 10 pA maximum  
Fast settling: 600 ns to 0.01%  
Low distortion  
V+  
AD8610  
+IN  
OUT  
NULL  
TOP VIEW  
(Not to Scale)  
V–  
NC = NO CONNECT  
Unity gain stable  
Figure 1. AD8610 8-Lead MSOP and SOIC_N  
No phase reversal  
Dual-supply operation: ±± V to ±13 V  
OUTA  
–INA  
+INA  
V–  
1
2
3
4
8
7
6
5
V+  
OUTB  
–INB  
+INB  
AD8620  
APPLICATIONS  
TOP VIEW  
(Not to Scale)  
Photodiode amplifier  
ATE  
Instrumentation  
Figure 2.AD8620 8-Lead SOIC  
Sensors and controls  
High performance filters  
Fast precision integrators  
High performance audio  
GENERAL DESCRIPTION  
The AD8610/AD8620 are very high precision JFET input ampli-  
fiers featuring ultralow offset voltage and drift, very low input  
voltage and current noise, very low input bias current, and wide  
bandwidth. Unlike many JFET amplifiers, the AD8610/AD8620  
input bias current is low over the entire operating temperature  
range. The AD8610/AD8620 are stable with capacitive loads of  
over 1000 pF in noninverting unity gain; much larger capacitive  
loads can be driven easily at higher noise gains. The AD8610/  
AD8620 swing to within 1.2 V of the supplies even with a 1 kΩ  
load, maximizing dynamic range even with limited supply volt-  
ages. Outputs slew at 50 V/μs in either inverting or noninverting  
gain configurations, and settle to 0.01% accuracy in less than  
600 ns. Combined with high input impedance, great precision  
and very high output drive, the AD8610/AD8620 are ideal  
amplifiers for driving high performance ADC inputs and  
buffering DAC converter outputs.  
Applications for the AD8610/AD8620 include electronic instru-  
ments; ATE amplification, buffering, and integrator circuits;  
CAT/MRI/ultrasound medical instrumentation; instrumentation  
quality photodiode amplification; fast precision filters (including  
PLL filters); and high quality audio.  
The AD8610/AD8620 are fully specified over the extended  
industrial (−40°C to +125°C) temperature range. The AD8610  
is available in the narrow 8-lead SOIC and the tiny 8-lead MSOP  
surface-mount packages. The AD8620 is available in the narrow  
8-lead SOIC package. 8-lead MSOP packaged devices are avail-  
able only in tape and reel.  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD8610/AD8620  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ............................................................5  
Typical Performance Characteristics ..............................................6  
Theory of Operation ...................................................................... 13  
Functional Description.............................................................. 13  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 22  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Specifications............................................................... 4  
5/02—Rev. A to Rev. B  
REVISION HISTORY  
Addition of part number AD8620 ...................................Universal  
Addition of 8-Lead SOIC (R-8 Suffix) Drawing............................1  
Changes to General Description .....................................................1  
Additions to Specifications ..............................................................2  
Change to Electrical Specifications.................................................3  
Additions to Ordering Guide...........................................................4  
Replace TPC 29..................................................................................8  
Add Channel Separation Test Circuit Figure.................................9  
Add Channel Separation Graph ......................................................9  
Changes to Figure 26...................................................................... 15  
Addition of High-Speed, Low Noise Differential Driver  
11/06—Rev. D to Rev. E  
Updated Format..................................................................Universal  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Changes to Outline Dimensions................................................... 21  
Changes to Ordering Guide .......................................................... 21  
2/04—Rev. C to Rev. D.  
Changes to Specifications................................................................ 2  
Changes to Ordering Guide ............................................................ 4  
Updated Outline Dimensions....................................................... 17  
section .............................................................................................. 16  
Addition of Figure 30..................................................................... 16  
10/02—Rev. B to Rev. C.  
Updated Ordering Guide................................................................. 4  
Edits to Figure 15............................................................................ 12  
Updated Outline Dimensions....................................................... 16  
Rev. E | Page 2 of 24  
 
AD8610/AD8620ꢀ  
SPECIFICATIONSꢀ  
@ VS = ±±5. V, VCM = . V, TA = 2±°C, unless otherwise noted5  
Table 1.  
Parameter  
Symbol  
VOS  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage (AD8610B)  
45  
80  
45  
80  
85  
90  
150  
+2  
+130  
+1.5  
+1  
100  
200  
150  
300  
250  
350  
850  
+10  
+250  
+2.5  
+10  
+75  
+150  
+3  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
pA  
pA  
nA  
pA  
pA  
pA  
V
–40°C < TA < +125°C  
–40°C < TA < +125°C  
Offset Voltage (AD8620B)  
VOS  
Offset Voltage (AD8610A/AD8620A)  
VOS  
+25°C < TA < +125°C  
–40°C < TA < +125°C  
Input Bias Current  
IB  
–10  
–250  
–2.5  
–10  
–75  
–150  
–2  
–40°C < TA < +85°C  
–40°C < TA < +125°C  
Input Offset Current  
IOS  
–40°C < TA < +85°C  
–40°C < TA < +125°C  
+20  
+40  
Input Voltage Range  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Offset Voltage Drift (AD8610B)  
Offset Voltage Drift (AD8620B)  
Offset Voltage Drift (AD8610A/AD8620A)  
OUTPUT CHARACTERISTICS  
Output Voltage High  
CMRR  
AVO  
ΔVOS/ΔT  
ΔVOS/ΔT  
ΔVOS/ΔT  
VCM = –1.5 V to +2.5 V  
RL = 1 kΩ, VO = –3 V to +3 V  
–40°C < TA < +125°C  
–40°C < TA < +125°C  
–40°C < TA < +125°C  
90  
100  
95  
dB  
180  
0.5  
0.5  
0.8  
V/mV  
μV/°C  
μV/°C  
μV/°C  
1
1.5  
3.5  
VOH  
VOL  
IOUT  
RL = 1 kΩ, –40°C < TA < +125°C  
RL = 1 kΩ, –40°C < TA < +125°C  
3.8  
100  
40  
4
–4  
30  
V
V
mA  
Output Voltage Low  
Output Current  
–3.8  
VOUT  
>
2 V  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
VS = 5 V to 13 V  
VO = 0 V  
–40°C < TA < +125°C  
110  
2.5  
3.0  
dB  
mA  
mA  
3.0  
3.5  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Settling Time  
SR  
GBP  
tS  
RL = 2 kΩ  
50  
25  
350  
V/μs  
MHz  
ns  
AV = +1, 4 V step, to 0.01%  
NOISE PERFORMANCE  
Voltage Noise  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
1.8  
6
5
μV p-p  
nV/√Hz  
fA/√Hz  
Voltage Noise Density  
Current Noise Density  
Input Capacitance  
Differential Mode  
Common Mode  
CIN  
8
15  
pF  
pF  
Channel Separation  
f = 10 kHz  
f = 300 kHz  
CS  
137  
120  
dB  
dB  
Rev. E | Page 3 of 24  
 
AD8610/AD8620  
ELECTRICAL SPECIFICATIONS  
@ VS = ±±1 V, VCM = 0 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
VOS  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage (AD8610B)  
45  
100  
μV  
–40°C < TA < +125°C  
–40°C < TA < +125°C  
80  
200  
μV  
Offset Voltage (AD8620B)  
VOS  
45  
150  
μV  
80  
300  
μV  
Offset Voltage (AD8610A/AD8620A)  
VOS  
85  
250  
μV  
+25°C < TA < +125°C  
–40°C < TA < +125°C  
90  
350  
μV  
150  
+3  
+130  
850  
μV  
Input Bias Current  
IB  
–10  
+10  
+250  
+3.5  
+10  
+75  
+150  
+10.5  
pA  
–40°C < TA < +85°C  
–40°C < TA < +125°C  
–250  
–3.5  
–10  
pA  
nA  
Input Offset Current  
IOS  
+1.5  
+20  
+40  
pA  
–40°C < TA < +85°C  
–40°C < TA < +125°C  
–75  
pA  
–150  
–10.5  
90  
pA  
Input Voltage Range  
V
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Offset Voltage Drift (AD8610B)  
Offset Voltage Drift (AD8620B)  
Offset Voltage Drift (AD8610A/AD8620A)  
OUTPUT CHARACTERISTICS  
Output Voltage High  
CMRR  
VCM = –10 V to +10 V  
RL = 1 kΩ, VO = –10 V to +10 V  
–40°C < TA < +125°C  
–40°C < TA < +125°C  
–40°C < TA < +125°C  
110  
200  
0.5  
dB  
AVO  
100  
V/mV  
μV/°C  
μV/°C  
μV/°C  
ΔVOS/ΔT  
ΔVOS/ΔT  
ΔVOS/ΔT  
1
0.5  
1.5  
3.5  
0.8  
VOH  
VOL  
IOUT  
ISC  
RL = 1 kΩ, −40°C < TA < +125°C  
RL = 1 kΩ, −40°C < TA < +125°C  
VOUT > 10 V  
+11.75  
+11.84  
–11.84  
45  
V
Output Voltage Low  
–11.75  
V
Output Current  
mA  
mA  
Short Circuit Current  
65  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
VS = 5 V to 13 V  
VO = 0 V  
100  
40  
110  
3.0  
3.5  
dB  
3.5  
4.0  
mA  
mA  
–40°C < TA < +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
GBP  
tS  
RL = 2 kΩ  
60  
V/μs  
MHz  
ns  
Gain Bandwidth Product  
Settling Time  
25  
AV = 1, 10 V step, to 0.01%  
600  
NOISE PERFORMANCE  
Voltage Noise  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
1.8  
6
μV p-p  
nV/√Hz  
fA/√Hz  
Voltage Noise Density  
Current Noise Density  
Input Capacitance  
Differential Mode  
Common Mode  
in  
f = 1 kHz  
5
CIN  
8
pF  
pF  
15  
Channel Separation  
f = 10 kHz  
CS  
137  
120  
dB  
dB  
f = 300 kHz  
Rev. E | Page 4 of 24  
 
AD8610/AD8620ꢀ  
ABSOLUTEꢀMAXIMUMꢀRATINGSꢀꢀ  
Table 3.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device5 This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied5 Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability5  
Rating  
Supply Voltage  
Input Voltage  
27.3 V  
VS− to VS+  
Supply Voltage  
Indefinite  
Differential Input Voltage  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
R, RM Packages  
Operating Temperature Range  
AD8610/AD8620  
Junction Temperature Range  
R, RM Packages  
Lead Temperature Range (Soldering, 10 sec)  
–65°C to +150°C  
–40°C to +125°C  
Table 4. Thermal Resistance  
Package Type  
1
θJA  
θJC  
44  
43  
Unit  
°C/W  
°C/W  
8-Lead MSOP (RM)  
8-Lead SOIC (R)  
190  
158  
–65°C to +150°C  
300°C  
1 θJA is specified for worst-case conditions; that is, θJA is specified for a device  
soldered in circuit board for surface-mount packages.  
ESD CAUTION  
Rev. E | Page 5 of 24  
 
 
AD8610/AD8620ꢀꢀ  
TYPICALꢀPERFORMANCEꢀCHARACTERISTICSꢀ  
14  
600  
400  
200  
0
V
= ±13V  
S
V
= ±5V  
S
12  
10  
8
6
–200  
–400  
–600  
4
2
0
–250  
–150  
–50  
50  
150  
250  
–40  
25  
85  
125  
INPUT OFFSET VOLTAGE (µV)  
TEMPERATURE (°C)  
Figure 3. Input Offset Voltage at 13 V  
Figure 6. Input Offset Voltage vs. Temperature at 5 V (300 Amplifiers)  
600  
400  
200  
0
14  
V
= ±5V OR ±13V  
S
V
= ±13V  
S
12  
10  
8
6
–200  
–400  
–600  
4
2
0
–40  
25  
85  
125  
0
0.2  
0.6  
1.0  
T
1.4  
1.8  
2.2  
2.6  
TEMPERATURE (°C)  
V
(µV/°C)  
C
OS  
Figure 4. Input Offset Voltage vs. Temperature at 13 V (300 Amplifiers)  
Figure 7. Input Offset Voltage Drift  
18  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
V
= ±13V  
S
V
= ±5V  
S
16  
14  
12  
10  
8
6
4
2
0
–250  
–150  
–50  
50  
150  
250  
–10  
–5  
0
5
10  
INPUT OFFSET VOLTAGE (µV)  
COMMON-MODE VOLTAGE (V)  
Figure 5. Input Offset Voltage at 5 V  
Figure 8. Input Bias Current vs. Common-Mode Voltage  
Rev. E | Page 6 of 24  
 
AD8610/AD8620ꢀ  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= ±13V  
S
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
100  
1k  
10k  
100k  
1M  
10M  
100M  
SUPPLY VOLTAGE (±V)  
RESISTANCE LOAD ()  
Figure 9. Supply Current vs. Supply Voltage  
Figure 12. Output Voltage to Supply Rail vs. Load  
3.05  
2.95  
2.85  
2.75  
2.65  
2.55  
4.25  
4.20  
4.15  
4.10  
4.05  
4.00  
3.95  
V = ±5V  
S
V
= ±13V  
S
R
= 1kΩ  
L
–40  
25  
85  
125  
–40  
25  
85  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 10. Supply Current vs. Temperature at 13 V  
Figure 13. Output Voltage High vs. Temperature at 5 V  
2.65  
–3.95  
–4.00  
–4.05  
–4.10  
–4.15  
–4.20  
–4.25  
–4.30  
V
= ±5V  
S
R
= 1kΩ  
L
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
–40  
25  
85  
125  
–40  
25  
85  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Supply Current vs. Temperature at 5 V  
Figure 14. Output Voltage Low vs. Temperature at 5 V  
Rev. E | Page 7 of 24  
AD8610/AD8620ꢀꢀ  
12.05  
60  
40  
V
R
= ±13V  
= 1kΩ  
V
R
C
= ±13V  
= 2k  
= 20pF  
S
S
L
L
L
12.00  
11.95  
11.90  
11.85  
11.80  
G = +100  
G = +10  
G = +1  
20  
0
–20  
–40  
–40  
25  
85  
125  
1k  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 15. Output Voltage High vs. Temperature at 13 V  
Figure 18. Closed-Loop Gain vs. Frequency  
260  
240  
220  
200  
180  
160  
140  
120  
100  
–11.80  
–11.85  
–11.90  
–11.95  
–12.00  
–12.05  
V
= ±13V  
= ±10V  
= 1kΩ  
S
V
O
R
L
–40  
25  
85  
125  
–40  
25  
85  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 19. AVO vs. Temperature at 13 V  
Figure 16. Output Voltage Low vs. Temperature at 13 V  
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
120  
100  
80  
270  
225  
180  
135  
90  
V
R
= ±13V  
= 1kΩ  
S
V
V
R
= ±5V  
= ±3V  
= 1kΩ  
S
L
O
MARKER AT 27MHz  
φ
C
L
= 69.5  
= 20pF  
M
L
60  
40  
20  
45  
0
0
–20  
–40  
–60  
–80  
–45  
–90  
–135  
–180  
–40  
25  
85  
125  
1
10  
100  
200  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
Figure 20. AVO vs. Temperature at 5 V  
Figure 17. Open-Loop Gain and Phase vs. Frequency  
Rev. E | Page 8 of 24  
AD8610/AD8620ꢀ  
160  
140  
120  
100  
80  
140  
120  
100  
80  
V
S
= ±13V  
V = ±13V  
S
+PSRR  
60  
60  
40  
20  
40  
0
20  
–20  
–40  
0
100  
1k  
10k  
100k  
1M  
10M  
60M  
10  
100  
1k  
10k  
100k  
1M  
10M  
60M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21. PSRR vs. Frequency at 13 V  
Figure 24. CMRR vs. Frequency  
160  
140  
120  
100  
80  
V
S
= ±5V  
V
V
= ±13V  
IN  
S
= –300mV p-p  
= –100  
A
R
V
L
= 10kΩ  
+PSRR  
–PSRR  
60  
0V  
V
V
IN  
40  
20  
CH = 5V/DIV  
OUT  
2
0
–20  
0V  
–40  
100  
1k  
10k  
100k  
1M  
10M  
60M  
FREQUENCY (Hz)  
TIME (4µs/DIV)  
Figure 22. PSRR vs. Frequency at 5V  
Figure 25. Positive Overvoltage Recovery  
122  
121  
120  
119  
118  
117  
116  
V
V
A
R
C
= ±13V  
IN  
S
= 300mV p-p  
= –100  
V
L
L
= 10kΩ  
= 0pF  
V
IN  
0V  
0V  
V
OUT  
CH = 5V/DIV  
2
–40  
25  
85  
125  
TEMPERATURE (°C)  
TIME (4µs/DIV)  
Figure 23. PSRR vs. Temperature  
Figure 26. Negative Overvoltage Recovery  
Rev. E | Page 9 of 24  
AD8610/AD8620ꢀꢀ  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= ±5V  
S
V
V
= ±13V  
IN  
S
p-p = 1.8µV  
GAIN = +1  
GAIN = +10  
GAIN = +100  
1k  
10k  
100k  
1M  
10M  
100M  
TIME (1s/DIV)  
FREQUENCY (Hz)  
Figure 27. 0.1 Hz to 10 Hz Input Voltage Noise  
Figure 30. ZOUT vs. Frequency  
3000  
2500  
2000  
1500  
1000  
500  
1000  
100  
10  
V
= ±13V  
S
1
0
1
10  
100  
1k  
10k  
100k  
1M  
0
25  
85  
125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 28. Input Voltage Noise Density vs. Frequency  
Figure 31. Input Bias Current vs. Temperature  
100  
40  
35  
30  
25  
20  
15  
10  
5
V
= ±13V  
S
V
= ±13V  
S
L
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
R
= 2kΩ  
V
= 100mV p-p  
IN  
GAIN = +1  
+OS  
–OS  
GAIN = +100  
GAIN = +10  
0
1k  
10k  
100k  
1M  
10M  
100M  
0
10  
100  
CAPACITANCE (pF)  
1k  
10k  
FREQUENCY (Hz)  
Figure 29. ZOUT vs. Frequency  
Figure 32. Small Signal Overshoot vs. Load Capacitance  
Rev. E | Page 10 of 24  
AD8610/AD8620ꢀ  
40  
35  
30  
25  
20  
15  
10  
5
V
= ±5V  
S
L
R
= 2kΩ  
V
= 100mV  
IN  
+OS  
–OS  
V
V
A
R
C
= ±13V  
p-p = 20V  
= +1  
S
IN  
V
L
L
= 2kΩ  
= 20pF  
0
0
10  
100  
CAPACITANCE (pF)  
1k  
10k  
TIME (400ns/DIV)  
Figure 33. Small Signal Overshoot vs. Load Capacitance  
Figure 36. +SR at G = +1  
V
V
A
= ±13V  
= ±14V  
= +1  
S
IN  
V
FREQ = 0.5kHz  
V
IN  
V
OUT  
V
V
A
R
C
= ±13V  
p-p = 20V  
= +1  
S
IN  
V
L
L
= 2kΩ  
= 20pF  
TIME (400µs/DIV)  
TIME (400ns/DIV)  
Figure 34. No Phase Reversal  
Figure 37. −SR at G = +1  
V
V
A
R
C
= ±13V  
p-p = 20V  
= +1  
V
= ±13V  
p-p = 20V  
= –1  
S
IN  
V
L
L
S
V
IN  
A
R
C
V
L
L
= 2kΩ  
= 2kΩ  
= 20pF  
= 20pF  
TIME (1µs/DIV)  
TIME (1µs/DIV)  
Figure 35. Large Signal Response at G = +1  
Figure 38. Large Signal Response at G =−1  
Rev. E | Page 11 of 24  
AD8610/AD8620ꢀ  
V
V
A
R
= ±13V  
p-p = 20V  
= –1  
S
IN  
V
L
= 2kΩ  
SR = 50V/µs  
= 20pF  
C
L
V
V
A
R
= ±13V  
p-p = 20V  
= –1  
S
IN  
V
L
= 2kΩ  
SR = 55V/µs  
= 20pF  
C
L
TIME (400ns/DIV)  
TIME (400ns/DIV)  
Figure 39. +SR at G = −1  
Figure 40. −SR at G = −1  
Rev. E | Page 12 of 24  
AD8610/AD8620  
THEORY OF OPERATION  
/ 10 × V )  
IN  
R1  
138  
136  
134  
132  
130  
128  
126  
124  
122  
120  
CS (dB) = 20 log (V  
OUT  
20k  
+13V  
R2  
2kΩ  
U1  
V+  
V–  
3
2
+
V–  
V+  
6
7
V
IN  
20V p-p  
5
0
R3  
R4  
2kΩ  
2kΩ  
U2  
0
–13V  
0
0
0
Figure 41. Channel Separation Test Circuit  
FUNCTIONAL DESCRIPTION  
The AD8610/AD8620 are manufactured on Analog Devices,  
Inc.'s XFCB (eXtra fast complementary bipolar) process. XFCB  
is fully dielectrically isolated (DI) and used in conjunction with  
N-channel JFET technology and thin film resistors (that can be  
trimmed) to create the JFET input amplifier. Dielectrically iso-  
lated NPN and PNP transistors fabricated on XFCB have an FT  
greater than 3 GHz. Low TC thin film resistors enable very accurate  
offset voltage and offset voltage tempco trimming. These process  
breakthroughs allow Analog Devices’ IC designers to create an  
amplifier with faster slew rate and more than 50% higher band-  
width at half of the current consumed by its closest competition.  
The AD8610/AD8620 are unconditionally stable in all gains,  
even with capacitive loads well in excess of 1 nF. The AD8610/  
AD8620B grade achieves less than 100 μV of offset and 1 μV/°C  
of offset drift, numbers usually associated with very high precision  
bipolar input amplifiers. The AD8610 is offered in the tiny 8-lead  
MSOP as well as narrow 8-lead SOIC surface-mount packages  
and is fully specified with supply voltages from 5 V to 13 V.  
The very wide specified temperature range, up to 125°C, guarantees  
superior operation in systems with little or no active cooling.  
0
50  
100  
150  
200  
250  
300  
350  
FREQUENCY (kHz)  
Figure 42. AD8620 Channel Separation Graph  
8
7
6
5
4
3
2
OPA627  
AD8610  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
The unique input architecture of the AD8610/AD8620 features  
extremely low input bias currents and very low input offset volt-  
age. Low power consumption minimizes the die temperature and  
maintains the very low input bias current. Unlike many com-  
petitive JFET amplifiers, the AD8610/AD8620 input bias currents  
are low even at elevated temperatures. Typical bias currents are  
less than 200 pA at 85°C. The gate current of a JFET doubles  
every 10°C resulting in a similar increase in input bias current  
over temperature. Give special care to the PC board layout to  
minimize leakage currents between PCB traces. Improper lay-  
out and board handling generates a leakage current that exceeds  
the bias current of the AD8610/AD8620.  
Figure 43. Supply Current vs. Temperature  
Power Consumption  
A major advantage of the AD8610/AD8620 in new designs is  
the power saving capability. Lower power consumption of the  
AD8610/AD8620 makes them much more attractive for portable  
instrumentation and for high density systems, simplifying ther-  
mal management, and reducing power-supply performance  
requirements. Compare the power consumption of the AD8610  
vs. the OPA627 in Figure 43.  
Rev. E | Page 13 of 24  
 
 
AD8610/AD8620ꢀꢀ  
+5V  
7
Driving Large Capacitive Loads  
3
2
The AD861./AD862. have excellent capacitive load driving  
capability and can safely drive up to 1. nF when operating with  
±± V supply5 Figure 44 and Figure 4± compare the AD861./  
AD862. against the OPA627 in the noninverting gain configu­  
ration driving a 1. kΩ resistor and 1.,... pF capacitor placed  
in parallel on its output, with a square wave input set to a frequency  
of 2.. kHz5 The AD861./AD862. have much less ringing than  
the OPA627 with heavy capacitive loads5  
V
= 50mV  
IN  
4
2µF  
–5V  
2k  
2kΩ  
Figure 46. Capacitive Load Drive Test Circuit  
V
= ±5V  
S
L
L
R
C
= 10k  
= 10,000pF  
V
= ±5V  
= 10kΩ  
= 2µF  
S
L
L
R
C
TIME (20µs/DIV)  
Figure 47. OPA627 Capacitive Load Drive, AV = +2  
TIME (2µs/DIV)  
Figure 44. OPA627 Driving CL = 10,000 pF  
V
= ±5V  
S
L
L
R
C
= 10kΩ  
= 10,000pF  
V
= ±5V  
= 10kΩ  
= 2µF  
S
L
L
R
C
TIME (20µs/DIV)  
Figure 48. AD8610/AD8620 Capacitive Load Drive, AV = +2  
TIME (2µs/DIV)  
Figure 45. AD8610/AD8620 Driving CL = 10,000 pF  
The AD861./AD862. can drive much larger capacitances  
without any external compensation5 Although the AD861./  
AD862. are stable with very large capacitive loads, remember  
that this capacitive loading limits the bandwidth of the amplifier5  
Heavy capacitive loads also increase the amount of overshoot  
and ringing at the output5 Figure 47 and Figure 48 show the  
AD861./AD862. and the OPA627 in a noninverting gain of +2  
driving 2 μF of capacitance load5 The ringing on the OPA627 is  
much larger in magnitude and continues 1. times longer than  
the AD861./AD862.5  
Rev. E | Page 14 of 24  
 
 
 
 
AD8610/AD8620ꢀ  
Slew Rate (Unity Gain Inverting vs. Noninverting)  
V
= ±13V  
S
L
R
= 2kΩ  
Amplifiers generally have a faster slew rate in an inverting unity  
gain configuration due to the absence of the differential input  
capacitance5 Figure 49 through Figure ±2 show the performance  
of the AD861./AD862. configured in a gain of –1 compared to  
the OPA6275 The AD861./AD862. slew rate is more symmetrical,  
and both the positive and negative transitions are much cleaner  
than in the OPA6275  
G = –1  
SR = 54V/µs  
V
= ±13V  
S
L
R
= 2kΩ  
G = –1  
SR = 54V/µs  
TIME (400ns/DIV)  
Figure 51. –Slew Rate of AD8610/AD8620 in Unity Gain of –1  
V
= ±13V  
S
L
R
= 2kΩ  
G = –1  
SR = 56V/µs  
TIME (400ns/DIV)  
Figure 49. +Slew Rate of AD8610/AD8620 in Unity Gain of –1  
V
= ±13V  
S
L
R
= 2kΩ  
G = –1  
TIME (400ns/DIV)  
SR = 42.1V/µs  
Figure 52. –Slew Rate of OPA627 in Unity Gain of –1  
The AD861./AD862. have a very fast slew rate of 6. V/μs even  
when configured in a noninverting gain of +15 This is the toughest  
condition to impose on any amplifier since the input common­  
mode capacitance of the amplifier generally makes its SR appear  
worse5 The slew rate of an amplifier varies according to the voltage  
difference between its two inputs5 To observe the maximum SR,  
a voltage difference of about 2 V between the inputs must be  
ensured5 This is required for virtually any JFET op amp so that  
one side of the op amp input circuit is completely off, thus maxi­  
mizing the current available to charge and discharge the internal  
compensation capacitance5 Lower differential drive voltages  
produce lower slew rate readings5 A JFET input op amp with a  
slew rate of 6. V/μs at unity gain with VIN = 1. V might slew at  
2. V/μs, if it is operated at a gain of +1.. with VIN = 1.. mV5  
TIME (400ns/DIV)  
Figure 50. +Slew Rate of OPA627 in Unity Gain of –1  
Rev. E | Page 15 of 24  
 
 
AD8610/AD8620ꢀꢀ  
The slew rate of the AD861./AD862. is double that of the  
OPA627 when configured in a unity gain of +1 (see Figure ±3  
and Figure ±4)5  
Input Overvoltage Protection  
When the input of an amplifier is driven below VEE or above  
VCC by more than one VBE, large currents flow from the sub­  
strate through the negative supply (V–) or the positive supply  
(V+), respectively, to the input pins and can destroy the device5  
If the input source can deliver larger currents than the maximum  
forward current of the diode (>± mA), a series resistor can be  
added to protect the inputs5 With its very low input bias and  
offset current, a large series resistor can be placed in front of  
the AD861./AD862. inputs to limit current to below damaging  
levels5 Series resistance of 1. kΩ generates less than 2± μV of offset5  
This 1. kΩ allows input voltages more than ± V beyond either  
power supply5 Thermal noise generated by the resistor adds  
75± nV/√Hz to the noise of the AD861./AD862.5 For the AD861./  
AD862., differential voltages equal to the supply voltage do not  
cause any problem (see Figure ±±)5 In this context, please note that  
the high breakdown voltage of the input FETs eliminates the need  
to include clamp diodes between the inputs of the amplifier, a prac­  
tice that is mandatory on many precision op amps5 Unfortunately,  
clamp diodes greatly interfere with many application circuits  
such as precision rectifiers and comparators5 The AD861./  
AD862. are free from these limitations5  
V
= ±13V  
S
L
R
= 2kΩ  
G = +1  
SR = 85V/µs  
TIME (400ns/DIV)  
Figure 53. +Slew Rate of AD8610/AD8620 in Unity Gain of +1  
V
R
= ±13V  
= 2kΩ  
S
L
G = +1  
+13V  
3
7
6
V1  
2
4
AD8610  
14V  
SR = 23V/µs  
–13V  
0
Figure 56. Unity Gain Follower  
No Phase Reversal  
Many amplifiers misbehave when one or both of the inputs are  
forced beyond the input common­mode voltage range5 Phase  
reversal is typified by the transfer function of the amplifier, effect­  
tively reversing its transfer polarity5 In some cases, this can cause  
lockup and even equipment damage in servo systems, and can  
cause permanent damage or no recoverable parameter shifts to  
the amplifier itself5 Many amplifiers feature compensation cir­  
cuitry to combat these effects, but some are only effective for  
the inverting input5 The AD861./AD862. are designed to prevent  
phase reversal when one or both inputs are forced beyond their  
input common­mode voltage range5  
TIME (400ns/DIV)  
Figure 54. +Slew Rate of OPA627 in Unity Gain of +1  
The slew rate of an amplifier determines the maximum frequency  
at which it can respond to a large signal input5 This frequency  
(known as full­power bandwidth or FPBW) can be calculated  
for a given distortion (for example, 1%) from the equation:  
SR  
FPBW =  
(
2π × VPEAK  
)
CH = 20.8V p-p  
1
V
IN  
0V  
CH = 19.4V p-p  
2
V
0V  
OUT  
TIME (400ns/DIV)  
TIME (400µs/DIV)  
Figure 55. AD8610 FPBW  
Figure 57. No Phase Reversal  
Rev. E | Page 16 of 24  
 
 
AD8610/AD8620ꢀ  
THD Readings vs. Common-Mode Voltage  
Settling Time  
Total harmonic distortion of the AD8610/AD8620 is well below  
0.0006% with any load down to 600 Ω. The AD8610/AD8620  
outperform the OPA627 for distortion, especially at frequencies  
above 20 kHz.  
The AD8610/AD8620 have a very fast settling time, even to a  
very tight error band, as can be seen from Figure 60. The AD8610/  
AD8620 are configured in an inverting gain of +1 with 2 kΩ input  
and feedback resistors. The output is monitored with a 10 X,  
10 MΩ, 11.2 pF scope probe.  
0.1  
1.2k  
V
V
= ±13V  
S
= 5V rms  
IN  
BW = 80kHz  
1.0k  
800  
600  
400  
200  
0
0.01  
OPA627  
0.001  
AD8610  
0.0001  
10  
100  
1k  
10k  
80k  
0.001  
0.01  
0.1  
1
10  
FREQUENCY (Hz)  
ERROR BAND (%)  
Figure 58. AD8610 vs. OPA627 THD + Noise @ VCM = 0 V  
Figure 60. AD8610/AD8620 Settling Time vs. Error Band  
0.1  
1.2k  
V
= ±13V  
S
R
= 600  
L
1.0k  
800  
600  
400  
200  
0
2V rms  
0.01  
4V rms  
6V rms  
OPA627  
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k 20k  
0.001  
0.01  
0.1  
ERROR BAND (%)  
1
10  
Figure 59. THD + Noise vs. Frequency  
Figure 61. OPA627 Settling Time vs. Error Band  
Noise vs. Common-Mode Voltage  
AD8610/AD8620 noise density varies only 10% over the input  
range as shown in Table 5.  
Table 5. Noise vs. Common-Mode Voltage  
VCM at F = 1 kHz (V)  
Noise Reading (nV/√Hz)  
−10  
−5  
0
+5  
+10  
7.21  
6.89  
6.73  
6.41  
7.21  
Rev. E | Page 17 of 24  
 
 
AD8610/AD8620ꢀꢀ  
10  
The AD861./AD862. maintain this fast settling when loaded  
with large capacitive loads as shown in Figure 625  
3.0  
ERROR BAND = ±0.01%  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1
V
V
EE  
CC  
0.1  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
LOAD CURRENT (A)  
Figure 64. AD8610/AD8620 Dropout from 13 V vs. Load Current  
0
500  
1000  
(pF)  
1500  
2000  
10  
C
L
Figure 62. AD8610/AD8620 Settling Time vs. Load Capacitance  
3.0  
V
CC  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1
V
EE  
0.1  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
LOAD CURRENT (A)  
Figure 65. OPA627 Dropout from 15 V vs. Load Current  
0
500  
1000  
(pF)  
1500  
2000  
C
L
Although operating conditions imposed on the AD861./AD862.  
(±13 V) are less favorable than the OPA627 (±1± V), it can be  
seen that the AD861./AD862. have much better drive capability  
(lower headroom to the supply) for a given load current5  
Figure 63. OPA627 Settling Time vs. Load Capacitance  
Output Current Capability  
The AD861./AD862. can drive very heavy loads due to its  
high output current5 It is capable of sourcing or sinking 4± mA  
at ±1. V output5 The short circuit current is quite high and the  
part is capable of sinking about 9± mA and sourcing over 6. mA  
while operating with supplies of ±± V5 Figure 64 and Figure 6±  
compare the load current vs5 output voltage of AD861./  
AD862. and OPA6275  
Operating with Supplies Greater than ±±1 V  
The AD861./AD862. maximum operating voltage is specified  
at ±13 V5 When ±13 V is not readily available, an inexpensive  
LDO can provide ±12 V from a nominal ±1± V supply5  
Rev. E | Page 18 of 24  
 
 
 
AD8610/AD8620  
5V  
7
Input Offset Voltage Adjustment  
Offset of AD8610 is very small and normally does not require  
additional offset adjustment. However, the offset adjust pins can  
be used as shown in Figure 66 to further reduce the dc offset. By  
using resistors in the range of 50 kΩ, offset trim range is ±±.± mV.  
100  
1
3
2
V
IN  
6
AD8610  
V
OUT  
5
4
+V  
S
10kΩ  
5pF  
+5V  
7
2
3
+5V +5V  
6
V
AD8610  
OUT  
12 13  
1
V
L
V
DD  
5
1kΩ  
S1  
D1  
3
2
R1  
4
G = +1  
1
16  
9
Y0  
IN1  
ADG452  
10kΩ  
G
S2 14  
–V  
S
G = +10  
Y1  
Y2  
Y3  
IN2  
Figure 66. Offset Voltage Nulling Circuit  
1kΩ  
100Ω  
11Ω  
D2 15  
S3 11  
A0  
A1  
A
B
Programmable Gain Amplifier (PGA)  
G = +100  
G = +1000  
The combination of low noise, low input bias current, low input  
offset voltage, and low temperature drift make the AD8610/  
AD8620 a perfect solution for programmable gain amplifiers.  
PGAs are often used immediately after sensors to increase the  
dynamic range of the measurement circuit. Historically, the large  
on resistance of switches (combined with the large IB currents  
of amplifiers) created a large dc offset in PGAs. Recent and  
improved monolithic switches and amplifiers completely remove  
these problems. A PGA discrete circuit is shown in Figure 67.  
In Figure 67, when the 10 pA bias current of the AD8610 is  
dropped across the (<5 Ω) RON of the switch, it results in a  
negligible offset error.  
IN3  
IN4  
D3 10  
S4  
6
8
D4  
7
74HC139  
GND  
5
V
4
SS  
–5V  
Figure 67. High Precision PGA  
1. Room temperature error calculation due to RON and IB:  
ΔVOS = IB × RON = 2 pA × 5 Ω = 10 pV  
Total Offset = AD8610 (Offset) + ΔVOS  
Total Offset = AD8610 (Offset_Trimmed) + ΔVOS  
Total Offset = 5 μV +10 pV 5 μV  
When high precision resistors are used, as in the circuit of  
Figure 67, the error introduced by the PGA is within the  
½ LSB requirement for a 16-bit system.  
2. Full temperature error calculation due to RON and IB:  
ΔVOS (@ 85°C) = IB (@ 85°C) × RON (@ 85°C) =  
250 pA × 15 Ω = ±.75 nV  
±. Temperature coefficient of switch and AD8610/AD8620  
combined is essentially the same as the TCVOS of the  
AD8610/AD8620:  
ΔVOST(total) = ΔVOS/ΔT(AD8610/AD8620) +  
ΔVOST(IB × RON  
)
ΔVOS /ΔT(total) = 0.5 μV/°C + 0.06 nV/°C 0.5 μV /°C  
Rev. E | Page 19 of 24  
 
 
AD8610/AD8620ꢀꢀ  
High Speed Instrumentation Amplifier  
In active filter applications using operational amplifiers, the dc  
accuracy of the amplifier is critical to optimal filter performance5  
The offset voltage and bias current of the amplifier contribute to  
out­put error5 Input offset voltage is passed by the filter, and can  
be amplified to produce excessive output offset5 For low frequency  
applications requiring large value input resistors, bias and offset  
currents flowing through these resistors also generate an offset  
voltage5  
The three op amp instrumentation amplifiers shown in Figure 68  
can provide a range of gains from unity up to 1... or higher5 The  
instrumentation amplifier configuration features high common­  
mode rejection, balanced differential inputs, and stable, accurately  
defined gain5 Low input bias currents and fast settling are achieved  
with the JFET input AD861./AD862.5 Most instrumentation  
amplifiers cannot match the high frequency performance of this  
circuit5 The circuit bandwidth is 2± MHz at a gain of 1, and close to  
± MHz at a gain of 1.5 Settling time for the entire circuit is ±±. ns to  
.5.1% for a 1. V step (gain = 1.)5 Note that the resistors around  
the input pins need to be small enough in value so that the RC  
time constant they form in combination with stray circuit capaci­  
tance does not reduce circuit bandwidth5  
At higher frequencies, the dynamic response of the amplifier  
must be carefully considered5 In this case, slew rate, bandwidth,  
and open­loop gain play a major role in amplifier selection5 The  
slew rate must be both fast and symmetrical to minimize  
distortion5 The bandwidth of the amplifier, in conjunction with the  
gain of the filter, dictates the frequency response of the filter5 The  
use of high performance amplifiers such as the AD861./AD862.  
minimizes both dc and ac errors in all active filter applications5  
V+  
8
V
3
IN1  
Second-Order Low-Pass Filter  
1
1/2 AD8620  
U1  
4
2
Figure 69 shows the AD861. configured as a second­order,  
Butterworth, low­pass filter5 With the values as shown, the corner  
frequency of the filter is 1 MHz5 The wide bandwidth of the  
AD861./AD862. allows a corner frequency up to tens of mega­  
hertz5 The following equations can be used for component  
selection:  
C5  
10pF  
V–  
V+  
7
R1  
1k  
3
2
V
OUT  
R4  
2kΩ  
R7  
2kΩ  
C4  
15pF  
AD8610  
6
U2  
R1 = R2 =User Selected  
(
Typical Values :1. kΩ1.. kΩ  
)
R6  
2kΩ  
RG  
4
R8  
2kΩ  
15414  
fCUTOFF (R1)  
V–  
C1 =  
(
2π  
)
(
)
R5  
2kΩ  
.57.7  
fCUTOFF (R1)  
C2 =  
5
V
IN2  
C3  
15pF  
(
2π  
)
(
)
7
1/2 AD8620  
U1  
where C1 and C2 are in farads5  
6
R2  
1kΩ  
+13V  
C1  
22pF  
R2  
R1  
7
10k10kΩ  
C2  
5
3
2
V
10pF  
IN  
C2  
11pF  
6
V
OUT  
AD8610  
Figure 68. High Speed Instrumentation Amplifier  
U1  
1
High Speed Filters  
4
The four most popular configurations are Butterworth, Elliptical,  
Bessel (Thompson), and Chebyshev5 Each type has a response  
that is optimized for a given characteristic as shown in Table 65  
–13V  
Figure 69. Second-Order Low-Pass Filter  
Table 6. Filter Types  
Type  
Sensitivity  
Overshoot  
Phase  
Amplitude (Pass Band)  
Butterworth  
Moderate  
Good  
Max Flat  
Chebyshev  
Elliptical  
Good  
Best  
Moderate  
Poor  
Nonlinear  
Linear  
Equal Ripple  
Equal Ripple  
Bessel (Thompson)  
Poor  
Best  
Rev. E | Page 20 of 24  
 
 
 
AD8610/AD8620ꢀ  
High Speed, Low Noise Differential Driver  
V+  
The AD862. is a perfect candidate as a low noise differential  
driver for many popular ADCs5 There are also other applica­  
tions (such as balanced lines) that require differential drivers5  
The circuit of Figure 7. is a unique line driver widely used in  
industrial applications5 With ±13 V supplies, the line driver can  
deliver a differential signal of 23 V p­p into a 1 kΩ load5 The  
high slew rate and wide bandwidth of the AD862. combine to  
yield a full power bandwidth of 14± kHz while the low noise  
front end produces a referred­to­input noise voltage spectral  
density of 6 nV/√Hz5 The design is a balanced transmission system  
without transformers, where output common­mode rejection of  
noise is of paramount importance5 Like the transformer­based  
design, either output can be shorted to ground for unbalanced  
line driver applications without changing the circuit gain of 15  
This allows the design to be easily set to noninverting, invert­  
ing, or differential operation5  
3
2
1
V+  
R4  
V
1
O
3
2
1kΩ  
R10  
R5  
1/2 AD8620  
U2  
R13  
6
50Ω  
R8  
1kΩ  
1kΩ  
1kΩ  
V–  
R6  
AD8610  
R12  
1kΩ  
R1  
1kΩ  
V+  
10kΩ  
0
V–  
R7  
1kΩ  
R9  
1kΩ  
5
R11  
50Ω  
R3  
1kΩ  
7
V
2
O
1/2 AD8620  
U3  
6
V
2 – V 1 = V  
O
O
IN  
V–  
R2  
1kΩ  
0
Figure 70. Differential Driver  
Rev. E | Page 21 of 24  
 
AD8610/AD8620ꢀꢀ  
OUTLINEꢀDIMENSIONSꢀꢀ  
5.00 (0.1968)  
4.80 (0.1890)  
3.20  
3.00  
2.80  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
PIN 1  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.65 BSC  
0.95  
0.85  
0.75  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.10 MAX  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
SEATING  
PLANE  
COPLANARITY  
0.10  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 71. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Figure 72. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
AD8610AR  
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Package Description  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
Package Option  
R-8  
R-8  
R-8  
R-8  
Branding  
AD8610AR-REEL  
AD8610AR-REEL7  
AD8610ARZ1  
AD8610ARZ-REEL1  
AD8610ARZ-REEL71  
AD8610ARM-REEL  
AD8610ARM-R2  
AD8610ARMZ-REEL1  
AD8610ARMZ-R21  
AD8610BR  
AD8610BR-REEL  
AD8610BR-REEL7  
AD8610BRZ1  
AD8610BRZ-REEL1  
AD8610BRZ-REEL71  
AD8620AR  
AD8620AR-REEL  
AD8620AR-REEL7  
AD8620ARZ1  
AD8620ARZ-REEL1  
AD8620ARZ-REEL71  
AD8620BR  
AD8620BR-REEL  
AD8620BR-REEL7  
AD8620BRZ1  
AD8620BRZ-REEL1  
AD8620BRZ-REEL71  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
B0A  
B0A  
B0A#  
B0A#  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
1 Z = Pb-free part, # denotes lead-free product can be top or bottom marked.  
Rev. E | Page 22 of 24  
 
 
AD8610/AD8620ꢀ  
NOTESꢀꢀ  
Rev. E | Page 23 of 24  
AD8610/AD8620  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C02730-0-11/06(E)  
Rev. E | Page 24 of 24  

相关型号:

AD8620ARZ-REEL7

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifier
ADI

AD8620B

Operational Amplifiers Selection Guide
ADI

AD8620BR

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifier
ADI

AD8620BR-REEL

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifier
ADI

AD8620BR-REEL7

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifier
ADI

AD8620BRZ

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifier
ADI

AD8620BRZ-REEL

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifier
ADI

AD8620BRZ-REEL7

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifier
ADI

AD8622

Dual, Low Power, Low Noise, Low Bias Current Precision Rail-to-Rail Output Op Amp
ADI

AD8622ARMZ

Dual, Low Power, Precision Rail-to-Rail Output Op Amp
ADI

AD8622ARMZ-R7

Dual, Low Power, Precision Rail-to-Rail Output Op Amp
ADI

AD8622ARMZ-REEL

Dual, Low Power, Precision Rail-to-Rail Output Op Amp
ADI