AD8622ARMZ [ADI]

Dual, Low Power, Precision Rail-to-Rail Output Op Amp; 双通道,低功耗,精密,轨到轨输出运算放大器
AD8622ARMZ
型号: AD8622ARMZ
厂家: ADI    ADI
描述:

Dual, Low Power, Precision Rail-to-Rail Output Op Amp
双通道,低功耗,精密,轨到轨输出运算放大器

运算放大器 放大器电路 光电二极管 PC
文件: 总20页 (文件大小:591K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual, Low Power, Precision  
Rail-to-Rail Output Op Amp  
AD8622  
FEATURES  
PIN CONFIGURATIONS  
Very low offset voltage  
125 μV maximum  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8622  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Supply current: 215 μA/amp typical  
Input bias current: 200 pA maximum  
Low input offset voltage drift: 1.2 μV/°C maximum  
Very low voltage noise: 11 nV/√Hz  
Operating temperature: −40°C to +125°C  
Rail-to-rail output swing  
Figure 1. 8-Lead Narrow-Body SOIC  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8622  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Unity gain stable  
2.5 V to 15 V operation  
Figure 2. 8-Lead MSOP  
APPLICATIONS  
Portable precision instrumentation  
Laser diode control loops  
Strain gage amplifiers  
Medical instrumentation  
Thermocouple amplifiers  
GENERAL DESCRIPTION  
Table 1. Low Power Op Amps  
The AD8622 is a dual, precision rail-to-rail output operational  
amplifier with a low supply current of only 350 μA maximum  
over temperature and supply voltages. It also offers ultralow  
offset, drift, and voltage noise combined with very low input  
bias current over the full operating temperature range.  
Supply  
40 V  
36 V  
12 V to 16 V  
5 V  
Single  
OP97  
OP777  
OP1177  
OP727  
OP2177  
AD706  
OP747  
OP4177  
AD704  
OP196  
AD8663  
OP296  
AD8603  
Dual  
OP297  
OP497  
AD8607  
AD8609  
AD8667  
With typical offset voltage of only 10 μV, offset drift of 0.5 μV/°C,  
and noise of only 0.2 ꢀV p-p (0.1 Hz to 10 Hz), it is perfectly  
suited for applications where large error sources cannot be  
tolerated. Many systems can take advantage of the low noise,  
dc precision, and rail-to-rail output swing provided by the  
AD8622 to maximize the signal-to-noise ratio and dynamic  
range for low power operation. The AD8622 is specified for the  
extended industrial temperature range of −40°C to +125°C and  
is available in lead-free SOIC and MSOP packages.  
Quad  
OP496  
AD8669  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
AD8622  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................5  
Typical Performance Characteristics ..............................................6  
Applications Information.............................................................. 15  
Input Protection ......................................................................... 15  
Phase Reversal ............................................................................ 15  
Micropower Instrumentation Amplifier................................. 15  
Hall Sensor Signal Conditioning.............................................. 16  
Simplified Schematic...................................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics— 15 V Operation........................... 3  
Electrical Characteristics— 2.5 V Operation.......................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
REVISION HISTORY  
7/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
AD8622  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS— 15 V OPERATION  
VS = 15 V, VCM = 0 V, TA = +25°C, unless otherwise specified.  
Table 2.  
Parameter  
Symbol Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
10  
125  
230  
1.2  
200  
500  
200  
500  
+13.8  
μV  
μV  
μV/°C  
pA  
pA  
pA  
pA  
V
dB  
dB  
dB  
dB  
GΩ  
TΩ  
pF  
−40°C ≤ TA ≤ +125°C  
Offset Voltage Drift  
Input Bias Current  
ΔVOS/ΔT −40°C ≤ TA ≤ +125°C  
IB  
0.5  
45  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
35  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
−13.8  
125  
112  
125  
120  
CMRR  
AVO  
VCM = −13.8 V to +13.8 V  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = −13.5 V to +13.5 V  
−40°C ≤ TA ≤ +125°C  
135  
137  
Open-Loop Gain  
Input Resistance, Differential Mode  
Input Resistance, Common Mode  
Input Capacitance, Differential Mode  
Input Capacitance, Common Mode  
OUTPUT CHARACTERISTICS  
RINDM  
RINCM  
CINDM  
CINCM  
1
1
5.5  
3
pF  
Output Voltage High  
VOH  
RL = 100 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
14.94 14.97  
14.84  
14.86 14.89  
14.75  
V
V
V
V
V
V
V
V
Output Voltage Low  
VOL  
−14.97 −14.94  
−14.92  
−14.89 −14.90  
−14.80  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
40  
1.5  
mA  
Ω
f = 1 kHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.0 V to 18.0 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
125  
120  
145  
dB  
dB  
μA  
μA  
Supply Current/Amplifier  
215  
250  
350  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
SR  
GBP  
ΦM  
RL = 10 kΩ, AV = 1  
CL = 35 pF, AV = 1  
CL = 35 pF, AV = 1  
0.48  
600  
72  
V/μs  
kHz  
Degrees  
Phase Margin  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Uncorrelated Current Noise Density  
Correlated Current Noise Density  
en p-p  
en  
in  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.2  
11  
0.15  
0.06  
μV p-p  
nV/√Hz  
pA/√Hz  
pA/√Hz  
in  
f = 1 kHz  
Rev. 0 | Page 3 of 20  
 
AD8622  
ELECTRICAL CHARACTERISTICS— 2.5 V OPERATION  
VS = 2.5 V, VCM = 0 V, TA = +25°C, unless otherwise specified.  
Table 3.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
10  
125  
230  
1.2  
μV  
μV  
μV/°C  
pA  
pA  
pA  
pA  
V
dB  
dB  
dB  
dB  
GΩ  
TΩ  
pF  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Offset Voltage Drift  
Input Bias Current  
ΔVOS/ΔT  
IB  
0.5  
30  
200  
400  
200  
300  
+1.3  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
25  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
VCM = −1.3 V to +1.3 V  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = −2.0 V to +2.0 V  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
−1.3  
110  
107  
118  
109  
CMRR  
AVO  
120  
135  
Open-Loop Gain  
Input Resistance, Differential Mode  
Input Resistance, Common Mode  
Input Capacitance, Differential Mode  
Input Capacitance, Common Mode  
OUTPUT CHARACTERISTICS  
RINDM  
RINDM  
CINDM  
CINCM  
1
1
5.5  
3
pF  
Output Voltage High  
VOH  
RL = 100 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
2.45  
2.41  
2.40  
2.36  
2.49  
2.45  
V
V
V
V
V
V
V
V
Output Voltage Low  
VOL  
−2.49 −2.45  
−2.41  
−2.45 −2.40  
−2.36  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
30  
2
mA  
Ω
f = 1 kHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.0 V to 18.0 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
125  
120  
145  
dB  
dB  
μA  
μA  
Supply Current/Amplifier  
175  
225  
310  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
SR  
GBP  
ΦM  
RL = 10 kΩ, AV = 1  
CL = 35 pF, AV = 1  
CL = 35 pF, AV = 1  
0.28  
580  
72  
V/μs  
kHz  
Degrees  
Phase Margin  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Uncorrelated Current Noise Density  
Correlated Current Noise Density  
en p-p  
en  
in  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.2  
12  
0.15  
0.07  
μV p-p  
nV/√Hz  
pA/√Hz  
pA/√Hz  
in  
f = 1 kHz  
Rev. 0 | Page 4 of 20  
 
AD8622  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Parameter  
THERMAL RESISTANCE  
Rating  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages. This  
was measured using a standard 4-layer board.  
Supply Voltage  
Input Voltage  
Input Current1  
Differential Input Voltage2  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
18 V  
V supply  
10 mA  
10 V  
Indefinite  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
Table 5. Thermal Resistance  
Package Type  
θJA  
θJC  
43  
53  
Unit  
°C/W  
°C/W  
8-Lead SOIC_N (R-8)  
8-Lead MSOP (RM-8)  
158  
185  
ESD CAUTION  
1 The input pins have clamp diodes to the power supply pins. The input  
current should be limited to 10 mA or less whenever input signals exceed  
the power supply rail by 0.5 V.  
2 Differential input voltage is limited to 10 V or the supply voltage, whichever is less.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 5 of 20  
 
AD8622  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
60  
60  
50  
40  
30  
V
V
= ±15V  
= 0V  
V
V
= ±2.5V  
= 0V  
SY  
SY  
CM  
CM  
50  
40  
30  
20  
10  
0
20  
10  
0
–100 –80 –60 –40 –20  
0
20  
(µV)  
40  
60  
80  
100  
–100 –80 –60 –40 –20  
0
20  
(µV)  
40  
60  
80 100  
V
V
OS  
OS  
Figure 3. Input Offset Voltage Distribution  
Figure 6. Input Offset Voltage Distribution  
60  
50  
40  
30  
60  
50  
40  
30  
V
= ±15V  
V
= ±2.5V  
SY  
–40°C T +125°C  
SY  
–40°C T +125°C  
A
A
20  
10  
0
20  
10  
0
0
0.2  
0.4  
0.6  
(µV/°C)  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
TCV (µV/°C)  
OS  
0.8  
1.0  
1.2  
TCV  
OS  
Figure 4. Input Offset Voltage Drift Distribution  
Figure 7. Input Offset Voltage Drift Distribution  
50  
40  
50  
40  
V
= ±15V  
SY  
V
= ±2.5V  
SY  
–40°C  
+25°C  
30  
30  
20  
20  
–40°C  
10  
10  
0
0
+25°C  
+85°C  
–10  
–20  
–30  
–40  
–50  
–10  
–20  
–30  
–40  
–50  
+85°C  
+125°C  
+125°C  
0
5
10  
15  
(V)  
20  
25  
30  
–2.5  
–1.5  
–0.5  
0.5  
1.5  
2.5  
V
V
(V)  
CM  
CM  
Figure 5. Input Offset Voltage vs. Common-Mode Voltage  
Figure 8. Input Offset Voltage vs. Common-Mode Voltage  
Rev. 0 | Page 6 of 20  
 
AD8622  
40  
30  
40  
20  
V
= ±15V  
V
= ±2.5V  
SY  
SY  
I
I
+
B
20  
0
I
I
+
B
10  
0
–20  
–40  
–60  
–80  
B
–10  
–20  
–30  
–40  
B
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. Input Bias Current vs. Temperature  
Figure 12. Input Bias Current vs. Temperature  
60  
40  
50  
25  
V
= ±15V  
V
= ±2.5V  
SY  
SY  
0
20  
–25  
–50  
–75  
–100  
–125  
–150  
0
–20  
–40  
–60  
0
5
10  
15  
20  
25  
30  
0
1
2
3
4
5
V
(V)  
V
(V)  
CM  
CM  
Figure 10. Input Bias Current vs. Common-Mode Voltage  
Figure 13. Input Bias Current vs. Common-Mode Voltage  
100k  
10k  
1k  
100k  
10k  
1k  
V
= ±15V  
V
= ±2.5V  
SY  
SY  
V
– V  
OH  
CC  
V
– V  
OH  
CC  
100  
100  
V
– V  
EE  
OL  
V
– V  
EE  
OL  
10  
1
10  
1
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 11. Output Voltage to Supply Rail vs. Load Current  
Figure 14. Output Voltage to Supply Rail vs. Load Current  
Rev. 0 | Page 7 of 20  
AD8622  
0.16  
0.06  
0.05  
0.04  
0.03  
0.02  
V
R
= ±15V  
= 10kΩ  
V
= ±2.5V  
SY  
SY  
R
= 10k  
L
L
0.14  
0.12  
0.10  
0.08  
V
– V  
OH  
V
– V  
OH  
CC  
CC  
0.06  
0.04  
0.02  
V
– V  
EE  
OL  
V
– V  
EE  
OL  
0.01  
0
0
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. Output Voltage to Supply Rail vs. Temperature  
Figure 18. Output Voltage to Supply Rail vs. Temperature  
100  
80  
100  
80  
100  
80  
100  
80  
V
R
= ±15V  
= 10k  
V
R
= ±2.5V  
= 10k  
SY  
SY  
L
L
PHASE  
PHASE  
60  
60  
60  
60  
40  
40  
40  
40  
GAIN  
GAIN  
20  
0
20  
0
20  
0
20  
0
–20  
–20  
–20  
–20  
–40  
1k  
–40  
10M  
–40  
1k  
–40  
10M  
10k  
100k  
FREQUENCY (Hz)  
1M  
10k  
100k  
FREQUENCY (Hz)  
1M  
Figure 16. Open-Loop Gain and Phase vs. Frequency  
Figure 19. Open-Loop Gain and Phase vs. Frequency  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
R
= ±15V  
= 10kΩ  
V
R
= ±2.5V  
SY  
SY  
= 10kΩ  
L
L
A
= 100  
= 10  
A
= 100  
= 10  
V
V
A
A
V
V
A
= 1  
A = 1  
V
V
–10  
–20  
–30  
–10  
–20  
–30  
–40  
100  
–40  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Closed-Loop Gain vs. Frequency  
Figure 20. Closed-Loop Gain vs. Frequency  
Rev. 0 | Page 8 of 20  
AD8622  
10k  
1k  
10k  
1k  
V
= ±15V  
V
= ±2.5V  
SY  
SY  
A
= 100  
V
A
= 100  
V
A
= 10  
V
A
= 10  
V
100  
10  
100  
10  
A
= 1  
V
A
= 1  
V
1
1
0.1  
100  
0.1  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
Figure 21. Output Impedance vs. Frequency  
Figure 24. Output Impedance vs. Frequency  
120  
100  
80  
120  
100  
80  
V
= ±15V  
V
= ±2.5V  
SY  
SY  
60  
60  
40  
40  
20  
0
20  
0
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22. CMRR vs. Frequency  
Figure 25. CMRR vs. Frequency  
120  
100  
80  
120  
100  
80  
V
= ±15V  
V
= ±2.5V  
SY  
SY  
PSRR+  
PSRR–  
PSRR+  
PSRR–  
60  
60  
40  
40  
20  
0
20  
0
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. PSRR vs. Frequency  
Figure 26. PSRR vs. Frequency  
Rev. 0 | Page 9 of 20  
AD8622  
50  
50  
45  
V
A
R
= ±15V  
= 1  
= 10kΩ  
V
= ±2.5V  
SY  
SY  
45  
A
R
= 1  
= 10kΩ  
V
L
V
L
40  
35  
30  
25  
40  
35  
30  
25  
OS–  
OS–  
OS+  
OS+  
20  
15  
10  
20  
15  
10  
5
0
5
0
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
CAPACITANCE (nF)  
CAPACITANCE (nF)  
Figure 27. Small-Signal Overshoot vs. Load Capacitance  
Figure 30. Small-Signal Overshoot vs. Load Capacitance  
V
= ±2.5V  
= 1  
= 10kΩ  
= 100pF  
SY  
V
= ±15V  
= 1  
= 10kΩ  
= 100pF  
SY  
A
R
C
V
L
L
A
R
C
V
L
L
TIME (40µs/DIV)  
TIME (40µs/DIV)  
Figure 28. Large-Signal Transient Response  
Figure 31. Large-Signal Transient Response  
V
= ±15V  
V
= ±2.5V  
SY  
SY  
A
R
C
= 1  
= 10kΩ  
= 100pF  
A
R
C
= 1  
= 10kΩ  
= 100pF  
V
L
L
V
L
L
TIME (10µs/DIV)  
TIME (10µs/DIV)  
Figure 29. Small-Signal Transient Response  
Figure 32. Small-Signal Transient Response  
Rev. 0 | Page 10 of 20  
AD8622  
0.4  
0.2  
0
0.4  
0.2  
0
V
A
R
= ±15V  
= –100  
= 10k  
V
A
R
= ±2.5V  
= –100  
= 10kΩ  
SY  
SY  
V
L
V
L
INPUT  
INPUT  
OUTPUT  
OUTPUT  
0
0
–10  
–20  
–1  
–2  
–3  
TIME (20µs/DIV)  
TIME (20µs/DIV)  
Figure 33. Negative Overload Recovery  
Figure 36. Negative Overload Recovery  
0.2  
0
0.2  
0
INPUT  
INPUT  
–0.2  
–0.2  
20  
10  
0
3
2
1
OUTPUT  
OUTPUT  
V
A
R
= ±15V  
= –100  
= 10kΩ  
V
A
R
= ±2.5V  
= –100  
= 10kΩ  
SY  
SY  
–10  
–20  
0
V
L
V
L
–1  
TIME (20µs/DIV)  
TIME (20µs/DIV)  
Figure 34. Positive Overload Recovery  
Figure 37. Positive Overload Recovery  
12  
12  
V
= ±15V  
V
= ±15V  
SY  
SY  
A
= –1  
A = +1  
V
V
10  
8
10  
8
0.1%  
0.1%  
0.01%  
0.01%  
6
6
4
4
2
2
0
0
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
SETTLING TIME (µs)  
SETTLING TIME (µs)  
Figure 35. Output Step vs. Settling Time  
Figure 38. Output Step vs. Settling Time  
Rev. 0 | Page 11 of 20  
AD8622  
100  
100  
V
= ±2.5V  
V
= ±15V  
SY  
SY  
10  
10  
1
1
1
1
10  
100  
1k  
10  
100  
1k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 39. Voltage Noise Density vs. Frequency  
Figure 42. Voltage Noise Density vs. Frequency  
1
1
R
R
S1  
V
= ±15V  
S1  
V
= ±2.5V  
SY  
SY  
R
R
S2  
S2  
UNCORRELATED  
S1  
UNCORRELATED  
S1  
R
= 0Ω  
R
= 0Ω  
CORRELATED  
0.1  
0.1  
CORRELATED  
R
= R  
S1  
S2  
R
= R  
S1  
S2  
0.01  
0.01  
1
10  
100  
1k  
1
10  
100  
1k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 40. Current Noise Density vs. Frequency  
Figure 43. Current Noise Density vs. Frequency  
V
= ±15V  
V
= ±2.5V  
SY  
SY  
TIME (1s/DIV)  
TIME (1s/DIV)  
Figure 41. 0.1 Hz to 10 Hz Noise  
Figure 44. 0.1 Hz to 10 Hz Noise  
Rev. 0 | Page 12 of 20  
AD8622  
0.35  
0.30  
0.35  
0.30  
+125°C  
0.25  
0.20  
0.15  
0.10  
0.05  
0
+85°C  
+25°C  
0.25  
0.20  
0.15  
V
= ±15V  
SY  
–40°C  
V
= ±2.5V  
SY  
0.10  
0.05  
–0.05  
0
2
4
6
8
10  
(±V)  
12  
14  
16  
18  
–50  
–25  
0
25  
50  
75  
100  
125  
V
TEMPERATURE (°C)  
SY  
Figure 45. Supply Current vs. Supply Voltage  
Figure 48. Supply Current vs. Temperature  
1
0.1  
1
0.1  
V
= ±2.5V  
V
= ±15V  
SY  
SY  
f = 1kHz  
R
f = 1kHz  
R
= 10kΩ  
= 10kΩ  
L
L
0.01  
0.01  
0.001  
0.001  
0.0001  
0.0001  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
AMPLITUDE (V rms)  
AMPLITUDE (V rms)  
Figure 49. THD + Noise vs. Amplitude  
Figure 46. THD + Noise vs. Amplitude  
0.1  
0.1  
V
= ±15V  
SY  
V
R
V
= ±2.5V  
= 10kΩ  
= 300mV rms  
SY  
R
= 10kΩ  
= 300mV rms  
L
L
V
IN  
IN  
0.01  
0.001  
0.01  
0.001  
0.0001  
0.0001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 47. THD + Noise vs. Frequency  
Figure 50. THD + Noise vs. Frequency  
Rev. 0 | Page 13 of 20  
AD8622  
0
–20  
–40  
–60  
100kΩ  
1kΩ  
R
L
–80  
–100  
–120  
V
= ±2.5V TO ±15V  
SY  
R
= 10kΩ  
L
–140  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 51. Channel Separation vs. Frequency  
Rev. 0 | Page 14 of 20  
AD8622  
APPLICATIONS INFORMATION  
V
INPUT PROTECTION  
IN  
V
= ±15V  
SY  
The maximum differential input voltage that can be applied to  
the AD8622 is determined by the internal diodes connected  
across its inputs and series resistors at each input. These internal  
diodes and series resistors limit the maximum differential input  
voltage to 10 V and are needed to prevent base-emitter junction  
breakdown from occurring in the input stage of the AD8622  
when very large differential voltages are applied. In addition,  
the internal resistors limit the currents that flow through the  
diodes. However, in applications where large differential voltages  
can be inadvertently applied to the device, large currents may  
still flow through these diodes. In such a case, external resistors  
must be placed at both inputs of the op amp to limit the input  
currents to 10 mA (see Figure 52).  
V
OUT  
TIME (200µs/DIV)  
Figure 53. No Phase Reversal  
MICROPOWER INSTRUMENTATION AMPLIFIER  
The AD8622 is a dual, high precision, rail-to-rail output op amp  
operating at just 215 ꢀA quiescent current per amplifier. Its  
ultralow offset, offset drift, and voltage noise, combined with its  
very low bias current and high common-mode rejection ratio  
(CMRR), are ideally suited for high accuracy and micropower  
instrumentation amplifier.  
R1  
R2  
500  
500Ω  
2
3
1/2  
AD8622  
1
Figure 54 shows the classic 2-op-amp instrumentation amplifier  
with four resistors using the AD8622. The key to high CMRR  
for this instrumentation amplifier are resistors that are well  
matched from both the resistive ratio and the relative drift. For  
true difference amplification, matching of the resistor ratio is  
very important, where R3/R4 = R1/R2. Assuming perfectly  
matched resistors, the gain of the circuit is 1 + R2/R1, which is  
approximately 100. Tighter matching of two op amps in one  
package, like the AD8622, offers a significant boost in  
Figure 52. Input Protection  
PHASE REVERSAL  
An undesired phenomenon, phase reversal (also known as  
phase inversion) occurs in many op amps when one or both of  
the inputs are driven beyond the specified input voltage range  
(IVR), in effect reversing the polarity of the output. In some  
cases, phase reversal can induce lockups and even cause  
equipment damage as well as self destruction.  
performance over the classical 3-op-amp configuration. Overall,  
The AD8622 amplifiers have been carefully designed to prevent  
output phase reversal when both inputs are maintained within  
the specified input voltage range. In addition, even if one or  
both inputs exceed the input voltage range but remain within  
the supply rails, the output still does not phase reverse. Figure 53  
shows the input/output waveforms of the AD8622 configured as a  
unity-gain buffer with a supply voltage of 15 V.  
the circuit only requires about 430 μA of supply current.  
R3  
10.1kΩ  
R2  
1MΩ  
+15V  
R4  
1MΩ  
+15V  
R1  
10.1kΩ  
1/2  
AD8622  
1/2  
V
V1  
AD8622  
+
+
O
V2  
–15V  
NOTES  
1. V = 100(V2 – V1)  
–15V  
O
2. TYPICAL: 0.01mV < |V2 – V1| < 149.7mV  
3. TYPICAL: –14.97V < V < +14.97V  
O
4. USE MATCHED RESISTORS.  
Figure 54. Micropower Instrumentation Amplifier  
Rev. 0 | Page 15 of 20  
 
 
 
 
AD8622  
The ADR121 is a precision micropower 2.5 V voltage reference.  
A precision voltage reference is required to hold a constant current  
so that the Hall voltage only depends on the intensity of the mag-  
netic field. Using the 4.12k:98.8k resistive divider, the bias  
voltage of the Hall element is reduced to 100 mV, leading to only  
250 μA of power consumption. The 3-op-amp in-amp  
configuration of the AD8622 then increases the sensitivity to  
55 mV/mT. Using the AD8622 to amplify the sensor signal can  
reduce power while also achieving higher sensitivity. The total  
current consumed is just 1.2 mA, resulting in 21× improvement in  
sensitivity/power.  
HALL SENSOR SIGNAL CONDITIONING  
The AD8622 is also highly suitable for high accuracy, low power  
signal conditioning circuits. One such use is in Hall sensor  
signal conditioning (see Figure 55). The magnetic sensitivity of  
a Hall element is proportional to the bias voltage applied across  
it. With 1 V bias voltage, the Hall element consumes about  
2.5 mA of supply current and has a sensitivity of 5.5 mV/mT  
typical. To reduce power consumption, bias voltage must be  
reduced, but at the risk of lower sensitivity. The only way to  
achieve higher sensitivity is by introducing a gain using a  
precision micropower amplifier. The AD8622, with all its  
features, is well suited to amplify the sensitivity of the Hall  
element.  
V
V
SY  
SY  
+
C1  
1/2  
9.9kΩ  
1µF TO 10µF  
AD8622  
HALL  
ELEMENT  
V
SY  
ADR121 –2.5V  
9.9kΩ  
9.9kΩ  
9.9kΩ  
V
SY  
4.12kΩ  
98.8kΩ  
1/2  
400Ω  
×4  
C3  
0.1µF  
TO 10µF  
200Ω  
AD8622  
+
C2  
0.1µF  
+
55mV  
mT  
9.9kΩ  
1/2  
AD8622  
V
= 2.5V +  
× MAGNETIC FIELD (mT)  
OUT  
+
V
SY  
1/2  
AD8622  
9.9kΩ  
+
NOTES  
1. USE MATCHED RESISTORS FOR IN-AMP.  
2. FOR INFORMATION ON C1, C2, AND C3, REFER TO ADR121 DATA SHEET.  
Figure 55. Hall Sensor Signal Conditioning  
Rev. 0 | Page 16 of 20  
 
 
AD8622  
SIMPLIFIED SCHEMATIC  
V+  
R3  
R2  
R1  
Q10  
Q11  
C1  
V
Q6  
B2  
Q3  
V
B1  
Q5  
INPUT BIAS  
CANCELLATION  
CIRCUITRY  
Q4  
Q8  
OUT x  
500Ω  
Q1  
Q2  
+IN x  
D1  
D2  
500Ω  
–IN x  
Q7  
Q12  
Q9  
D4  
D3  
V–  
Figure 56. Simplified Schematic  
Rev. 0 | Page 17 of 20  
 
AD8622  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 57. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 58. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
8-Lead MSOP  
8-Lead MSOP  
Package Option  
Branding  
A1P  
A1P  
AD8622ARMZ1  
AD8622ARMZ-REEL1  
AD8622ARMZ-R71  
AD8622ARZ1  
AD8622ARZ-REEL1  
AD8622ARZ-REEL71  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
8-Lead MSOP  
A1P  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 18 of 20  
 
AD8622  
NOTES  
Rev. 0 | Page 19 of 20  
AD8622  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07527-0-7/09(0)  
Rev. 0 | Page 20 of 20  

相关型号:

AD8622ARMZ-R7

Dual, Low Power, Precision Rail-to-Rail Output Op Amp
ADI

AD8622ARMZ-REEL

Dual, Low Power, Precision Rail-to-Rail Output Op Amp
ADI

AD8622ARMZ-REEL

DUAL OP-AMP, 230 uV OFFSET-MAX, 0.58 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8
ROCHESTER

AD8622ARZ

Dual, Low Power, Precision Rail-to-Rail Output Op Amp
ADI

AD8622ARZ

DUAL OP-AMP, 230 uV OFFSET-MAX, 0.58 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
ROCHESTER

AD8622ARZ-REEL

Dual, Low Power, Precision Rail-to-Rail Output Op Amp
ADI

AD8622ARZ-REEL7

Dual, Low Power, Precision Rail-to-Rail Output Op Amp
ADI

AD8622ARZ-REEL7

DUAL OP-AMP, 230 uV OFFSET-MAX, 0.58 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
ROCHESTER

AD8622_09

Dual, Low Power, Precision Rail-to-Rail Output Op Amp
ADI

AD8624

30 V, Micropower, Overvoltage Protection, Rail-to-Rail Input/Output Amplifier
ADI

AD8624ACPZ-R2

Low Power, Precision Rail-to-Rail Output Op Amp
ADI

AD8624ACPZ-R7

Low Power, Precision Rail-to-Rail Output Op Amp
ADI