AD8628AUJZ-REEL7 [ADI]

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier; 零漂移,单电源,轨到轨输入/输出运算放大器
AD8628AUJZ-REEL7
型号: AD8628AUJZ-REEL7
厂家: ADI    ADI
描述:

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
零漂移,单电源,轨到轨输入/输出运算放大器

运算放大器 放大器电路 光电二极管 斩波器 PC
文件: 总20页 (文件大小:640K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Zero-Drift, Single-Supply, Rail-to-Rail  
Input/Output Operational Amplifier  
AD8628/AD8629  
FEATURES  
PIN CONFIGURATIONS  
Lowest auto-zero amplifier noise  
Low offset voltage: 1 µV  
OUT  
V–  
1
2
3
5
V+  
AD8628  
TOP VIEW  
Input offset drift: 0.002 µV/°C  
Rail-to-rail input and output swing  
5 V single-supply operation  
High gain, CMRR, and PSRR: 120 dB  
Very low input bias current: 100 pA max  
Low supply current: 1.0 mA  
Overload recovery time: 10 µs  
No external components required  
(Not to Scale)  
+IN  
4
–IN  
Figure 1. 5-Lead TSOT (UJ-5)  
and 5-Lead SOT-23 (RT-5)  
NC  
–IN  
+IN  
V–  
1
2
3
4
8
7
6
5
NC  
V+  
AD8628  
OUT  
NC  
TOP VIEW  
(Not to Scale)  
NC = NO CONNECT  
APPLICATIONS  
Automotive sensors  
Figure 2. 8-Lead SOIC (R-8)  
Pressure and position sensors  
Strain gage amplifiers  
Medical instrumentation  
Thermocouple amplifiers  
Precision current sensing  
Photodiode amplifier  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8629  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Figure 3. 8-Lead SOIC (R-8)  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8629  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Figure 4. 8-Lead MSOP (RM-8)  
GENERAL DESCRIPTION  
This new breed of amplifier has ultralow offset, drift, and bias  
current. The AD8628/AD8629 are wide bandwidth auto-zero  
amplifiers featuring rail-to-rail input and output swings and low  
noise. Operation is fully specified from 2.7 V to 5 V single  
supply ( 1.35 V to 2.5 V dual supply).  
With an offset voltage of only 1 µV, drift of less than  
0.005 µV/°C, and noise of only 0.5 µV p-p (0 Hz to 10 Hz),  
the AD8628/AD8629 are perfectly suited for applications in  
which error sources cannot be tolerated. Position and pressure  
sensors, medical equipment, and strain gage amplifiers benefit  
greatly from nearly zero drift over their operating temperature  
range. Many systems can take advantage of the rail-to-rail input  
and output swings provided by the AD8628/AD8629 to reduce  
input biasing complexity and maximize SNR.  
The AD8628/AD8629 provide benefits previously found only in  
expensive auto-zeroing or chopper-stabilized amplifiers. Using  
Analog Devices’ new topology, these zero-drift amplifiers  
combine low cost with high accuracy and low noise. (No exter-  
nal capacitor is required.) In addition, the AD8628/AD8629  
greatly reduce the digital switching noise found in most  
chopper-stabilized amplifiers.  
The AD8628/AD8629 are specified for the extended industrial  
temperature range (−40°C to +125°C). The AD8628 is available  
in tiny TSOT-23, SOT-23, and the popular 8-lead narrow SOIC  
plastic packages. The AD8629 is available in the standard 8-lead  
narrow SOIC and MSOP plastic packages.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD8628/AD8629  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Total Integrated Input-Referred Noise for First-Order Filter15  
Input Overvoltage Protection................................................... 16  
Output Phase Reversal............................................................... 16  
Overload Recovery Time .......................................................... 16  
Infrared Sensors.......................................................................... 17  
Precision Current Shunts .......................................................... 18  
Output Amplifier for High Precision DACs........................... 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 20  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Functional Description .................................................................. 14  
1/f Noise....................................................................................... 14  
Peak-to-Peak Noise .................................................................... 15  
Noise Behavior with First-Order Low-Pass Filter.................. 15  
REVISION HISTORY  
10/04—Data Sheet Changed from Rev. B to Rev. C  
Updated Formatting...........................................................Universal  
Added AD8629....................................................................Universal  
Added SOIC and MSOP Pin Configurations ............................... 1  
Added Figure 48.............................................................................. 13  
Changes to Figure 62...................................................................... 17  
Added MSOP Package ................................................................... 19  
Changes to Ordering Guide .......................................................... 20  
10/03—Data Sheet Changed from Rev. A to Rev. B  
Changes to General Description .................................................... 1  
Changes to Absolute Maximum Ratings ....................................... 4  
Changes to Ordering Guide ............................................................ 4  
Added TSOT-23 Package............................................................... 15  
6/03—Data Sheet Changed from Rev. 0 to Rev. A  
Changes to Specifications................................................................ 3  
Changes to Ordering Guide ............................................................ 4  
Change to Functional Description............................................... 10  
Updated Outline Dimensions....................................................... 15  
10/02—Revision 0: Initial Version  
Rev. C | Page 2 of 20  
AD8628/AD8629  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VS = 5.0 V, VCM = 2.5 V, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
1
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
5
10  
µV  
µV  
pA  
nA  
pA  
pA  
V
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Bias Current  
30  
50  
100  
1.5  
200  
250  
5
Input Offset Current  
IOS  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 5 V  
120  
115  
125  
120  
140  
130  
145  
135  
0.002  
dB  
dB  
dB  
dB  
µV/°C  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = 0.3 V to 4.7 V  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain1  
Offset Voltage Drift  
OUTPUT CHARACTERISTICS  
Output Voltage High  
∆VOS/∆T  
VOH  
0.02  
RL = 100 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to V+  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to V+  
−40°C ≤ TA ≤ +125°C  
4.99  
4.99  
4.95  
4.95  
4.996  
4.995  
4.98  
4.97  
1
2
10  
15  
50  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
mA  
mA  
mA  
Output Voltage Low  
VOL  
5
5
20  
20  
Short-Circuit Limit  
Output Current  
ISC  
IO  
25  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
40  
30  
15  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 5.5 V  
−40°C ≤ TA ≤ +125°C  
VO = 0 V  
115  
130  
0.85  
1.0  
dB  
mA  
mA  
Supply Current/Amplifier  
1.1  
1.2  
−40°C ≤ TA ≤ +125°C  
INPUT CAPACITANCE  
Differential  
Common-Mode  
CIN  
1.5  
10  
pF  
pF  
DYNAMIC PERFORMANCE  
Slew Rate  
Overload Recovery Time  
Gain Bandwidth Product  
NOISE PERFORMANCE  
Voltage Noise  
SR  
RL = 10 kΩ  
1.0  
0.05  
2.5  
V/µs  
ms  
MHz  
GBP  
en p-p  
en p-p  
en  
0.1 Hz to 10 Hz  
0.1 Hz to 1.0 Hz  
f = 1 kHz  
0.5  
0.16  
22  
µV p-p  
mV p-p  
nV/√Hz  
fA/√Hz  
Voltage Noise Density  
Current Noise Density  
in  
f = 10 Hz  
5
1 Gain testing is highly dependent upon test bandwidth.  
Rev. C | Page 3 of 20  
 
AD8628/AD8629  
VS = 2.7 V, VCM = 1.35 V, VO = 1.4 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
1
5
µV  
µV  
pA  
nA  
pA  
pA  
V
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
10  
100  
1.5  
200  
250  
5
Input Bias Current  
30  
1.0  
50  
Input Offset Current  
IOS  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 2.7 V  
115  
110  
110  
105  
130  
120  
140  
130  
0.002  
dB  
dB  
dB  
dB  
µV/°C  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ , VO = 0.3 V to 2.4 V  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain  
Offset Voltage Drift  
OUTPUT CHARACTERISTICS  
Output Voltage High  
∆VOS/∆T  
VOH  
0.02  
RL = 100 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to V+  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to V+  
−40°C ≤ TA ≤ +125°C  
2.68  
2.68  
2.67  
2.67  
2.695  
2.695  
2.68  
2.675  
1
2
10  
15  
15  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
mA  
mA  
mA  
Output Voltage Low  
VOL  
5
5
20  
20  
Short-Circuit Limit  
Output Current  
ISC  
IO  
10  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
10  
10  
5
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 5.5 V  
−40°C ≤ TA ≤ +125°C  
VO = 0 V  
115  
130  
0.75  
0.9  
dB  
mA  
mA  
Supply Current/Amplifier  
1.0  
1.2  
−40°C ≤ TA ≤ +125°C  
INPUT CAPACITANCE  
Differential  
Common-Mode  
CIN  
1.5  
10  
pF  
pF  
DYNAMIC PERFORMANCE  
Slew Rate  
Overload Recovery Time  
Gain Bandwidth Product  
NOISE PERFORMANCE  
Voltage Noise  
SR  
RL = 10 kΩ  
1
0.05  
2
V/µs  
ms  
MHz  
GBP  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 Hz  
0.5  
22  
5
µV p-p  
nV/√Hz  
fA/√Hz  
Voltage Noise Density  
Current Noise Density  
Rev. C | Page 4 of 20  
AD8628/AD8629  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameters  
Ratings  
Supply Voltage  
6 V  
Input Voltage  
GND − 0.3 V to VS− + 0.3 V  
Differential Input Voltage1  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
R, RM, RT, UJ Packages  
Operating Temperature Range  
Junction Temperature Range  
R, RM, RT, UJ Packages  
5.0 V  
Indefinite  
−65°C to +150°C  
−40°C to +125°C  
Table 4. Thermal Characteristics  
Package Type  
1
θJA  
θJC  
61  
146  
43  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
5-Lead TSOT-23 (UJ-5)  
5-Lead SOT-23 (RT-5)  
8-Lead SOIC (R-8)  
207  
230  
158  
190  
−65°C to +150°C  
300°C  
Lead Temperature Range  
(Soldering, 60 s)  
8-Lead MSOP (RM-8)  
44  
1 Differential input voltage is limited to 5 V or the supply voltage, whichever  
is less.  
1 θJA is specified for worst-case conditions, that is, θJA is specified for the device  
soldered in a circuit board for surface-mount packages.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. C | Page 5 of 20  
 
 
AD8628/AD8629  
TYPICAL PERFORMANCE CHARACTERISTICS  
180  
100  
V
T
= 2.7V  
= 25°C  
V
V
= 5V  
S
S
90  
80  
70  
60  
50  
40  
30  
= 2.5V  
160  
140  
120  
100  
80  
A
CM  
T
= 25°C  
A
60  
40  
20  
10  
20  
0
0
–2.5  
–2.5  
–1.5  
–0.5  
0.5  
1.5  
2.5  
–1.5  
–0.5  
0.5  
1.5  
2.5  
10  
10  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
Figure 5. Input Offset Voltage Distribution at 2.7 V  
Figure 8. Input Offset Voltage Distribution at 5 V  
60  
50  
40  
30  
20  
7
6
5
4
3
2
V
= 5V  
S
V
T
= 5V  
S
A
+85°C  
= –40°C TO +125°C  
+25°C  
–40°C  
10  
0
1
0
0
1
2
3
4
5
6
0
2
4
6
8
INPUT COMMON-MODE VOLTAGE (V)  
TCVOS (nV/°C)  
Figure 6. Input Bias Current vs. Input Common-Mode Voltage at 5 V  
Figure 9. Input Offset Voltage Drift  
1500  
1k  
V
= 5V  
V
= 5V  
S
150°C  
125°C  
S
A
T
= 25°C  
1000  
500  
0
100  
10  
1
SOURCE  
SINK  
–500  
0.1  
–1000  
–1500  
0.01  
0.0001  
0
1
2
3
4
5
6
0.001  
0.01  
0.1  
1
INPUT COMMON-MODE VOLTAGE (V)  
LOAD CURRENT (mA)  
Figure 7. Input Bias Current vs. Input Common-Mode Voltage at 5 V  
Figure 10. Output Voltage to Supply Rail vs. Load Current at 5 V  
Rev. C | Page 6 of 20  
 
AD8628/AD8629  
1k  
1000  
800  
600  
400  
T
= 25°C  
A
V
= 2.7V  
S
100  
10  
SOURCE  
SINK  
1
0.1  
200  
0
0.01  
0.0001  
0.001  
0.01  
0.1  
1
10  
0
1
2
3
4
5
6
LOAD CURRENT (mA)  
SUPPLY VOLTAGE (V)  
Figure 11. Output Voltage to Supply Rail vs. Load Current at 2.7 V  
Figure 14. Supply Current vs. Supply Voltage  
70  
60  
50  
40  
30  
20  
10  
0
1500  
V
= 2.7V  
= 20pF  
= ∞  
S
V
V
= 5V  
S
C
R
φ
L
L
= 2.5V  
= –40°C TO +150°C  
CM  
T
A
= 52.1°  
1150  
900  
M
0
45  
90  
135  
180  
225  
450  
–10  
–20  
–30  
100  
0
10k  
100k  
1M  
10M  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
175  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 15. Open-Loop Gain and Phase vs. Frequency  
Figure 12. Input Bias Current vs. Temperature  
70  
1250  
1000  
750  
V
= 5V  
S
T
= 25°C  
60  
50  
40  
30  
20  
10  
0
C
R
φ
= 20pF  
= ∞  
= 52.1°  
A
L
L
5V  
M
0
2.7V  
45  
90  
135  
180  
225  
500  
–10  
–20  
–30  
250  
0
10k  
100k  
1M  
10M  
–50  
0
50  
100  
150  
200  
FREQUENCY (Hz)  
TEMPERATURE (°C  
)
Figure 13. Supply Current vs. Temperature  
Figure 16. Open-Loop Gain and Phase vs. Frequency  
Rev. C | Page 7 of 20  
AD8628/AD8629  
70  
300  
270  
240  
210  
180  
150  
120  
90  
V
C
R
= 2.7V  
= 20pF  
= 2kΩ  
V = 5V  
S
S
60  
50  
40  
30  
20  
10  
0
L
L
A
= 1  
V
A
A
A
= 100  
= 10  
= 1  
V
A
= 100  
V
V
V
A = 10  
V
–10  
–20  
–30  
60  
30  
0
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Closed-Loop Gain vs. Frequency at 2.7 V  
Figure 20. Output Impedance vs. Frequency at 5 V  
70  
60  
50  
40  
30  
20  
10  
0
V
C
R
= 5V  
= 20pF  
= 2kΩ  
S
L
L
A
A
= 100  
= 10  
V
V
= ±1.35V  
= 300pF  
= ∞  
S
C
R
A
L
L
V
V
= 1  
A
= 1  
V
–10  
–20  
–30  
1k  
10k  
100k  
1M  
10M  
TIME (4µs/DIV)  
FREQUENCY (Hz)  
Figure 21. Large Signal Transient Response at 2.7 V  
Figure 18. Closed-Loop Gain vs. Frequency at 5 V  
300  
270  
240  
210  
180  
150  
120  
90  
V
= 2.7V  
S
A
= 1  
V
V
= ±2.5V  
= 300pF  
= ∞  
S
C
R
A
L
L
V
A
= 100  
V
= 1  
A
= 10  
10M  
60  
30  
0
V
100  
1k  
10k  
100k  
1M  
100M  
TIME (5µs/DIV)  
FREQUENCY (Hz)  
Figure 19. Output Impedance vs. Frequency at 2.7 V  
Figure 22. Large Signal Transient Response at 5 V  
Rev. C | Page 8 of 20  
AD8628/AD8629  
80  
70  
60  
50  
40  
V
= ±1.35V  
= 50pF  
= ∞  
V
R
= ±2.5V  
= 2kΩ  
= 25°C  
S
S
C
R
A
L
L
V
L
T
A
= 1  
30  
20  
OS–  
OS+  
10  
0
1
10  
100  
1k  
TIME (4µs/DIV)  
CAPACITIVE LOAD (pF)  
Figure 23. Small Signal Transient Response at 2.7 V  
Figure 26. Small Signal Overshoot vs. Load Capacitance at 5 V  
V
C
R
A
= ±2.5V  
= 50pF  
= ∞  
V
= ±2.5V  
= –50  
= 10kΩ  
= 0  
S
S
A
R
C
L
L
V
V
L
L
V
IN  
= 1  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
0V  
0V  
V
OUT  
TIME (4µs/DIV)  
TIME (2µs/DIV)  
Figure 27. Positive Overvoltage Recovery  
Figure 24. Small Signal Transient Response at 5 V  
100  
90  
80  
70  
60  
50  
40  
30  
V
R
= ±1.35V  
= 2kΩ  
= 25°C  
S
0V  
L
T
A
V
= ±2.5V  
= –50  
= 10kΩ  
= 0  
S
A
R
C
V
L
L
V
IN  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
OS–  
V
OUT  
OS+  
20  
10  
0
0V  
1
10  
100  
1k  
TIME (10µs/DIV)  
CAPACITIVE LOAD (pF)  
Figure 28. Negative Overvoltage Recovery  
Figure 25. Small Signal Overshoot vs. Load Capacitance at 2.7 V  
Rev. C | Page 9 of 20  
AD8628/AD8629  
140  
120  
100  
80  
V
V
C
R
A
= ±2.5V  
= 1kHz @ ±3V p-p  
= 0pF  
= 10kΩ  
= 1  
S
V
= ±1.35V  
IN  
S
L
L
V
60  
+PSRR  
40  
20  
–PSRR  
0
–20  
–40  
–60  
100  
1k  
10k  
100k  
1M  
10M  
10M  
1M  
TIME (200µs/DIV)  
FREQUENCY (Hz)  
Figure 32. PSRR vs. Frequency  
Figure 29. No Phase Reversal  
140  
120  
100  
80  
140  
120  
100  
80  
V
= ±2.5V  
S
V
= 2.7V  
S
60  
60  
+PSRR  
40  
40  
20  
–PSRR  
20  
0
0
–20  
–40  
–60  
–20  
–40  
–60  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 33. PSRR vs. Frequency  
Figure 30. CMRR vs. Frequency at 2.7 V  
3.0  
2.5  
2.0  
1.5  
1.0  
140  
120  
100  
80  
V
= 5V  
S
V
R
= 2.7V  
= 10kΩ  
= 25°C  
= 1  
S
L
T
A
A
V
60  
40  
20  
0
–20  
–40  
–60  
0.5  
0
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 34. Maximum Output Swing vs. Frequency  
Figure 31. CMRR vs. Frequency at 5 V  
Rev. C | Page 10 of 20  
AD8628/AD8629  
5.5  
5.0  
120  
105  
90  
V
= 2.7V  
S
NOISE AT 1kHz = 21.3nV  
V
R
= 5V  
S
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
= 10kΩ  
= 25°C  
= 1  
L
T
A
A
V
75  
60  
45  
30  
15  
0
0.5  
0
100  
1k  
10k  
100k  
1M  
10  
10  
0
0.5  
1.0  
1.5  
2.0  
2.5  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 35. Maximum Output Swing vs. Frequency at 5 V  
Figure 38. Voltage Noise Density at 2.7 V from 0 Hz to 2.5 kHz  
0.60  
0.45  
0.30  
0.15  
120  
V
= 2.7V  
S
V
= 2.7V  
S
NOISE AT 10kHz = 42.4nV  
105  
90  
75  
0
60  
–0.15  
–0.30  
–0.45  
–0.60  
45  
30  
15  
0
0
1
2
3
4
5
6
7
8
9
0
5
10  
15  
20  
25  
TIME (µs)  
FREQUENCY (kHz)  
Figure 36. 0.1 Hz to 10 Hz Noise at 2.7 V  
Figure 39. Voltage Noise Density at 2.7 V from 0 Hz to 25 kHz  
0.60  
0.45  
0.30  
0.15  
120  
V
= 5V  
S
V
= 5V  
S
NOISE AT 1kHz = 22.1nV  
105  
90  
75  
0
60  
–0.15  
–0.30  
–0.45  
–0.60  
45  
30  
15  
0
0
1
2
3
4
5
6
7
8
9
0
0.5  
1.0  
1.5  
2.0  
2.5  
TIME (µs)  
FREQUENCY (kHz)  
Figure 37. 0.1 Hz to 10 Hz Noise at 5 V  
Figure 40. Voltage Noise Density at 5 V from 0 Hz to 2.5 kHz  
Rev. C | Page 11 of 20  
AD8628/AD8629  
120  
150  
V
T
= 2.7V  
= –40°C TO +150°C  
S
A
V
= 5V  
S
NOISE AT 10kHz = 36.4nV  
105  
90  
100  
50  
0
75  
60  
I
SC  
45  
30  
15  
0
I
+
SC  
–50  
–100  
0
5
10  
15  
20  
25  
–50  
–25  
0
25  
50  
75  
100  
C)  
125  
150  
175  
175  
175  
FREQUENCY (kHz)  
TEMPERATURE (  
°
Figure 41. Voltage Noise Density at 5 V from 0 Hz to 25 kHz  
Figure 44. Output Short-Circuit Current vs. Temperature  
120  
150  
V
= 5V  
V
T
= 5V  
S
S
= –40°C TO +150°C  
105  
90  
A
100  
50  
0
I
SC  
75  
60  
45  
30  
15  
0
–50  
I
+
SC  
–100  
0
5
10  
–50  
–25  
0
25  
50  
75  
100  
C)  
125  
150  
FREQUENCY (kHz)  
TEMPERATURE (  
°
Figure 45. Output Short-Circuit Current vs. Temperature  
Figure 42. Voltage Noise  
1k  
100  
10  
150  
V
= 5V  
S
140  
130  
V
– V @ 1kΩ  
OH  
CC  
V
T
= 2.7V TO 5V  
= –40°C TO +125°C  
S
A
120  
110  
100  
V
– V @ 1kΩ  
EE  
OL  
V
– V @ 10kΩ  
OH  
CC  
V
– V @ 10kΩ  
EE  
OL  
90  
80  
70  
V
– V @ 100k  
CC  
OH  
1
V
– V @ 100k  
OL  
EE  
60  
50  
0.10  
–50  
–50  
–25  
0
25  
50  
75  
100  
125  
–25  
0
25  
50  
75  
100  
C)  
125  
150  
TEMPERATURE (°C)  
TEMPERATURE (  
°
Figure 43. Power Supply Rejection vs. Temperature  
Figure 46. Output-to-Rail Voltage vs. Temperature  
Rev. C | Page 12 of 20  
AD8628/AD8629  
1k  
100  
10  
140  
V
= 2.7V  
V
= ±2.5V  
S
SY  
120  
100  
80  
V
– V @ 1k  
CC  
OH  
V
– V @ 1kΩ  
EE  
OL  
V
– V @ 10kΩ  
OH  
CC  
R1  
10kΩ  
V
– V @ 10kΩ  
EE  
60  
OL  
+2.5V  
V+  
R2  
100Ω  
V
– V @ 100kΩ  
OH  
CC  
V–  
B
40  
+
V
IN  
A
1
28mV p-p  
V
V
– V @ 100kΩ  
EE  
OUT  
OL  
V–  
V+  
20  
0
–2.5V  
0.10  
–50  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
–25  
0
25  
50  
75  
100  
C)  
125  
150  
175  
TEMPERATURE (  
°
Figure 47. Output-to-Rail Voltage vs. Temperature  
Figure 48. AD8629 Channel Separation  
Rev. C | Page 13 of 20  
AD8628/AD8629  
FUNCTIONAL DESCRIPTION  
The AD8628/AD8629 are single-supply, ultrahigh precision  
rail-to-rail input and output operational amplifiers. The typical  
offset voltage of less than 1 µV allows these amplifiers to be  
easily configured for high gains without risk of excessive  
output voltage errors. The extremely small temperature drift of  
2 nV/°C ensures a minimum of offset voltage error over their  
entire temperature range of −40°C to +125°C, making these  
amplifiers ideal for a variety of sensitive measurement  
applications in harsh operating environments.  
1/F NOISE  
1/f noise, also known as pink noise, is a major contributor to  
errors in dc-coupled measurements. This 1/f noise error term  
can be in the range of several µV or more, and, when amplified  
with the closed-loop gain of the circuit, can show up as a large  
output offset. For example, when an amplifier with a 5 µV p-p  
1/f noise is configured for a gain of 1,000, its output has 5 mV  
of error due to the 1/f noise. But the AD8628/AD8629 eliminate  
1/f noise internally, and thereby greatly reduce output errors.  
The AD8628/AD8629 achieve a high degree of precision  
through a patented combination of auto-zeroing and chopping.  
This unique topology allows the AD8628/AD8629 to maintain  
their low offset voltage over a wide temperature range and over  
their operating lifetime. The AD8628/AD8629 also optimize the  
noise and bandwidth over previous generations of auto-zero  
amplifiers, offering the lowest voltage noise of any auto-zero  
amplifier by more than 50%.  
The internal elimination of 1/f noise is accomplished as follows.  
1/f noise appears as a slowly varying offset to AD8628/AD8629  
inputs. Auto-zeroing corrects any dc or low frequency offset.  
Therefore, the 1/f noise component is essentially removed,  
leaving the AD8628/AD8629 free of 1/f noise.  
One of the biggest advantages that the AD8628/AD8629 bring  
to systems applications over competitive auto-zero amplifiers is  
their very low noise. The comparison shown in Figure 49  
indicates an input-referred noise density of 19.4 nV/√Hz at  
1 kHz for the AD8628, which is much better than the LTC2050  
and LMC2001. The noise is flat from dc to 1.5 kHz, slowly  
increasing up to 20 kHz. The lower noise at low frequency is  
desirable where auto-zero amplifiers are widely used.  
Previous designs used either auto-zeroing or chopping to add  
precision to the specifications of an amplifier. Auto-zeroing  
results in low noise energy at the auto-zeroing frequency, at the  
expense of higher low-frequency noise due to aliasing of  
wideband noise into the auto-zeroed frequency band. Chopping  
results in lower low-frequency noise at the expense of larger  
noise energy at the chopping frequency. The AD8628/AD8629  
family use both auto-zeroing and chopping in a patented ping-  
pong arrangement to obtain lower low-frequency noise together  
with lower energy at the chopping and auto-zeroing  
frequencies, maximizing the signal-to-noise ratio (SNR) for the  
majority of applications without the need for additional  
filtering. The relatively high clock frequency of 15 kHz  
simplifies filter requirements for a wide, useful, noise-free  
bandwidth.  
120  
LTC2050  
105  
(89.7nV/Hz)  
90  
75  
60  
45  
30  
LMC2001  
(31.1nV/Hz)  
The AD8628 is among the few auto-zero amplifiers offered in  
the 5-lead TSOT-23 package. This provides a significant  
improvement over the ac parameters of the previous auto-zero  
amplifiers. The AD8628/AD8629 have low noise over a  
relatively wide bandwidth (0 Hz to 10 kHz) and can be used  
where the highest dc precision is required. In systems with  
signal bandwidths of from 5 kHz to 10 kHz, the AD8628/  
AD8629 provide true 16-bit accuracy, making them the best  
choice for very high resolution systems.  
15  
0
AD8628  
(19.4nV/Hz)  
MK AT 1kHz FOR ALL 3 GRAPHS  
10 12  
0
2
4
6
8
FREQUENCY (kHz)  
Figure 49. Noise Spectral Density of AD8628 vs. Competition  
Rev. C | Page 14 of 20  
 
 
AD8628/AD8629  
50  
45  
40  
35  
30  
25  
20  
15  
PEAK-TO-PEAK NOISE  
Because of the ping-pong action between auto-zeroing and  
chopping, the peak-to-peak noise of the AD8628/AD8629 is  
much lower than the competition. Figure 50 and Figure 51  
show this comparison.  
e
p-p = 0.5µV  
n
BW = 0.1Hz TO 10Hz  
10  
5
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (Hz)  
Figure 53. Simulation Transfer Function of the Test Circuit  
50  
45  
40  
35  
30  
25  
20  
15  
TIME (1s/DIV)  
Figure 50. AD8628 Peak-to-Peak Noise  
e
p-p = 2.3µV  
n
BW = 0.1Hz TO 10Hz  
10  
5
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (kHz)  
Figure 54. Actual Transfer Function of Test Circuit  
The measured noise spectrum of the test circuit shows that  
noise between 5 kHz and 45 kHz is successfully rolled off by the  
first-order filter.  
TOTAL INTEGRATED INPUT-REFERRED NOISE  
FOR FIRST-ORDER FILTER  
TIME (1s/DIV)  
Figure 51. LTC2050 Peak-to-Peak Noise  
For a first-order filter, the total integrated noise from the  
AD8628 is lower than the LTC2050.  
NOISE BEHAVIOR WITH FIRST-ORDER LOW-PASS  
FILTER  
10  
The AD8628 was simulated as a low-pass filter and then  
configured as shown in Figure 52. The behavior of the AD8628  
matches the simulated data. It was verified that noise is rolled  
off by first-order filtering.  
LTC2050  
AD8551  
AD8628  
IN  
1
OUT  
100k  
1kΩ  
470pF  
Figure 52. Test Circuit: First-Order Low-Pass Filter—×101 Gain  
and 3 kHz Corner Frequency  
0.1  
10  
100  
1k  
10k  
3dB FILTER BANDWIDTH (Hz)  
Figure 55. 3 dB Filter Bandwidth in Hz  
Rev. C | Page 15 of 20  
 
 
 
 
AD8628/AD8629  
INPUT OVERVOLTAGE PROTECTION  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
V
IN  
A
= –50  
Although the AD8628/AD8629 are rail-to-rail input amplifiers,  
care should be taken to ensure that the potential difference  
between the inputs does not exceed the supply voltage. Under  
normal negative feedback operating conditions, the amplifier  
corrects its output to ensure that the two inputs are at the same  
voltage. However, if either input exceeds either supply rail by  
more than 0.3 V, large currents begin to flow through the ESD  
protection diodes in the amplifier.  
V
0V  
0V  
These diodes are connected between the inputs and each supply  
rail to protect the input transistors against an electrostatic  
discharge event and are normally reverse-biased. However, if the  
input voltage exceeds the supply voltage, these ESD diodes can  
become forward-biased. Without current limiting, excessive  
amounts of current could flow through these diodes, causing  
permanent damage to the device. If inputs are subject to  
overvoltage, appropriate series resistors should be inserted to  
limit the diode current to less than 5 mA maximum.  
V
OUT  
TIME (500µs/DIV)  
Figure 56. Positive Input Overload Recovery for the AD8628  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
V
IN  
A
= –50  
V
OUTPUT PHASE REVERSAL  
0V  
0V  
Output phase reversal occurs in some amplifiers when the input  
common-mode voltage range is exceeded. As common-mode  
voltage is moved outside of the common-mode range, the  
outputs of these amplifiers can suddenly jump in the opposite  
direction to the supply rail. This is the result of the differential  
input pair shutting down, causing a radical shifting of internal  
voltages that results in the erratic output behavior.  
V
OUT  
The AD8628/AD8629 amplifiers have been carefully designed  
to prevent any output phase reversal, provided that both inputs  
are maintained within the supply voltages. If one or both inputs  
could exceed either supply voltage, a resistor should be placed in  
series with the input to limit the current to less than 5 mA. This  
ensures that the output does not reverse its phase.  
TIME (500µs/DIV)  
Figure 57. Positive Input Overload Recovery for LTC2050  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
V
IN  
A
= –50  
V
OVERLOAD RECOVERY TIME  
Many auto-zero amplifiers are plagued by a long overload  
recovery time, often in ms, due to the complicated settling  
behavior of the internal nulling loops after saturation of the  
outputs. The AD8628/AD8629 have been designed so that  
internal settling occurs within two clock cycles after output  
saturation happens. This results in a much shorter recovery  
time, less than 10 µs, when compared to other auto-zero  
amplifiers. The wide bandwidth of the AD8628/AD8629  
enhances performance when they are used to drive loads that  
inject transients into the outputs. This is a common situation  
when an amplifier is used to drive the input of switched  
capacitor ADCs.  
0V  
0V  
V
OUT  
TIME (500µs/DIV)  
Figure 58. Positive Input Overload Recovery for LMC2001  
Rev. C | Page 16 of 20  
 
 
AD8628/AD8629  
The results shown in Figure 56 to Figure 61 are summarized in  
Table 5.  
0V  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
Table 5. Overload Recovery Time  
A
= –50  
V
Positive Overload  
Recovery (µs)  
Negative Overload  
Recovery (µs)  
V
IN  
Product  
AD8628  
LTC2050  
LMC2001  
6
9
650  
40,000  
25,000  
35,000  
V
OUT  
0V  
INFRARED SENSORS  
Infrared (IR) sensors, particularly thermopiles, are increasingly  
being used in temperature measurement for applications as  
wide-ranging as automotive climate control, human ear  
thermometers, home insulation analysis, and automotive repair  
diagnostics. The relatively small output signal of the sensor  
demands high gain with very low offset voltage and drift to  
avoid dc errors.  
TIME (500µs/DIV)  
Figure 59. Negative Input Overload Recovery for the AD8628  
0V  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
A
= –50  
V
V
IN  
OUT  
V
If interstage ac coupling is used (Figure 62), low offset and drift  
prevents the input amplifiers output from drifting close to  
saturation. The low input bias currents generate minimal errors  
from the sensor’s output impedance. As with pressure sensors,  
the very low amplifier drift with time and temperature elimi-  
nates additional errors once the temperature measurement has  
been calibrated. The low 1/f noise improves SNR for dc  
measurements taken over periods often exceeding 1/5 s.  
0V  
Figure 64 (shows a circuit that can amplify ac signals from  
100 µV to 300 µV up to the 1 V to 3 V level, with gain of  
10,000 for accurate A/D conversion.  
TIME (500µs/DIV)  
Figure 60. Negative Input Overload Recovery for LTC2050  
10kΩ  
100kΩ  
100Ω  
100kΩ  
5V  
5V  
0V  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
100µV – 300µV  
10µF  
A
= –50  
V
1/2 AD8629  
IR  
1/2 AD8629  
V
DETECTOR  
IN  
10kΩ  
f
1.6Hz  
C
V
OUT  
TO BIAS  
VOLTAGE  
Figure 62. AD8629 Used as Preamplifier for Thermopile  
0V  
TIME (500µs/DIV)  
Figure 61. Negative Input Overload Recovery for LMC2001  
Rev. C | Page 17 of 20  
 
 
 
 
AD8628/AD8629  
OUTPUT AMPLIFIER FOR HIGH PRECISION DACs  
PRECISION CURRENT SHUNTS  
The AD8628/AD8629 are used as output amplifiers for a 16-bit  
high precision DAC in a unipolar configuration. In this case, the  
selected op amp needs to have very low offset voltage (the DAC  
LSB is 38 µV when operated with a 2.5 V reference) to eliminate  
the need for output offset trims. Input bias current (typically a  
few tens of picoamperes) must also be very low, because it  
generates an additional zero code error when multiplied by the  
DAC output impedance (approximately 6 kΩ).  
A precision shunt current sensor benefits from the unique  
attributes of auto-zero amplifiers when used in a differencing  
configuration (Figure 63). Shunt current sensors are used in  
precision current sources for feedback control systems. They are  
also used in a variety of other applications, including battery  
fuel gauging, laser diode power measurement and control,  
torque feedback controls in electric power steering, and  
precision power metering.  
Rail-to-rail input and output provide full-scale output with very  
little error. Output impedance of the DAC is constant and code-  
independent, but the high input impedance of the AD8628/  
AD8629 minimizes gain errors. The amplifiers’ wide bandwidth  
also serves well in this case. The amplifiers, with settling time of  
1 µs, add another time constant to the system, increasing the  
settling time of the output. The settling time of the AD5541 is  
1 µs. The combined settling time is approximately 1.4 µs, as can  
be derived from the following equation:  
R
0.1  
S
R
SUPPLY  
L
I
100kΩ  
100Ω  
e = 1,000 R  
100mV/mA  
I
S
C
5V  
AD8628  
100kΩ  
100Ω  
2
2
tS  
(
TOTAL  
)
=
(
tS DAC  
)
+
(
tS AD8628  
)
C
Figure 63. Low-Side Current Sensing  
In such applications, it is desirable to use a shunt with very low  
resistance to minimize the series voltage drop; this minimizes  
wasted power and allows the measurement of high currents  
without saving power. A typical shunt might be 0.1 Ω. At  
measured current values of 1 A, the shunts output signal is  
hundreds of mV, or even V, and amplifier error sources are not  
critical. However, at low measured current values in the 1 mA  
range, the 100 µV output voltage of the shunt demands a very  
low offset voltage and drift to maintain absolute accuracy. Low  
input bias currents are also needed, so that injected bias current  
does not become a significant percentage of the measured  
current. High open-loop gain, CMRR, and PSRR all help to  
maintain the overall circuit accuracy. As long as the rate of  
change of the current is not too fast, an auto-zero amplifier can  
be used with excellent results.  
2.5V  
5V  
10µF  
0.1µF  
0.1µF  
SERIAL  
V
REF(REF*) REFS*  
AD5541/AD5542  
DD  
INTERFACE  
CS  
DIN  
UNIPOLAR  
OUTPUT  
OUT  
SCLK  
LDAC*  
AD8628  
DGND  
AGND  
*AD5542 ONLY  
Figure 64. AD8628 Used as an Output Amplifier  
Rev. C | Page 18 of 20  
 
 
AD8628/AD8629  
OUTLINE DIMENSIONS  
2.90 BSC  
5.00 (0.1968)  
4.80 (0.1890)  
5
1
4
3
2.80 BSC  
1.60 BSC  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
2
PIN 1  
0.95 BSC  
1.27 (0.0500)  
BSC  
1.90  
BSC  
0.50 (0.0196)  
× 45°  
0.90  
0.87  
0.84  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0099)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
1.00 MAX  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
8°  
4°  
0.10 MAX  
0.60  
0.45  
0.30  
0.50  
0.30  
SEATING  
PLANE  
0.20  
0.08  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-193AB  
Figure 65. 5-Lead Thin Small Outline Transistor Package [TSOT]  
Figure 67. 8-Lead Standard Small Outline Package [SOIC]  
Narrow Body (R-8)  
(UJ-5)  
Dimensions shown in millimeters  
Dimensions shown in millimeters and (inches)  
2.90 BSC  
3.00  
BSC  
5
4
3
2.80 BSC  
1.60 BSC  
8
5
4
2
4.90  
BSC  
3.00  
BSC  
PIN 1  
0.95 BSC  
1.90  
BSC  
PIN 1  
1.30  
1.15  
0.90  
0.65 BSC  
1.10 MAX  
0.15  
0.00  
1.45 MAX  
0.22  
0.08  
0.80  
0.60  
0.40  
8°  
0°  
10°  
5°  
0°  
0.38  
0.22  
COPLANARITY  
0.10  
0.23  
0.08  
0.15 MAX  
0.50  
0.30  
0.60  
0.45  
0.30  
SEATING  
PLANE  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178AA  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
Figure 66. 5-Lead Small Outline Transistor Package [SOT-23]  
Figure 65. 8-Lead Standard Small Outline Package [MSOP]  
(RM-8)  
(RT-5)  
Dimensions shown in millimeters  
Dimensions shown in millimeters  
Rev. C | Page 19 of 20  
 
AD8628/AD8629  
ORDERING GUIDE  
Model  
AD8628AUJ-R2  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
5-Lead TSOT-23  
5-Lead TSOT-23  
5-Lead TSOT-23  
5-Lead TSOT-23  
5-Lead TSOT-23  
5-Lead TSOT-23  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
Package Option  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
R-8  
R-8  
R-8  
R-8  
R-8  
Branding  
AYB  
AYB  
AYB  
AYB  
AD8628AUJ-REEL  
AD8628AUJ-REEL7  
AD8628AUJZ-R21  
AD8628AUJZ-REEL1  
AD8628AUJZ-REEL71  
AD8628AR  
AD8628AR-REEL  
AD8628AR-REEL7  
AD8628ARZ1  
AD8628ARZ-REEL1  
AD8628ARZ-REEL71  
AD8628ART-R2  
AD8628ART-REEL7  
AD8628ARTZ-R21  
AD8628ARTZ-REEL71  
AD8629ARZ1  
AYB  
AYB  
8-Lead SOIC  
R-8  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead MSOP  
8-Lead MSOP  
RT-5  
RT-5  
RT-5  
RT-5  
R-8  
R-8  
R-8  
RM-8  
RM-8  
AYA  
AYA  
AYA  
AYA  
AD8629ARZ-REEL1  
AD8629ARZ-REEL71  
AD8629ARMZ-R21  
AD8629ARMZ-REEL1  
A06  
A06  
1 Z = Pb-free part.  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C02735–0–10/04(C)  
Rev. C | Page 20 of 20  
 
 
 

相关型号:

AD8628WARTZ-R7

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI

AD8628WARTZ-RL

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI

AD8628WARZ-R7

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI

AD8628WARZ-RL

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI

AD8628WAUJZ-R7

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI

AD8628WAUJZ-RL

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI

AD8628_05

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI

AD8628_08

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI

AD8628_15

Zero-Drift, Single-Supply, Rail-to-Rail
ADI

AD8629

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI

AD8629ARMZ

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI

AD8629ARMZ-R2

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI