AD8630ARZ-REEL7 [ADI]

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier; 零漂移,单电源,轨到轨输入/输出运算放大器
AD8630ARZ-REEL7
型号: AD8630ARZ-REEL7
厂家: ADI    ADI
描述:

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
零漂移,单电源,轨到轨输入/输出运算放大器

运算放大器 放大器电路 光电二极管 斩波器 PC
文件: 总24页 (文件大小:414K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Zero-Drift, Single-Supply, Rail-to-Rail  
Input/Output Operational Amplifier  
AD8628/AD8629/AD8630  
FEATURES  
PIN CONFIGURATIONS  
Lowest auto-zero amplifier noise  
OUT  
V–  
1
2
3
5
V+  
Low offset voltage: 1 μV  
AD8628  
Input offset drift: 0.002 μV/°C  
Rail-to-rail input and output swing  
5 V single-supply operation  
TOP VIEW  
(Not to Scale)  
+IN  
4
–IN  
High gain, CMRR, and PSRR: 120 dB  
Very low input bias current: 100 pA max  
Low supply current: 1.0 mA  
Overload recovery time: 10 μs  
No external components required  
Figure 1. 5-Lead TSOT (UJ-5)  
and 5-Lead SOT-23 (RT-5)  
NC  
–IN  
+IN  
V–  
1
2
3
4
8
7
6
5
NC  
V+  
AD8628  
OUT  
NC  
TOP VIEW  
(Not to Scale)  
APPLICATIONS  
Automotive sensors  
NC = NO CONNECT  
Pressure and position sensors  
Strain gage amplifiers  
Medical instrumentation  
Thermocouple amplifiers  
Precision current sensing  
Photodiode amplifier  
Figure 2. 8-Lead SOIC_N (R-8)  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8629  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Figure 3. 8-Lead SOIC_N (R-8)  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8629  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Figure 4. 8-Lead MSOP (RM-8)  
1
2
3
4
5
6
7
OUT A  
–IN A  
+IN A  
V+  
14  
13  
12  
11  
OUT D  
–IN D  
+IN D  
V–  
AD8630  
TOP VIEW  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
10 +IN C  
9
8
–IN C  
OUT C  
Figure 5. 14-Lead SOIC_N (R-14)  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
11 V–  
AD8630  
TOP VIEW  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
10 +IN C  
9
8
–IN C  
OUT C  
Figure 6. 14-Lead TSSOP (RU-14)  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
AD8628/AD8629/AD8630  
TABLE OF CONTENTS  
General Description......................................................................... 3  
Specifications..................................................................................... 4  
Electrical CharacteristicsVs = 5.0 V............................................. 4  
Electrical CharacteristicsVs = 2.7 V............................................. 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Typical Performance Characteristics ............................................. 7  
Functional Description.................................................................. 15  
1/f Noise....................................................................................... 15  
Peak-to-Peak Noise .................................................................... 16  
Noise Behavior with First-Order Low-Pass Filter.................. 16  
Total Integrated Input-Referred Noise  
for First-Order Filter.................................................................. 16  
Input Overvoltage Protection................................................... 17  
Output Phase Reversal............................................................... 17  
Overload Recovery Time .......................................................... 17  
Infrared Sensors.......................................................................... 18  
Precision Current Shunt Sensor ............................................... 19  
Output Amplifier for High Precision DACs........................... 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 22  
REVISION HISTORY  
5/05—Rev. D to Rev. E  
10/03—Rev. A to Rev. B  
Changes to Ordering Guide .......................................................... 22  
Changes to General Description .....................................................1  
Changes to Absolute Maximum Ratings........................................4  
Changes to Ordering Guide.............................................................4  
Added TSOT-23 Package .............................................................. 15  
1/05—Rev. C to Rev. D  
Added AD8630 ...................................................................Universal  
Added Figure 5 and Figure 6........................................................... 1  
Changes to Caption in Figure 8 and Figure 9 ............................... 7  
Changes to Caption in Figure 14.................................................... 8  
Changes to Figure 17........................................................................ 8  
Changes to Figure 23 and Figure 24............................................... 9  
Changes to Figure 25 and Figure 26............................................. 10  
Changes to Figure 31...................................................................... 11  
Changes to Figure 40, Figure 41, Figure 42................................. 12  
Changes to Figure 43 and Figure 44............................................. 13  
Changes to Figure 51...................................................................... 15  
Updated Outline Dimensions....................................................... 20  
Changes to Ordering Guide .......................................................... 22  
6/03—Rev. 0 to Rev. A  
Changes to Specifications.................................................................3  
Changes to Ordering Guide.............................................................4  
Change to Functional Description............................................... 10  
Updated Outline Dimensions....................................................... 15  
10/02—Revision 0: Initial Version  
10/04—Rev. B to Rev. C  
Updated Formatting...........................................................Universal  
Added AD8629 ...................................................................Universal  
Added SOIC and MSOP Pin Configurations ............................... 1  
Added Figure 48.............................................................................. 13  
Changes to Figure 62...................................................................... 17  
Added MSOP Package ................................................................... 19  
Changes to Ordering Guide .......................................................... 22  
Rev. E | Page 2 of 24  
AD8628/AD8629/AD8630  
GENERAL DESCRIPTION  
This amplifier has ultralow offset, drift, and bias current. The  
AD8628/AD8629/AD8630 are wide bandwidth auto-zero  
amplifiers featuring rail-to-rail input and output swings and low  
noise. Operation is fully specified from 2.7 V to 5 V single  
supply ( 1.35 V to 2.5 V dual supply).  
With an offset voltage of only 1 μV, drift of less than  
0.005 μV/°C, and noise of only 0.5 μV p-p (0 Hz to 10 Hz), the  
AD8628/AD8629/AD8630 are suited for applications in which  
error sources cannot be tolerated. Position and pressure sensors,  
medical equipment, and strain gage amplifiers benefit greatly  
from nearly zero drift over their operating temperature range.  
Many systems can take advantage of the rail-to-rail input and  
output swings provided by the AD8628/AD8629/AD8630 to  
reduce input biasing complexity and maximize SNR.  
The AD8628/AD8629/AD8630 provide benefits previously  
found only in expensive auto-zeroing or chopper-stabilized  
amplifiers. Using Analog Devices’ topology, these zero-drift  
amplifiers combine low cost with high accuracy and low noise.  
No external capacitor is required. In addition, the AD8628/  
AD8629/AD8630 greatly reduce the digital switching noise  
found in most chopper-stabilized amplifiers.  
The AD8628/AD8629/AD8630 are specified for the extended  
industrial temperature range (−40°C to +125°C). The AD8628  
is available in tiny TSOT-23, SOT-23, and the 8-lead narrow  
SOIC plastic packages. The AD8629 is available in the standard  
8-lead narrow SOIC and MSOP plastic packages. The AD8630  
quad amplifier is available in 14-lead narrow SOIC and TSSOP  
plastic packages.  
Rev. E | Page 3 of 24  
 
AD8628/AD8629/AD8630  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICSVS = 5.0 V  
VS = 5.0 V, VCM = 2.5 V, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
1
5
10  
μV  
μV  
pA  
pA  
nA  
pA  
pA  
V
−40°C ≤ TA ≤ +125°C  
Input Bias Current  
(AD8630)  
30  
100  
100  
300  
1.5  
200  
250  
5
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
50  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 5 V  
120  
115  
125  
120  
140  
130  
145  
135  
0.002  
dB  
dB  
dB  
dB  
μV/°C  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = 0.3 V to 4.7 V  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain1  
Offset Voltage Drift  
OUTPUT CHARACTERISTICS  
Output Voltage High  
∆VOS/∆T  
VOH  
0.02  
RL = 100 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to V+  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to V+  
−40°C ≤ TA ≤ +125°C  
4.99  
4.99  
4.95  
4.95  
4.996  
4.995  
4.98  
4.97  
1
2
10  
15  
50  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
mA  
mA  
mA  
Output Voltage Low  
VOL  
5
5
20  
20  
Short-Circuit Limit  
Output Current  
ISC  
IO  
25  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
40  
30  
15  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 5.5 V  
−40°C ≤ TA ≤ +125°C  
VO = 0 V  
115  
130  
0.85  
1.0  
dB  
mA  
mA  
Supply Current/Amplifier  
1.1  
1.2  
−40°C ≤ TA ≤ +125°C  
INPUT CAPACITANCE  
Differential  
Common-Mode  
CIN  
1.5  
8.0  
pF  
pF  
DYNAMIC PERFORMANCE  
Slew Rate  
Overload Recovery Time  
Gain Bandwidth Product  
NOISE PERFORMANCE  
Voltage Noise  
SR  
RL = 10 kΩ  
1.0  
0.05  
2.5  
V/μs  
ms  
MHz  
GBP  
en p-p  
en p-p  
en  
0.1 Hz to 10 Hz  
0.1 Hz to 1.0 Hz  
f = 1 kHz  
0.5  
0.16  
22  
μV p-p  
μV p-p  
nV/√Hz  
fA/√Hz  
Voltage Noise Density  
Current Noise Density  
in  
f = 10 Hz  
5
1 Gain testing is highly dependent on test bandwidth.  
Rev. E | Page 4 of 24  
 
AD8628/AD8629/AD8630  
ELECTRICAL CHARACTERISTICSVS = 2.7 V  
VS = 2.7 V, VCM = 1.35 V, VO = 1.4 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
1
5
10  
μV  
μV  
pA  
pA  
nA  
pA  
pA  
V
−40°C ≤ TA ≤ +125°C  
Input Bias Current  
(AD8630)  
30  
100  
300  
1.5  
200  
250  
2.7  
100  
1.0  
50  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 2.7 V  
115  
110  
110  
105  
130  
120  
140  
130  
0.002  
dB  
dB  
dB  
dB  
μV/°C  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = 0.3 V to 2.4 V  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain1  
Offset Voltage Drift  
OUTPUT CHARACTERISTICS  
Output Voltage High  
∆VOS/∆T  
VOH  
0.02  
RL = 100 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to V+  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to V+  
−40°C ≤ TA ≤ +125°C  
2.68  
2.68  
2.67  
2.67  
2.695  
2.695  
2.68  
2.675  
1
2
10  
15  
15  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
mA  
mA  
mA  
Output Voltage Low  
VOL  
5
5
20  
20  
Short-Circuit Limit  
Output Current  
ISC  
IO  
10  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
10  
10  
5
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 5.5 V  
−40°C ≤ TA ≤ +125°C  
VO = 0 V  
115  
130  
0.75  
0.9  
dB  
mA  
mA  
Supply Current/Amplifier  
1.0  
1.2  
−40°C ≤ TA ≤ +125°C  
INPUT CAPACITANCE  
Differential  
Common-Mode  
CIN  
1.5  
8.0  
pF  
pF  
DYNAMIC PERFORMANCE  
Slew Rate  
Overload Recovery Time  
Gain Bandwidth Product  
NOISE PERFORMANCE  
Voltage Noise  
SR  
RL = 10 kΩ  
1
0.05  
2
V/μs  
ms  
MHz  
GBP  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 Hz  
0.5  
22  
5
μV p-p  
nV/√Hz  
fA/√Hz  
Voltage Noise Density  
Current Noise Density  
1 Gain testing is highly dependent on test bandwidth.  
Rev. E | Page 5 of 24  
 
AD8628/AD8629/AD8630  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameters  
Ratings  
Supply Voltage  
6 V  
Input Voltage  
GND − 0.3 V to VS− + 0.3 V  
Differential Input Voltage1  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
R, RM, RU, RT, UJ Packages  
Operating Temperature Range  
Junction Temperature Range  
R, RM, RU, RT, UJ Packages  
5.0 V  
Indefinite  
−65°C to +150°C  
−40°C to +125°C  
Table 4. Thermal Characteristics  
Package Type  
1
−65°C to +150°C  
300°C  
θJA  
θJC  
61  
146  
43  
44  
43  
23  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Lead Temperature Range  
(Soldering, 60 sec)  
5-Lead TSOT-23 (UJ-5)  
5-Lead SOT-23 (RT-5)  
8-Lead SOIC_N (R-8)  
8-Lead MSOP (RM-8)  
14-Lead SOIC_N (R-14)  
14-Lead TSSOP (RU-14)  
207  
230  
158  
190  
105  
148  
1 Differential input voltage is limited to 5 V or the supply voltage, whichever  
is less.  
1 θJA is specified for worst-case conditions, that is, θJA is specified for the device  
soldered in a circuit board for surface-mount packages. This was measured  
using a standard 2-layer board.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. E | Page 6 of 24  
 
 
AD8628/AD8629/AD8630  
TYPICAL PERFORMANCE CHARACTERISTICS  
180  
100  
V
T
= 2.7V  
= 25°C  
S
V
V
= 5V  
S
160  
140  
120  
100  
80  
90  
80  
70  
60  
50  
40  
30  
A
= 2.5V  
CM  
= 25°C  
T
A
60  
40  
20  
10  
20  
0
0
–2.5  
–2.5  
–1.5  
–0.5  
0.5  
1.5  
2.5  
–1.5  
–0.5  
0.5  
1.5  
2.5  
INPUT OFFSET VOLTAGE (μV)  
INPUT OFFSET VOLTAGE (  
μ
V)  
Figure 7. Input Offset Voltage Distribution  
Figure 10. Input Offset Voltage Distribution  
7
6
5
4
3
2
60  
50  
40  
30  
20  
V
= 5V  
V
T
= 5V  
S
S
A
+85°C  
= –40°C TO +125°C  
+25°C  
–40°C  
10  
0
1
0
0
2
4
6
8
10  
0
1
2
3
4
5
6
TCVOS (nV/°C)  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 8. AD8628 Input Bias Current vs. Input Common-Mode  
Figure 11. Input Offset Voltage Drift  
1k  
1500  
V
= 5V  
V
T
= 5V  
= 25°C  
S
150°C  
125°C  
S
A
1000  
500  
0
100  
10  
1
SOURCE  
SINK  
–500  
0.1  
–1000  
–1500  
0.01  
0.0001  
0
1
2
3
4
5
6
0.001  
0.01  
0.1  
1
10  
INPUT COMMON-MODE VOLTAGE (V)  
LOAD CURRENT (mA)  
Figure 9. AD8628 Input Bias Current vs. Input Common-Mode Voltage at 5 V  
Figure 12. Output Voltage to Supply Rail vs. Load Current  
Rev. E | Page 7 of 24  
 
AD8628/AD8629/AD8630  
1k  
1000  
800  
600  
400  
T
= 25°C  
A
V
= 2.7V  
S
100  
10  
SOURCE  
SINK  
1
0.1  
200  
0
0.01  
0.0001  
0.001  
0.01  
0.1  
1
10  
0
1
2
3
4
5
6
LOAD CURRENT (mA)  
SUPPLY VOLTAGE (V)  
Figure 13. Output Voltage to Supply Rail vs. Load Current  
Figure 16. Supply Current vs. Supply Voltage  
1500  
1150  
900  
V
C
R
= 2.7V  
= 20pF  
= ∞  
V
V
T
= 5V  
S
S
60  
40  
20  
0
= 2.5V  
L
L
CM  
= –40°C TO +150°C  
A
φ
= 45°  
M
0
45  
90  
450  
135  
180  
225  
100  
0
–50  
–25  
0
25  
50  
75  
100  
125  
150  
175  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
TEMPERATURE (°C)  
Figure 14. AD8628 Input Bias Current vs. Temperature  
Figure 17. Open-Loop Gain and Phase vs. Frequency  
1250  
1000  
750  
70  
V
= 5V  
= 20pF  
= ∞  
S
T
= 25°C  
A
60  
50  
40  
30  
20  
10  
0
C
R
φ
L
L
5V  
= 52.1°  
M
0
2.7V  
45  
90  
500  
135  
180  
225  
250  
0
–10  
–20  
–30  
–50  
0
50  
100  
150  
200  
10k  
100k  
1M  
10M  
TEMPERATURE (°C  
)
FREQUENCY (Hz)  
Figure 18. Open-Loop Gain and Phase vs. Frequency  
Figure 15. Supply Current vs. Temperature  
Rev. E | Page 8 of 24  
AD8628/AD8629/AD8630  
70  
60  
50  
40  
30  
20  
10  
0
300  
270  
240  
210  
180  
150  
120  
90  
V
C
R
= 2.7V  
= 20pF  
= 2kΩ  
V = 5V  
S
S
L
L
A
= 1  
V
A
A
A
= 100  
= 10  
= 1  
V
A
= 100  
V
V
V
A = 10  
V
–10  
–20  
–30  
60  
30  
0
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 19. Closed-Loop Gain vs. Frequency  
Figure 22. Output Impedance vs. Frequency  
70  
60  
50  
40  
30  
20  
10  
0
V
C
R
= 5V  
= 20pF  
= 2kΩ  
S
L
L
A
A
= 100  
= 10  
V
V
= ±1.35V  
= 300pF  
= ∞  
S
C
R
A
L
L
V
V
0V  
= 1  
A
= 1  
V
–10  
–20  
–30  
1k  
10k  
100k  
1M  
10M  
TIME (4μs/DIV)  
FREQUENCY (Hz)  
Figure 23. Large Signal Transient Response  
Figure 20. Closed-Loop Gain vs. Frequency  
300  
270  
240  
210  
180  
150  
120  
90  
V
= 2.7V  
S
A
= 1  
V
V
= ±2.5V  
= 300pF  
= ∞  
S
C
R
A
L
L
V
A
= 100  
V
0V  
= 1  
A
= 10  
60  
30  
0
V
100  
1k  
10k  
100k  
1M  
10M  
100M  
TIME (5μs/DIV)  
FREQUENCY (Hz)  
Figure 24. Large Signal Transient Response  
Figure 21. Output Impedance vs. Frequency  
Rev. E | Page 9 of 24  
AD8628/AD8629/AD8630  
80  
70  
60  
50  
40  
V
R
= ±2.5V  
= 2kΩ  
= 25°C  
V
= ±1.35V  
= 50pF  
= ∞  
S
S
C
R
A
L
L
L
V
T
A
= 1  
0V  
30  
20  
OS–  
OS+  
10  
0
1
10  
100  
1k  
TIME (4μs/DIV)  
CAPACITIVE LOAD (pF)  
Figure 25. Small Signal Transient Response  
Figure 28. Small Signal Overshoot vs. Load Capacitance  
V
= ±2.5V  
= –50  
= 10kΩ  
= 0  
S
V
= ±2.5V  
= 50pF  
= ∞  
S
A
R
C
V
L
L
C
R
A
L
L
V
V
IN  
= 1  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
0V  
0V  
0V  
V
OUT  
TIME (4μs/DIV)  
TIME (2μs/DIV)  
Figure 26. Small Signal Transient Response  
Figure 29. Positive Overvoltage Recovery  
100  
90  
80  
70  
60  
50  
40  
30  
V
R
= ±1.35V  
= 2kΩ  
= 25°C  
S
0V  
L
T
A
V
= ±2.5V  
= –50  
= 10kΩ  
= 0  
S
A
R
C
V
L
L
V
IN  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
OS–  
V
OUT  
OS+  
20  
10  
0
0V  
1
10  
100  
1k  
TIME (10μs/DIV)  
CAPACITIVE LOAD (pF)  
Figure 27. Small Signal Overshoot vs. Load Capacitance  
Figure 30. Negative Overvoltage Recovery  
Rev. E | Page 10 of 24  
AD8628/AD8629/AD8630  
140  
120  
100  
80  
V
V
C
R
A
= ±2.5V  
= 1kHz @ ±3V p-p  
= 0pF  
= 10kΩ  
= 1  
S
V
= ±1.35V  
IN  
S
L
L
V
60  
+PSRR  
–PSRR  
0V  
40  
20  
0
–20  
–40  
–60  
100  
1k  
10k  
100k  
1M  
10M  
10M  
1M  
TIME (200μs/DIV)  
FREQUENCY (Hz)  
Figure 31. No Phase Reversal  
Figure 34. PSRR vs. Frequency  
140  
120  
100  
80  
140  
120  
100  
80  
V
= ±2.5V  
V
= 2.7V  
S
S
60  
60  
+PSRR  
40  
40  
20  
20  
–PSRR  
0
0
–20  
–40  
–60  
–20  
–40  
–60  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 35. PSRR vs. Frequency  
Figure 32. CMRR vs. Frequency  
3.0  
2.5  
2.0  
1.5  
1.0  
140  
120  
100  
80  
V
= 5V  
S
V
R
= 2.7V  
= 10kΩ  
= 25°C  
= 1  
S
L
T
A
A
V
60  
40  
20  
0
–20  
–40  
–60  
0.5  
0
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 36. Maximum Output Swing vs. Frequency  
Figure 33. CMRR vs. Frequency  
Rev. E | Page 11 of 24  
AD8628/AD8629/AD8630  
5.5  
5.0  
120  
105  
90  
V
= 2.7V  
S
NOISE AT 1kHz = 21.3nV  
V
R
= 5V  
S
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
= 10kΩ  
= 25°C  
= 1  
L
T
A
A
V
75  
60  
45  
30  
15  
0
0.5  
0
100  
1k  
10k  
100k  
1M  
0
0.5  
1.0  
1.5  
2.0  
2.5  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 37. Maximum Output Swing vs. Frequency  
Figure 40. Voltage Noise Density at 2.7 V from 0 Hz to 2.5 kHz  
0.60  
0.45  
0.30  
0.15  
120  
V
= 2.7V  
S
V
= 2.7V  
S
NOISE AT 10kHz = 42.4nV  
105  
90  
75  
0
60  
45  
–0.15  
–0.30  
–0.45  
–0.60  
30  
15  
0
0
1
2
3
4
5
6
7
8
9
10  
0
5
10  
15  
20  
25  
TIME (μs)  
FREQUENCY (kHz)  
Figure 38. 0.1 Hz to 10 Hz Noise  
Figure 41. Voltage Noise Density at 2.7 V from 0 Hz to 25 kHz  
0.60  
0.45  
0.30  
0.15  
120  
V
= 5V  
S
V
= 5V  
S
NOISE AT 1kHz = 22.1nV  
105  
90  
75  
0
60  
45  
–0.15  
–0.30  
–0.45  
–0.60  
30  
15  
0
0
1
2
3
4
5
6
7
8
9
10  
0
0.5  
1.0  
1.5  
2.0  
2.5  
TIME (μs)  
FREQUENCY (kHz)  
Figure 39. 0.1 Hz to 10 Hz Noise  
Figure 42. Voltage Noise Density at 5 V from 0 Hz to 2.5 kHz  
Rev. E | Page 12 of 24  
AD8628/AD8629/AD8630  
120  
105  
90  
150  
V
T
= 2.7V  
= –40°C TO +150°C  
S
A
V
= 5V  
S
NOISE AT 10kHz = 36.4nV  
100  
50  
0
75  
60  
45  
I
SC  
I
+
SC  
30  
15  
0
–50  
–100  
0
5
10  
15  
20  
25  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
175  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
Figure 43. Voltage Noise Density at 5 V from 0 Hz to 25 kHz  
Figure 46. Output Short-Circuit Current vs. Temperature  
150  
120  
V
T
= 5V  
S
A
V
= 5V  
S
= –40°C TO +150°C  
105  
90  
100  
50  
0
I
SC  
75  
60  
45  
30  
15  
0
–50  
I
+
SC  
–100  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
175  
0
5
10  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
Figure 44. Voltage Noise  
Figure 47. Output Short-Circuit Current vs. Temperature  
1k  
100  
10  
150  
V
= 5V  
S
140  
130  
V
– V @ 1kΩ  
OH  
CC  
V
= 2.7V TO 5V  
= –40°C TO +125°C  
S
V
– V @ 1kΩ  
EE  
120  
110  
OL  
T
A
V
– V @ 10kΩ  
OH  
CC  
100  
90  
V
– V @ 10kΩ  
EE  
OL  
V
– V @ 100kΩ  
OH  
CC  
80  
1
V
– V @ 100kΩ  
EE  
OL  
70  
60  
50  
0.10  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
175  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 45. Power Supply Rejection vs. Temperature  
Figure 48. Output-to-Rail Voltage vs. Temperature  
Rev. E | Page 13 of 24  
AD8628/AD8629/AD8630  
1k  
140  
V
= 2.7V  
V
= ±2.5V  
S
SY  
120  
100  
80  
V
– V @ 1kΩ  
OH  
CC  
100  
10  
V
– V @ 1kΩ  
EE  
OL  
V
– V @ 10kΩ  
OH  
CC  
R1  
10kΩ  
V
– V @ 10kΩ  
EE  
60  
OL  
+2.5V  
V+  
R2  
100Ω  
V
– V @ 100kΩ  
OH  
CC  
V–  
B
40  
+
V
IN  
28mV p-p  
1
A
V
V
– V @ 100kΩ  
EE  
OUT  
OL  
V–  
V+  
20  
0
–2.5V  
0.10  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
175  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
TEMPERATURE (°C)  
Figure 50. AD8629/AD8630 Channel Separation  
Figure 49. Output-to-Rail Voltage vs. Temperature  
Rev. E | Page 14 of 24  
AD8628/AD8629/AD8630  
FUNCTIONAL DESCRIPTION  
The AD8628/AD8629/AD8630 are single-supply, ultrahigh  
precision rail-to-rail input and output operational amplifiers.  
The typical offset voltage of less than 1 μV allows these amplifi-  
ers to be easily configured for high gains without risk of  
excessive output voltage errors. The extremely small tempera-  
ture drift of 2 nV/°C ensures a minimum of offset voltage error  
over their entire temperature range of −40°C to +125°C, making  
these amplifiers ideal for a variety of sensitive measurement  
applications in harsh operating environments.  
1/f NOISE  
1/f noise, also known as pink noise, is a major contributor to  
errors in dc-coupled measurements. This 1/f noise error term  
can be in the range of several μV or more, and, when amplified  
with the closed-loop gain of the circuit, can show up as a large  
output offset. For example, when an amplifier with a 5 μV p-p  
1/f noise is configured for a gain of 1,000, its output has 5 mV of  
error due to the 1/f noise. But the AD8628/AD8629/AD8630  
eliminate 1/f noise internally, and thereby greatly reduce output  
errors.  
The AD8628/AD8629/AD8630 achieve a high degree of preci-  
sion through a patented combination of auto-zeroing and  
chopping. This unique topology allows the AD8628/AD8629/  
AD8630 to maintain their low offset voltage over a wide  
temperature range and over their operating lifetime. The  
AD8628/AD8629/AD8630 also optimize the noise and band-  
width over previous generations of auto-zero amplifiers,  
offering the lowest voltage noise of any auto-zero amplifier by  
more than 50%.  
The internal elimination of 1/f noise is accomplished as follows.  
1/f noise appears as a slowly varying offset to AD8628/AD8629/  
AD8630 inputs. Auto-zeroing corrects any dc or low frequency  
offset. Therefore, the 1/f noise component is essentially removed,  
leaving the AD8628/AD8629/AD8630 free of 1/f noise.  
One of the biggest advantages that the AD8628/AD8629/  
AD8630 bring to systems applications over competitive auto-  
zero amplifiers is their very low noise. The comparison shown  
in Figure 51 indicates an input-referred noise density of  
19.4 nV/√Hz at 1 kHz for the AD8628, which is much better  
than the LTC2050 and LMC2001. The noise is flat from dc to  
1.5 kHz, slowly increasing up to 20 kHz. The lower noise at  
low frequency is desirable where auto-zero amplifiers are  
widely used.  
Previous designs used either auto-zeroing or chopping to add  
precision to the specifications of an amplifier. Auto-zeroing  
results in low noise energy at the auto-zeroing frequency, at the  
expense of higher low frequency noise due to aliasing of wide-  
band noise into the auto-zeroed frequency band. Chopping  
results in lower low frequency noise at the expense of larger  
noise energy at the chopping frequency. The AD8628/AD8629/  
AD8630 family uses both auto-zeroing and chopping in a  
patented ping-pong arrangement to obtain lower low frequency  
noise together with lower energy at the chopping and auto-  
zeroing frequencies, maximizing the signal-to-noise ratio (SNR)  
for the majority of applications without the need for additional  
filtering. The relatively high clock frequency of 15 kHz  
simplifies filter requirements for a wide, useful, noise-free  
bandwidth.  
120  
LTC2050  
105  
(89.7nV/Hz)  
90  
75  
60  
LMC2001  
(31.1nV/Hz)  
45  
30  
The AD8628 is among the few auto-zero amplifiers offered in  
the 5-lead TSOT-23 package. This provides a significant  
improvement over the ac parameters of the previous auto-zero  
amplifiers. The AD8628/AD8629/AD8630 have low noise over  
a relatively wide bandwidth (0 Hz to 10 kHz) and can be used  
where the highest dc precision is required. In systems with  
signal bandwidths of from 5 kHz to 10 kHz, the AD8628/  
AD8629/AD8630 provide true 16-bit accuracy, making them  
the best choice for very high resolution systems.  
15  
0
AD8628  
(19.4nV/Hz)  
MK AT 1kHz FOR ALL 3 GRAPHS  
10 12  
0
2
4
6
8
FREQUENCY (kHz)  
Figure 51. Noise Spectral Density of AD8628 vs. Competition  
Rev. E | Page 15 of 24  
 
 
AD8628/AD8629/AD8630  
50  
45  
40  
35  
30  
25  
20  
15  
PEAK-TO-PEAK NOISE  
Because of the ping-pong action between auto-zeroing and  
chopping, the peak-to-peak noise of the AD8628/AD8629/AD8630  
is much lower than the competition. Figure 52 and Figure 53  
show this comparison.  
e
p-p = 0.5μV  
n
BW = 0.1Hz TO 10Hz  
10  
5
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (kHz)  
Figure 55. Simulation Transfer Function of the Test Circuit  
50  
45  
40  
35  
30  
25  
20  
15  
TIME (1s/DIV)  
Figure 52. AD8628 Peak-to-Peak Noise  
e
p-p = 2.3μV  
n
BW = 0.1Hz TO 10Hz  
10  
5
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (kHz)  
Figure 56. Actual Transfer Function of the Test Circuit  
The measured noise spectrum of the test circuit charted in  
Figure 56 shows that noise between 5 kHz and 45 kHz is  
successfully rolled off by the first-order filter.  
TIME (1s/DIV)  
TOTAL INTEGRATED INPUT-REFERRED  
NOISE FOR FIRST-ORDER FILTER  
Figure 53. LTC2050 Peak-to-Peak Noise  
NOISE BEHAVIOR WITH FIRST-ORDER  
LOW-PASS FILTER  
For a first-order filter, the total integrated noise from the  
AD8628 is lower than the LTC2050.  
The AD8628 was simulated as a low-pass filter (Figure 55) and  
then configured as shown in Figure 54. The behavior of the  
AD8628 matches the simulated data. It was verified that noise is  
rolled off by first-order filtering. Figure 55 and Figure 56 show  
the difference between the simulated and actual transfer  
functions of the circuit shown in Figure 54.  
10  
LTC2050  
AD8551  
AD8628  
1
IN  
OUT  
100kΩ  
1kΩ  
470pF  
0.1  
10  
100  
1k  
10k  
3dB FILTER BANDWIDTH (Hz)  
Figure 54. Test Circuit: First-Order Low-Pass Filter,  
×101 Gain and 3 kHz Corner Frequency  
Figure 57. 3 dB Filter Bandwidth in Hz  
Rev. E | Page 16 of 24  
 
 
 
 
 
 
AD8628/AD8629/AD8630  
INPUT OVERVOLTAGE PROTECTION  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
V
IN  
A
= –50  
Although the AD8628/AD8629/AD8630 are rail-to-rail input  
amplifiers, care should be taken to ensure that the potential  
difference between the inputs does not exceed the supply volt-  
age. Under normal negative feedback operating conditions, the  
amplifier corrects its output to ensure that the two inputs are at  
the same voltage. However, if either input exceeds either supply  
rail by more than 0.3 V, large currents begin to flow through the  
ESD protection diodes in the amplifier.  
V
0V  
0V  
These diodes are connected between the inputs and each supply  
rail to protect the input transistors against an electrostatic dis-  
charge event, and they are normally reverse-biased. However, if  
the input voltage exceeds the supply voltage, these ESD diodes  
can become forward-biased. Without current limiting, excessive  
amounts of current could flow through these diodes, causing  
permanent damage to the device. If inputs are subject to over-  
voltage, appropriate series resistors should be inserted to limit  
the diode current to less than 5 mA maximum.  
V
OUT  
TIME (500μs/DIV)  
Figure 58. Positive Input Overload Recovery for the AD8628  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
V
IN  
A
= –50  
V
0V  
0V  
OUTPUT PHASE REVERSAL  
Output phase reversal occurs in some amplifiers when the input  
common-mode voltage range is exceeded. As common-mode  
voltage is moved outside of the common-mode range, the  
outputs of these amplifiers can suddenly jump in the opposite  
direction to the supply rail. This is the result of the differential  
input pair shutting down, causing a radical shifting of internal  
voltages that results in the erratic output behavior.  
V
OUT  
TIME (500μs/DIV)  
The AD8628/AD8629/AD8630 amplifiers have been carefully  
designed to prevent any output phase reversal, provided that  
both inputs are maintained within the supply voltages. If one or  
both inputs could exceed either supply voltage, a resistor should  
be placed in series with the input to limit the current to less  
than 5 mA. This ensures that the output does not reverse its  
phase.  
Figure 59. Positive Input Overload Recovery for LTC2050  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
= –50  
V
IN  
A
V
0V  
OVERLOAD RECOVERY TIME  
Many auto-zero amplifiers are plagued by a long overload  
recovery time, often in ms, due to the complicated settling  
behavior of the internal nulling loops after saturation of the  
outputs. The AD8628/AD8629/AD8630 have been designed so  
that internal settling occurs within two clock cycles after output  
saturation happens. This results in a much shorter recovery  
time, less than 10 μs, when compared to other auto-zero  
amplifiers. The wide bandwidth of the AD8628/AD8629/  
AD8630 enhances performance when the parts are used to  
drive loads that inject transients into the outputs. This is a  
common situation when an amplifier is used to drive the input  
of switched capacitor ADCs.  
0V  
V
OUT  
TIME (500μs/DIV)  
Figure 60. Positive Input Overload Recovery for LMC2001  
Rev. E | Page 17 of 24  
 
 
AD8628/AD8629/AD8630  
The results shown in Figure 58 to Figure 63 are summarized in  
Table 5.  
0V  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
Table 5. Overload Recovery Time  
A
= –50  
V
Positive Overload  
Recovery (μs)  
Negative Overload  
Recovery (μs)  
V
IN  
Product  
AD8628  
LTC2050  
LMC2001  
6
9
650  
40,000  
25,000  
35,000  
V
OUT  
0V  
INFRARED SENSORS  
Infrared (IR) sensors, particularly thermopiles, are increasingly  
being used in temperature measurement for applications as  
wide-ranging as automotive climate control, human ear  
thermometers, home insulation analysis, and automotive repair  
diagnostics. The relatively small output signal of the sensor  
demands high gain with very low offset voltage and drift to  
avoid dc errors.  
TIME (500μs/DIV)  
Figure 61. Negative Input Overload Recovery for the AD8628  
0V  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
A
= –50  
V
V
IN  
OUT  
V
If interstage ac coupling is used, as in Figure 64, low offset and  
drift prevent the input amplifiers output from drifting close to  
saturation. The low input bias currents generate minimal errors  
from the sensor’s output impedance. As with pressure sensors,  
the very low amplifier drift with time and temperature elimi-  
nate additional errors once the temperature measurement is  
calibrated. The low 1/f noise improves SNR for dc measure-  
ments taken over periods often exceeding one-fifth of a second.  
0V  
Figure 64 shows a circuit that can amplify ac signals from  
100 μV to 300 μV up to the 1 V to 3 V levels, with gain of  
10,000 for accurate A/D conversion.  
TIME (500μs/DIV)  
Figure 62. Negative Input Overload Recovery for LTC2050  
10kΩ  
100kΩ  
100Ω  
100kΩ  
5V  
5V  
0V  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
100μV – 300μV  
10μF  
A
= –50  
V
1/2 AD8629  
IR  
1/2 AD8629  
V
IN  
DETECTOR  
10kΩ  
f
1.6Hz  
C
V
OUT  
TO BIAS  
VOLTAGE  
Figure 64. AD8629 Used as Preamplifier for Thermopile  
0V  
TIME (500μs/DIV)  
Figure 63. Negative Input Overload Recovery for LMC2001  
Rev. E | Page 18 of 24  
 
 
 
 
AD8628/AD8629/AD8630  
PRECISION CURRENT SHUNT SENSOR  
OUTPUT AMPLIFIER FOR HIGH PRECISION DACS  
A precision current shunt sensor benefits from the unique  
attributes of auto-zero amplifiers when used in a differencing  
configuration, as shown in Figure 65. Current shunt sensors are  
used in precision current sources for feedback control systems.  
They are also used in a variety of other applications, including  
battery fuel gauging, laser diode power measurement and  
control, torque feedback controls in electric power steering, and  
precision power metering.  
The AD8628/AD8629/AD8360 are used as output amplifiers for  
a 16-bit high precision DAC in a unipolar configuration. In this  
case, the selected op amp needs to have very low offset voltage  
(the DAC LSB is 38 μV when operated with a 2.5 V reference)  
to eliminate the need for output offset trims. Input bias current  
(typically a few tens of picoamperes) must also be very low,  
because it generates an additional zero code error when  
multiplied by the DAC output impedance (approximately 6  
kΩ).  
R
0.1Ω  
S
R
SUPPLY  
L
Rail-to-rail input and output provide full-scale output with very  
little error. Output impedance of the DAC is constant and code-  
independent, but the high input impedance of the AD8628/  
AD8629/AD8630 minimizes gain errors. The amplifiers’ wide  
bandwidth also serves well in this case. The amplifiers, with  
settling time of 1 μs, add another time constant to the system,  
increasing the settling time of the output. The settling time of  
the AD5541 is 1 μs. The combined settling time is approxi-  
mately 1.4 μs, as can be derived from the following equation:  
I
100kΩ  
100Ω  
e = 1,000 R  
100mV/mA  
I
S
C
5V  
AD8628  
100kΩ  
100Ω  
C
2
2
tS  
(
TOTAL  
)
=
(
tS DAC  
)
+
(
tS AD8628  
)
Figure 65. Low-Side Current Sensing  
In such applications, it is desirable to use a shunt with very low  
resistance to minimize the series voltage drop; this minimizes  
wasted power and allows the measurement of high currents  
while saving power. A typical shunt might be 0.1 Ω. At  
measured current values of 1 A, the shunts output signal is  
hundreds of mV, or even V, and amplifier error sources are not  
critical. However, at low measured current values in the 1 mA  
range, the 100 μV output voltage of the shunt demands a very  
low offset voltage and drift to maintain absolute accuracy. Low  
input bias currents are also needed, so that injected bias current  
does not become a significant percentage of the measured  
current. High open-loop gain, CMRR, and PSRR help to  
maintain the overall circuit accuracy. As long as the rate of  
change of the current is not too fast, an auto-zero amplifier can  
be used with excellent results.  
2.5V  
5V  
10μF  
0.1μF  
0.1μF  
SERIAL  
INTERFACE  
V
REF(REF*) REFS*  
AD5541/AD5542  
DD  
CS  
DIN  
UNIPOLAR  
OUTPUT  
OUT  
SCLK  
LDAC*  
AD8628  
DGND  
AGND  
*AD5542 ONLY  
Figure 66. AD8628 Used as an Output Amplifier  
Rev. E | Page 19 of 24  
 
 
AD8628/AD8629/AD8630  
OUTLINE DIMENSIONS  
2.90 BSC  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
5
1
4
3
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
2.80 BSC  
1.60 BSC  
2
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
PIN 1  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.95 BSC  
0.25 (0.0098)  
0.10 (0.0040)  
1.90  
BSC  
*
0.90  
0.87  
0.84  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
*
1.00 MAX  
0.20  
0.08  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
8°  
4°  
0°  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
0.10 MAX  
0.60  
0.45  
0.30  
0.50  
0.30  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 67. 5-Lead Thin Small Outline Transistor Package [TSOT]  
Figure 69. 8-Lead Standard Small Outline Package [SOIC_N]  
(UJ-5)  
Narrow Body  
(R-8)  
Dimensions shown in millimeters  
Dimensions shown in millimeters and (inches)  
3.00  
BSC  
2.90 BSC  
8
1
5
4
5
4
3
4.90  
BSC  
3.00  
BSC  
2.80 BSC  
1.60 BSC  
2
PIN 1  
PIN 1  
0.95 BSC  
0.65 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
1.10 MAX  
0.15  
0.00  
0.80  
0.60  
0.40  
8°  
0°  
1.45 MAX  
0.38  
0.22  
0.22  
0.08  
0.23  
0.08  
COPLANARITY  
0.10  
SEATING  
PLANE  
10°  
5°  
0°  
0.15 MAX  
0.50  
0.30  
0.60  
0.45  
0.30  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
COMPLIANT TO JEDEC STANDARDS MO-178AA  
Figure 68. 5-Lead Small Outline Transistor Package [SOT-23]  
Figure 70. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
(RT-5)  
Dimensions shown in millimeters  
Dimensions shown in millimeters  
Rev. E | Page 20 of 24  
 
AD8628/AD8629/AD8630  
5.10  
5.00  
4.90  
8.75 (0.3445)  
8.55 (0.3366)  
14  
1
8
7
4.00 (0.1575)  
3.80 (0.1496)  
6.20 (0.2441)  
5.80 (0.2283)  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
1.75 (0.0689)  
1.35 (0.0531)  
× 45°  
0.25 (0.0098)  
0.10 (0.0039)  
1
PIN 1  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
PLANE  
0.65  
BSC  
1.27 (0.0500)  
0.40 (0.0157)  
1.05  
1.00  
0.80  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
0.20  
1.20  
MAX  
0.09  
0.75  
0.60  
0.45  
COMPLIANT TO JEDEC STANDARDS MS-012AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
8°  
0°  
0.15  
0.05  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153AB-1  
Figure 71. 14-Lead Standard Small Outline Package [SOIC_N]  
Figure 72. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Narrow Body  
(R-14)  
Dimensions shown in millimeters and (inches)  
Dimensions shown in millimeters  
Rev. E | Page 21 of 24  
AD8628/AD8629/AD8630  
ORDERING GUIDE  
Model  
AD8628AUJ-R2  
Temperature Range  
Package Description  
5-Lead TSOT-23  
5-Lead TSOT-23  
5-Lead TSOT-23  
5-Lead TSOT-23  
5-Lead TSOT-23  
5-Lead TSOT-23  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
Package Option  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
R-8  
R-8  
R-8  
R-8  
R-8  
Branding  
AYB  
AYB  
AYB  
A0L  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
AD8628AUJ-REEL  
AD8628AUJ-REEL7  
AD8628AUJZ-R21  
AD8628AUJZ-REEL1  
AD8628AUJZ-REEL71  
AD8628AR  
AD8628AR-REEL  
AD8628AR-REEL7  
AD8628ARZ1  
AD8628ARZ-REEL1  
AD8628ARZ-REEL71  
AD8628ART-R2  
AD8628ART-REEL7  
AD8628ARTZ-R21  
AD8628ARTZ-REEL71  
AD8629ARZ1  
AD8629ARZ-REEL1  
AD8629ARZ-REEL71  
AD8629ARMZ-R21  
AD8629ARMZ-REEL1  
AD8630ARUZ1  
AD8630ARUZ-REEL1  
AD8630ARZ1  
A0L  
A0L  
R-8  
RT-5  
RT-5  
RT-5  
RT-5  
R-8  
AYA  
AYA  
A0L  
A0L  
R-8  
R-8  
RM-8  
RM-8  
RU-14  
RU-14  
R-14  
R-14  
R-14  
A06  
A06  
8-Lead MSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
AD8630ARZ-REEL1  
AD8630ARZ-REEL71  
1 Z = Pb-free part.  
Rev. E | Page 22 of 24  
 
 
AD8628/AD8629/AD8630  
NOTES  
Rev. E | Page 23 of 24  
AD8628/AD8629/AD8630  
NOTES  
©2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C02735–0–5/05(E)  
Rev. E | Page 24 of 24  

相关型号:

AD8630WARZ-R7

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI

AD8630WARZ-RL

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI

AD8631

1.8 V, 5 MHz Rail-to-Rail Low Power Operational Amplifiers
ADI

AD8631ART

1.8 V, 5 MHz Rail-to-Rail Low Power Operational Amplifiers
ADI

AD8631ART-R2

OP-AMP, 4000 uV OFFSET-MAX, 5 MHz BAND WIDTH, PDSO5, SOT-23, 5 PIN
ROCHESTER

AD8631ART-R2

IC OP-AMP, 4000 uV OFFSET-MAX, 5 MHz BAND WIDTH, PDSO5, SOT-23, 5 PIN, Operational Amplifier
ADI

AD8631ART-REEL

IC OP-AMP, 4000 uV OFFSET-MAX, 5 MHz BAND WIDTH, PDSO5, SOT-23, 5 PIN, Operational Amplifier
ADI

AD8631ART-REEL7

OP-AMP, 4000 uV OFFSET-MAX, 5 MHz BAND WIDTH, PDSO5, SOT-23, 5 PIN
ROCHESTER

AD8631ARTZ-REEL7

IC OP-AMP, 4000 uV OFFSET-MAX, 5 MHz BAND WIDTH, PDSO5, SOT-23, 5 PIN, Operational Amplifier
ADI

AD8632

1.8 V, 5 MHz Rail-to-Rail Low Power Operational Amplifiers
ADI

AD8632AR

1.8 V, 5 MHz Rail-to-Rail Low Power Operational Amplifiers
ADI

AD8632AR

OP-AMP, 4000uV OFFSET-MAX, 5MHz BAND WIDTH, PDSO8, SOIC-8
ROCHESTER