AD8639ARMZ-R7 [ADI]

16V Auto-Zero, Rail-to-Rail Output tional Amplifiers; 16V自动调零,轨到轨输出tional放大器
AD8639ARMZ-R7
型号: AD8639ARMZ-R7
厂家: ADI    ADI
描述:

16V Auto-Zero, Rail-to-Rail Output tional Amplifiers
16V自动调零,轨到轨输出tional放大器

放大器
文件: 总20页 (文件大小:629K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16 V Auto-Zero, Rail-to-Rail Output  
Operational Amplifiers  
AD8638/AD8639  
PIN CONFIGURATIONS  
FEATURES  
Low offset voltage: 9 μV maximum  
Offset drift: 0.04 μV/°C maximum  
Rail-to-rail output swing  
5 V to 16 V single-supply or 2.5 V to 8 V dual-supply  
operation  
OUT  
V–  
1
2
3
5
V+  
AD8638  
TOP VIEW  
(Not to Scale)  
+IN  
4
–IN  
Figure 1. 5-Lead SOT-23 (RJ-5)  
High gain: 136 dB typical  
High CMRR: 133 dB typical  
High PSRR: 143 dB typical  
Very low input bias current: 40 pA maximum  
Low supply current: 1.3 mA maximum  
AD8639: qualified for automotive applications  
NC  
–IN  
+IN  
V–  
1
2
3
4
8
7
6
5
NC  
V+  
AD8638  
OUT  
NC  
TOP VIEW  
(Not to Scale)  
NC = NO CONNECT  
APPLICATIONS  
Figure 2. 8-Lead SOIC_N (R-8)  
Pressure and position sensors  
Strain gage amplifiers  
Medical instrumentation  
Thermocouple amplifiers  
Automotive sensors  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8639  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Figure 3. 8-Lead MSOP (RM-8)  
8-Lead SOIC_N (R-8)  
Precision references  
Precision current sensing  
PIN 1  
INDICATOR  
OUT A  
–IN A  
+IN A  
v–  
1
2
3
4
8
7
6
5
V+  
GENERAL DESCRIPTION  
OUT B  
–IN B  
+IN B  
AD8639  
TOP VIEW  
(Not to Scale)  
The AD8638/AD8639 are single and dual wide bandwidth,  
auto-zero amplifiers featuring rail-to-rail output swing and low  
noise. These amplifiers have very low offset, drift, and bias  
current. Operation is fully specified from 5 V to 16 V single  
supply ( 2.5 V to 8 V dual supply).  
NOTES  
1. PIN 4 AND THE EXPOSED PAD  
MUST BE CONNECTED TO V–.  
Figure 4. 8-Lead LFCSP_WD (CP-8-5)  
The AD8638/AD8639 provide benefits previously found only  
in expensive zero-drift or chopper-stabilized amplifiers. Using  
the Analog Devices, Inc., topology, these auto-zero amplifiers  
combine low cost with high accuracy and low noise. No exter-  
nal capacitors are required. In addition, the AD8638/AD8639  
greatly reduce the digital switching noise found in most chopper-  
stabilized amplifiers.  
The AD8638/AD8639 are specified for the extended industrial  
temperature range (−40°C to +125°C). The single AD8638 is  
available in tiny 5-lead SOT-23 and 8-lead SOIC packages.  
The dual AD8639 is available in 8-lead MSOP, 8-lead SOIC, and  
8-lead LFCSP packages. See the Ordering Guide for automotive  
grades.  
With a typical offset voltage of only 3 μV, drift of 0.01 μV/°C,  
and noise of 1.2 μV p-p (0.1 Hz to 10 Hz), the AD8638/AD8639  
are suited for applications in which error sources cannot be  
tolerated. Position and pressure sensors, medical equipment,  
and strain gage amplifiers benefit greatly from nearly zero drift  
over their operating temperature ranges. Many systems can take  
advantage of the rail-to-rail output swing provided by the  
AD8638/AD8639 to maximize signal-to-noise ratio (SNR).  
The AD8638/AD8639 are members of a growing series of auto-  
zero op amps offered by Analog Devices (see Table 1).  
Table 1. Auto-Zero Op Amps  
Supply 2.7 V to 5 V 2.7 V to 5 V Low Power  
5 V to 16 V  
AD8638  
AD8639  
Single  
Dual  
AD8628  
AD8629  
AD8630  
AD8538  
AD8539  
Quad  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2007–2010 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD8638/AD8639  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 14  
1/f Noise....................................................................................... 14  
Input Voltage Range................................................................... 14  
Output Phase Reversal............................................................... 14  
Overload Recovery Time .......................................................... 14  
Infrared Sensors.......................................................................... 15  
Precision Current Shunt Sensor ............................................... 15  
Output Amplifier for High Precision DACs........................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 18  
Automotive Products................................................................. 18  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Pin Configurations ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—5 V Operation................................ 3  
Electrical Characteristics—16 V Operation ............................. 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
REVISION HISTORY  
6/10—Rev. E to Rev. F  
4/08—Rev. A to Rev. B  
Added AD8639 ...................................................................Universal  
Added 8-lead MSOP Package ...........................................Universal  
Changes to Features ..........................................................................1  
Changes to General Description .....................................................1  
Changes Table 2 .................................................................................3  
Changes to Table 3.............................................................................4  
Changes to Table 4, Added Endnote 1 and Endnote 2.................5  
Changes to Figure 4 through Figure 9............................................6  
Changes to Figure 11, Figure 12, Figure 14, and Figure 15..........7  
Changes to Figure 16 through Figure 27........................................8  
Changes to Figure 28 through Figure 33..................................... 10  
Changes to Figure 34 through Figure 39..................................... 11  
Changes to Figure 41 and Figure 44............................................. 12  
Inserted Figure 46, Figure 47, Figure 49, and Figure 50;  
Changes to Features Section and General Description Section. 1  
Updated Outline Dimensions....................................................... 16  
Changes to Ordering Guide .......................................................... 18  
Added Automotive Products Section .......................................... 18  
6/09—Rev. D to Rev. E  
Changes to Figure 4.......................................................................... 1  
Changes to Endnote 1 and Endnote 2, Table 4............................. 5  
Changes to Input Voltage Range Section .................................... 14  
Updated Outline Dimensions....................................................... 16  
Changes to Ordering Guide .......................................................... 18  
12/08—Rev. C to Rev. D  
Changes to Endnote 1, Table 4........................................................ 5  
Changes to Ordering Guide .......................................................... 28  
Renumbered Sequentially ............................................................. 13  
Changes to Figure 51, Figure 52, and Figure 53......................... 15  
Updated Outline Dimensions....................................................... 16  
Changes to Ordering Guide.......................................................... 17  
5/08—Rev. B to Rev. C  
Added LFCSP_WD Package .............................................Universal  
Inserted Figure 4; Renumbered Sequentially................................ 1  
Changes to Layout ............................................................................ 1  
Changes to General Description .................................................... 1  
Changes to Offset Voltage Drift for All Packages Except SOT-23  
Parameter in Table 2......................................................................... 3  
Changes to Table 5............................................................................ 5  
Updated Outline Dimensions....................................................... 16  
Changes to Ordering Guide .......................................................... 17  
11/07—Rev. 0 to Rev. A  
Change to Large Signal Voltage Gain Specification......................4  
11/07—Revision 0: Initial Version  
Rev. F | Page 2 of 20  
AD8638/AD8639  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V OPERATION  
VSY = 5 V, VCM = VSY/2, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol Conditions  
Min  
Typ  
3
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
9
23  
9
μV  
μV  
μV  
μV  
pA  
pA  
pA  
pA  
pA  
pA  
V
dB  
dB  
dB  
dB  
μV/°C  
−40°C ≤ TA ≤ +125°C  
−0.1 V ≤ VCM ≤ +3.0 V  
−40°C ≤ TA ≤ +125°C  
3
23  
40  
40  
105  
40  
40  
60  
+3  
Input Bias Current  
IB  
1.5  
7
45  
7
7
16.5  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
VCM = 0 V to 3 V  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = 0.5 V to 4.5 V  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
−0.1  
118  
118  
120  
119  
CMRR  
AVO  
133  
136  
0.01  
Large Signal Voltage Gain  
Offset Voltage Drift for All Packages  
Except SOT-23  
Offset Voltage Drift for SOT-23  
Input Resistance  
Input Capacitance, Differential Mode  
Input Capacitance, Common Mode  
OUTPUT CHARACTERISTICS  
Output Voltage High  
∆VOS/∆T −40°C ≤ TA ≤ +125°C  
0.06  
0.15  
∆VOS/∆T −40°C ≤ TA ≤ +125°C  
RIN  
CINDM  
CINCM  
0.04  
22.5  
4
μV/°C  
TΩ  
pF  
1.7  
pF  
VOH  
RL = 10 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ to VCM  
4.97  
4.97  
4.90  
4.86  
4.985  
4.93  
7.5  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
Ω
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ to VCM  
Output Voltage Low  
VOL  
10  
15  
40  
55  
32  
−40°C ≤ TA ≤ +125°C  
TA = 25°C  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
19  
4.2  
ZOUT  
f = 100 kHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 4.5 V to 16 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
127  
125  
143  
1.0  
dB  
dB  
mA  
mA  
Supply Current per Amplifier  
1.3  
1.5  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time to 0.1%  
Overload Recovery Time  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
RL = 10 kΩ, CL = 20 pF, AV = 1  
VIN = 2 V step, CL = 20 pF, RL = 1 kΩ, AV = 1  
2.5  
3
50  
1.35  
70  
V/μs  
μs  
μs  
MHz  
Degrees  
GBP  
ΦM  
RL = 2 kΩ, CL = 20 pF, AV = 1  
RL = 2 kΩ, CL = 20 pF, AV = 1  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
1.2  
60  
μV p-p  
nV/√Hz  
Rev. F | Page 3 of 20  
 
 
 
AD8638/AD8639  
ELECTRICAL CHARACTERISTICS—16 V OPERATION  
VSY = 16 V, VCM = VSY/2, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol Conditions  
Min  
Typ  
3
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
9
23  
9
μV  
μV  
μV  
μV  
pA  
pA  
pA  
pA  
pA  
pA  
V
dB  
dB  
dB  
dB  
μV/°C  
−40°C ≤ TA ≤ +125°C  
−0.1 V ≤ VCM ≤ +14 V  
−40°C ≤ TA ≤ +125°C  
3
23  
75  
75  
250  
70  
75  
150  
+14  
Input Bias Current  
IB  
1
4
85  
20  
20  
50  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
VCM = 0 V to 14 V  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = 0.5 V to 15.5 V  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
−0.1  
127  
127  
130  
130  
CMRR  
AVO  
142  
147  
0.03  
Large Signal Voltage Gain  
Offset Voltage Drift for All Packages  
Except SOT-23  
Offset Voltage Drift for SOT-23  
Input Resistance  
∆VOS/∆T −40°C ≤ TA ≤ +125°C  
0.06  
0.15  
∆VOS/∆T −40°C ≤ TA ≤ +125°C  
RIN  
0.04  
22.5  
4
μV/°C  
TΩ  
pF  
Input Capacitance, Differential Mode CINDM  
Input Capacitance, Common Mode  
OUTPUT CHARACTERISTICS  
Output Voltage High  
CINCM  
VOH  
1.7  
pF  
RL = 10 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
TA = 25°C  
f = 100 kHz, AV = 1  
15.94  
15.93  
15.77  
15.70  
15.96  
15.82  
30  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
Ω
Output Voltage Low  
VOL  
40  
60  
140  
200  
120  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
37  
3.0  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 4.5 V to 16 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
127  
125  
143  
dB  
dB  
mA  
mA  
Supply Current per Amplifier  
1.25  
1.5  
1.7  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time to 0.1%  
Overload Recovery Time  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
RL = 10 kΩ, CL = 20 pF, AV = 1  
VIN = 4 V step, CL = 20 pF, RL = 1 kΩ, AV = 1  
2
4
50  
1.5  
74  
V/μs  
μs  
μs  
MHz  
Degrees  
GBP  
ΦM  
RL = 2 kΩ, CL = 20 pF, AV = 1  
RL = 2 kΩ, CL = 20 pF, AV = 1  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
1.2  
60  
μV p-p  
nV/√Hz  
Rev. F | Page 4 of 20  
 
AD8638/AD8639  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
THERMAL RESISTANCE  
Table 5. Thermal Resistance  
Package Type  
Parameter  
Rating  
1
Supply Voltage  
Input Voltage  
Input Current1  
Differential Input Voltage2  
Output Short-Circuit Duration to GND Indefinite  
16 V  
θJA  
θJC  
146  
43  
44  
18  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
GND − 0.3 V to VSY+ + 0.3 V  
10 mA  
VSY  
5-Lead SOT-23 (RJ-5)  
8-Lead SOIC_N (R-8)  
8-Lead MSOP (RM-8)  
8-Lead LFCSP_WD (CP-8-5)2  
230  
158  
206  
75  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
1 θJA is specified for the worst-case conditions, that is, a device soldered in a  
circuit board for surface-mount packages. This was measured using a  
standard two-layer board.  
2 Exposed pad is soldered to the application board.  
Lead Temperature (Soldering, 60 sec) 300°C  
1 Input pins have clamp diodes to the supply pins. Input current should be  
limited to 10 mA or less whenever input signals exceed either power supply  
rail by 0.3 V.  
ESD CAUTION  
2 Inputs are protected against high differential voltages by internal 1 kΩ series  
resistors and back-to-back diode-connected N-MOSFETs (with a typical VT of  
1.25 V for VCM of 0 V).  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. F | Page 5 of 20  
 
 
 
 
 
AD8638/AD8639  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
1400  
6000  
5000  
4000  
3000  
2000  
1000  
0
V
= 5V  
SY  
0V V  
V
= 16V  
SY  
0V V  
+3V  
CM  
+14V  
CM  
1200  
1000  
800  
600  
400  
200  
0
–10  
–5  
0
5
10  
–10  
–5  
0
5
10  
V
(µV)  
V
(µV)  
OS  
OS  
Figure 5. Input Offset Voltage Distribution  
Figure 8. Input Offset Voltage Distribution  
25  
20  
15  
10  
12  
10  
8
V
= ±2.5V  
SY  
V
= ±8V  
SY  
–40°C T +125°C  
SOIC PACKAGE  
A
–40°C T +125°C  
SOIC PACKAGE  
A
6
4
5
0
2
0
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
TCV  
20  
24  
28  
32  
36  
40  
TCV (nV/°C)  
(nV/°C)  
OS  
OS  
Figure 6. Input Offset Voltage Drift Distribution  
Figure 9. Input Offset Voltage Drift Distribution  
10.0  
7.5  
5.0  
2.5  
0
10.0  
7.5  
5.0  
2.5  
0
V
= 5V  
SY  
–0.5V V  
+3.9V  
CM  
–2.5  
–5.0  
–2.5  
–5.0  
V
= 16V  
SY  
–0.5V V  
–7.5  
–7.5  
+14.5V  
CM  
–10.0  
–10.0  
–0.5  
0
0.5  
1
1.5  
2.0  
(V)  
2.5  
3.0  
3.5  
4
1.0  
2.5  
4.0  
5.5  
7.0  
(V)  
8.5 10.0 11.5 13.0 14.5  
–0.5  
V
CM  
V
CM  
Figure 7. Input Offset Voltage vs. Common-Mode Voltage  
Figure 10. Input Offset Voltage vs. Common-Mode Voltage  
Rev. F | Page 6 of 20  
 
AD8638/AD8639  
TA = 25°C, unless otherwise noted.  
100  
100  
10  
V
= ±2.5V  
V
= ±8V  
SY  
SY  
10  
1
1
0.1  
0.01  
0.1  
25  
50  
75  
100  
125  
25  
50  
75  
100  
125  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Input Bias Current vs. Temperature  
Figure 14. Input Bias Current vs. Temperature  
10k  
10k  
1k  
100  
10  
1
V
= ±8V  
SY  
V
= ±2.5V  
SY  
1k  
V
– V  
OH  
100  
DD  
V
– V  
OH  
DD  
V
– V  
SS  
10  
1
OL  
V
– V  
SS  
OL  
0.1  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 12. Output Voltage to Supply Rail vs. Load Current  
Figure 15. Output Voltage to Supply Rail vs. Load Current  
120  
100  
80  
60  
40  
20  
0
250  
200  
150  
100  
50  
V
R
= 5V  
V
R
= 16V  
SY  
= 2k  
SY  
= 2kΩ  
L
L
V
– V  
OH  
DD  
V
– V  
OH  
DD  
V
OL  
V
OL  
0
–40  
–40  
–25  
0
25  
50  
75  
100  
125  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. Output Voltage to Supply Rail vs. Temperature  
Figure 16. Output Voltage to Supply Rail vs. Temperature  
Rev. F | Page 7 of 20  
AD8638/AD8639  
TA = 25°C, unless otherwise noted.  
120  
120  
100  
80  
120  
100  
80  
120  
100  
80  
100  
80  
PHASE  
PHASE  
60  
60  
60  
60  
40  
40  
40  
40  
GAIN  
GAIN  
C
= 20pF  
C = 20pF  
L
20  
20  
20  
20  
L
0
0
0
0
–20  
–40  
–60  
–80  
–100  
–120  
–20  
–40  
–60  
–80  
–100  
–120  
–20  
–40  
–60  
–80  
–100  
–120  
–20  
–40  
–60  
–80  
–100  
–120  
C
= 200pF  
C = 200pF  
L
L
V
R
= ±8V  
= 2kꢀ  
V
R
= ±2.5V  
= 2kΩ  
SY  
SY  
L
L
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Open-Loop Gain and Phase vs. Frequency  
Figure 20. Open-Loop Gain and Phase vs. Frequency  
60  
60  
40  
20  
0
V
R
C
= ±2.5V  
= 2kΩ  
= 20pF  
V
= ±8V  
SY  
SY  
R
C
= 2kꢀ  
= 20pF  
L
L
L
L
A
A
A
= +100  
= +10  
= +1  
A
A
A
= +100  
= +10  
= +1  
V
V
V
V
V
V
40  
20  
0
–20  
–40  
–20  
–40  
10k  
100k  
1M  
1k  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. Closed-Loop Gain vs. Frequency  
Figure 21. Closed-Loop Gain vs. Frequency  
1k  
100  
10  
1k  
100  
10  
V
= ±8V  
SY  
V
= ±2.5V  
SY  
A
= –10  
V
A = –10  
V
A
= +1  
A
= –100  
V
V
A
= –100  
V
A
= +1  
V
1
1
0.1  
0.1  
100  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 19. Output Impedance vs. Frequency  
Figure 22. Output Impedance vs. Frequency  
Rev. F | Page 8 of 20  
AD8638/AD8639  
TA = 25°C, unless otherwise noted.  
140  
140  
120  
100  
80  
V
= ±2.5V  
V
= ±8V  
SY  
SY  
120  
100  
80  
60  
40  
20  
0
60  
40  
20  
0
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. CMRR vs. Frequency  
Figure 26. CMRR vs. Frequency  
120  
120  
100  
80  
V
= ±8V  
SY  
V
= ±2.5V  
SY  
100  
80  
60  
40  
20  
0
PSRR+  
PSRR+  
60  
PSRR–  
PSRR–  
40  
20  
0
–20  
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 24. PSRR vs. Frequency  
Figure 27. PSRR vs. Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
V
R
= ±2.5V  
= 10k  
V
R
= ±8V  
= 10kꢀ  
SY  
SY  
L
L
OS+  
OS–  
OS+  
OS–  
10  
100  
1k  
10  
100  
1k  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
Figure 25. Small Signal Overshoot vs. Load Capacitance  
Figure 28. Small Signal Overshoot vs. Load Capacitance  
Rev. F | Page 9 of 20  
AD8638/AD8639  
TA = 25°C, unless otherwise noted.  
V
= ±2.5V  
= +1  
= 200pF  
= 10kꢀ  
V
= ±8V  
= +1  
= 200pF  
= 10kꢀ  
SY  
SY  
A
C
R
A
C
R
V
L
L
V
L
L
TIME (2µs/DIV)  
TIME (2µs/DIV)  
Figure 29. Large Signal Transient Response  
Figure 32. Large Signal Transient Response  
V
= ±2.5V  
V
= ±8V  
SY  
SY  
A
C
R
= +1  
= 200pF  
= 10kꢀ  
A
C
R
= +1  
= 200pF  
= 10kꢀ  
V
L
L
V
L
L
TIME (2µs/DIV)  
TIME (2µs/DIV)  
Figure 30. Small Signal Transient Response  
Figure 33. Small Signal Transient Response  
0.05  
0
0.05  
0
INPUT VOLTAGE  
INPUT VOLTAGE  
–0.05  
–0.10  
–0.05  
–0.10  
V
A
= ±8V  
= –100  
SY  
V
A
= ±2.5V  
= –100  
SY  
V
V
–0.15  
–0.15  
3
2
10  
5
1
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
0
0
–1  
–5  
TIME (10µs/DIV)  
TIME (10µs/DIV)  
Figure 31. Negative Overload Recovery  
Figure 34. Negative Overload Recovery  
Rev. F | Page 10 of 20  
AD8638/AD8639  
TA = 25°C, unless otherwise noted.  
0.15  
0.15  
0.10  
0.05  
0
V
A
= ±2.5V  
= –100  
SY  
V
= ±8V  
SY  
0.10  
0.05  
0
V
A
= –100  
V
INPUT VOLTAGE  
INPUT VOLTAGE  
–0.05  
–0.05  
1
5
OUTPUT VOLTAGE  
0
0
OUTPUT VOLTAGE  
–1  
–2  
–3  
–5  
–10  
–15  
TIME (10µs/DIV)  
TIME (10µs/DIV)  
Figure 35. Positive Overload Recovery  
Figure 38. Positive Overload Recovery  
INPUT  
INPUT  
+2mV  
0
+2mV  
0
ERROR BAND  
OUTPUT  
ERROR BAND  
OUTPUT  
–2mV  
–2mV  
V
= ±2.5V  
V
= ±8V  
SY  
SY  
TIME (4µs/DIV)  
TIME (4µs/DIV)  
Figure 36. Positive Settling Time to 0.1%  
Figure 39. Positive Settling Time to 0.1%  
INPUT  
INPUT  
+2mV  
0
+2mV  
0
OUTPUT  
OUTPUT  
ERROR BAND  
ERROR BAND  
–2mV  
–2mV  
V
= ±2.5V  
V
= ±8V  
SY  
SY  
TIME (4µs/DIV)  
TIME (4µs/DIV)  
Figure 37. Negative Settling Time to 0.1%  
Figure 40. Negative Settling Time to 0.1%  
Rev. F | Page 11 of 20  
AD8638/AD8639  
TA = 25°C, unless otherwise noted.  
1k  
100  
10  
1k  
V
= ±8V  
SY  
V
= ±2.5V  
SY  
100  
10  
1
10  
100  
1k  
10k 25k  
1
10  
100  
1k  
10k 25k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 44. Voltage Noise Density vs. Frequency  
Figure 41. Voltage Noise Density vs. Frequency  
1.5  
1.5  
V
= ±2.5V  
V
= ±8V  
SY  
SY  
1.0  
0.5  
1.0  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (Seconds)  
TIME (Seconds)  
Figure 45. 0.1 Hz to 10 Hz Noise  
Figure 42. 0.1 Hz to 10 Hz Noise  
1400  
1250  
1000  
750  
500  
250  
0
+125°C  
1200  
1000  
800  
600  
400  
200  
0
V
= ±8V  
SY  
+85°C  
+25°C  
V
= ±2.5V  
SY  
40°C  
0
1
2
3
4
5
6
7
V
8
9
10 11 12 13 14 15 16  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
(V)  
SY  
TEMPERATURE (°C)  
Figure 43. Supply Current vs. Supply Voltage  
Figure 46. Supply Current vs. Temperature  
Rev. F | Page 12 of 20  
AD8638/AD8639  
TA = 25°C, unless otherwise noted.  
0
0
–20  
V
A
= ±8V  
= –10  
V
= ±8V  
SY  
SY  
A
= –100  
V
V
–20  
–40  
–40  
–60  
–60  
R
= 2k  
L
–80  
–80  
R
= 2kꢀ  
L
–100  
–120  
–140  
–100  
–120  
–140  
R
= 10kꢀ  
L
R
= 10kꢀ  
L
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 47. Channel Separation vs. Frequency  
Figure 50. Channel Separation vs. Frequency  
0.1  
0.01  
0.1  
0.01  
V
A
R
= ±8V  
= +1  
= 2kꢀ  
V
A
R
= ±8V  
= +1  
= 10kꢀ  
SY  
S
V
L
V
L
V
= 1V rms  
V
= 1V rms  
IN  
IN  
V
= 3V rms  
IN  
0.001  
0.0001  
0.001  
0.0001  
V
= 3V rms  
IN  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
Figure 48. THD + Noise vs. Frequency  
Figure 51. THD + Noise vs. Frequency  
300  
250  
200  
150  
100  
50  
V
= 16V  
SY  
= 125°C  
T
A
0
–50  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
V
(V)  
CM  
Figure 49. Input Bias Current vs. Input Common-Mode Voltage  
Rev. F | Page 13 of 20  
AD8638/AD8639  
THEORY OF OPERATION  
The AD8638/AD8639 are single-supply and dual-supply, ultrahigh  
precision, rail-to-rail output operational amplifiers. The typical  
offset voltage of 3 μV allows the amplifiers to be easily configured  
for high gains without risk of excessive output voltage errors. The  
extremely small temperature drift of 30 nV/°C ensures a minimum  
offset voltage error over the entire temperature range of −40°C  
to +125°C, making the amplifiers ideal for a variety of sensitive  
measurement applications in harsh operating environments.  
The internal elimination of 1/f noise is accomplished as follows:  
1/f noise appears as a slowly varying offset to AD8638/AD8639  
inputs. Auto-zeroing corrects any dc or low frequency offset.  
Therefore, the 1/f noise component is essentially removed,  
leaving the AD8638/AD8639 free of 1/f noise.  
INPUT VOLTAGE RANGE  
The AD8638/AD8639 are not rail-to-rail input amplifiers;  
therefore, care is required to ensure that both inputs do not  
exceed the input voltage range. Under normal negative feedback  
operating conditions, the amplifier corrects its output to ensure  
that the two inputs are at the same voltage. However, if either  
input exceeds the input voltage range, the loop opens and large  
currents begin to flow through the ESD protection diodes in the  
amplifier.  
The AD8638/AD8639 achieve a high degree of precision  
through a patented auto-zeroing topology. This unique  
topology allows the AD8638/AD8639 to maintain low offset  
voltage over a wide temperature range and over the operating  
lifetime. The AD8638/AD8639 also optimize the noise and  
bandwidth over previous generations of auto-zero amplifiers,  
offering the lowest voltage noise of any auto-zero amplifier by  
more than 50%.  
These diodes are connected between the inputs and each supply  
rail to protect the input transistors against an electrostatic discharge  
event, and they are normally reverse-biased. However, if the  
input voltage exceeds the supply voltage, these ESD diodes can  
become forward-biased. Without current limiting, excessive  
amounts of current may flow through these diodes, causing  
permanent damage to the device. If inputs are subject to over-  
voltage, insert appropriate series resistors to limit the diode  
current to less than 10 mA maximum.  
Previous designs used either auto-zeroing or chopping to add  
precision to the specifications of an amplifier. Auto-zeroing  
results in low noise energy at the auto-zeroing frequency, at the  
expense of higher low frequency noise due to aliasing of wide-  
band noise into the auto-zeroed frequency band. Chopping  
results in lower low frequency noise at the expense of larger  
noise energy at the chopping frequency. The AD8638/AD8639  
use both auto-zeroing and chopping in a patented ping-pong  
arrangement to obtain lower low frequency noise together with  
lower energy at the chopping and auto-zeroing frequencies,  
maximizing the SNR for the majority of applications without  
the need for additional filtering. The relatively high clock  
frequency of 15 kHz simplifies filter requirements for a wide,  
useful, noise-free bandwidth.  
OUTPUT PHASE REVERSAL  
Output phase reversal occurs in some amplifiers when the input  
common-mode voltage range is exceeded. As common-mode  
voltage is moved outside the common-mode range, the outputs  
of these amplifiers can suddenly jump in the opposite direction  
to the supply rail. This is the result of the differential input pair  
shutting down, causing a radical shifting of internal voltages  
that results in the erratic output behavior.  
The AD8638 is among the few auto-zero amplifiers offered in  
the 5-lead SOT-23 package. This provides significant improve-  
ment over the ac parameters of previous auto-zero amplifiers. The  
AD8638/AD8639 have low noise over a relatively wide bandwidth  
(0 Hz to 10 kHz) and can be used where the highest dc precision is  
required. In systems with signal bandwidths ranging from 5 kHz  
to 10 kHz, the AD8638/AD8639 provide true 16-bit accuracy,  
making this device the best choice for very high resolution  
systems.  
The AD8638/AD8639 amplifiers have been carefully designed  
to prevent any output phase reversal if both inputs are main-  
tained within the specified input voltage range. If one or both  
inputs exceed the input voltage range but remain within the  
supply rails, an internal loop opens and the output varies.  
Therefore, the inputs should always be less than at least 2 V  
below the positive supply.  
1/f NOISE  
OVERLOAD RECOVERY TIME  
1/f noise, also known as pink noise, is a major contributor to  
errors in dc-coupled measurements. This 1/f noise error term  
can be in the range of several microvolts or more and, when  
amplified by the closed-loop gain of the circuit, can show up  
as a large output signal. For example, when an amplifier with  
5 μV p-p 1/f noise is configured for a gain of 1000, its output has  
5 mV of error due to the 1/f noise. However, the AD8638/AD8639  
eliminate 1/f noise internally and thus significantly reduce  
output errors.  
Many auto-zero amplifiers are plagued by a long overload recovery  
time, often in milliseconds, due to the complicated settling  
behavior of the internal nulling loops after saturation of the  
outputs. The AD8638/AD8639 are designed so that internal  
settling occurs within two clock cycles after output saturation  
happens. This results in a much shorter recovery time, less than  
50 μs, when compared to other auto-zero amplifiers. The wide  
bandwidth of the AD8638/AD8639 enhances performance when  
the parts are used to drive loads that inject transients into the  
outputs. This is a common situation when an amplifier is used  
to drive the input of switched capacitor ADCs.  
Rev. F | Page 14 of 20  
 
 
 
 
AD8638/AD8639  
In such applications, it is desirable to use a shunt with very low  
resistance to minimize the series voltage drop; this minimizes  
wasted power and allows the measurement of high currents  
while saving power. A typical shunt may be 0.1 Ω. At measured  
current values of 1 A, the output signal of the shunt is hundreds  
of millivolts, or even volts, and amplifier error sources are not  
critical. However, at low measured current values in the 1 mA  
range, the 100 μV output voltage of the shunt demands a very low  
offset voltage and drift to maintain absolute accuracy. Low input  
bias currents are also needed to prevent injected bias current  
from becoming a significant percentage of the measured current.  
High open-loop gain, CMRR, and PSRR help to maintain the  
overall circuit accuracy. With the extremely high CMRR of the  
AD8638/AD8639, the CMRR is limited by the resistor ratio  
matching. As long as the rate of change of the current is not too  
fast, an auto-zero amplifier can be used with excellent results.  
INFRARED SENSORS  
Infrared (IR) sensors, particularly thermopiles, are increasingly  
used in temperature measurement for applications as wide  
ranging as automotive climate control, human ear thermometers,  
home insulation analysis, and automotive repair diagnostics.  
The relatively small output signal of the sensor demands high  
gain with very low offset voltage and drift to avoid dc errors.  
If interstage ac coupling is used, as shown in Figure 52, low  
offset and drift prevent the output of the input amplifier from  
drifting close to saturation. The low input bias currents generate  
minimal errors from the output impedance of the sensor.  
Similar to pressure sensors, the very low amplifier drift with  
time and temperature eliminates additional errors once the  
system is calibrated at room temperature. The low 1/f noise  
improves SNR for dc measurements taken over periods often  
exceeding one-fifth of a second.  
OUTPUT AMPLIFIER FOR HIGH PRECISION DACS  
Figure 52 shows a circuit that can amplify ac signals from  
100 μV to 300 μV up to the 1 V to 3 V levels, with a gain of  
10,000 for accurate analog-to-digital conversions.  
The AD8638/AD8639 can be used as output amplifiers for a  
16-bit high precision DAC in a unipolar configuration. In this  
case, the selected op amp needs to have very low offset voltage  
(the DAC LSB is 38 μV when operating with a 2.5 V reference)  
to eliminate the need for output offset trims. Input bias current  
(typically a few tens of picoamperes) must also be very low  
because it generates an additional offset error when multiplied  
by the DAC output impedance (approximately 6 kΩ).  
10kꢀ  
100kꢀ  
100ꢀ  
100kꢀ  
5V TO 16V  
5V TO 16V  
100µV TO 300µV  
10µF  
1/2 AD8639  
IR  
1/2 AD8639  
DETECTOR  
10kꢀ  
fC 1.6Hz  
Rail-to-rail output provides full-scale output with very little  
error. Output impedance of the DAC is constant and code-  
independent, but the high input impedance of the AD8638/  
AD8639 minimizes gain errors. The wide bandwidth of the  
amplifier also serves well in this case. The amplifier, with a  
settling time of 4 μs, adds another time constant to the system,  
increasing the settling time of the output. For example, see  
Figure 54. The settling time of the AD5541 is 1 μs. The  
combined settling time is approximately 4.1 μs, as can be  
derived from the following equation:  
TO BIAS  
VOLTAGE  
Figure 52. AD8639 Used as a Preamplifier for Thermopile  
PRECISION CURRENT SHUNT SENSOR  
A precision current shunt sensor benefits from the unique  
attributes of auto-zero amplifiers when used in a differencing  
configuration, as shown in Figure 53. Current shunt sensors are  
used in precision current sources for feedback control systems.  
They are also used in a variety of other applications, including  
battery fuel gauging, laser diode power measurement and  
control, torque feedback controls in electric power steering, and  
precision power metering.  
2
2
tS  
(
TOTAL  
)
=
(
tS DAC  
)
+
(
tS AD8638  
)
2.5V  
6
2
5V  
ADR421  
4
5V TO 16V  
0.1µF  
0.1µF  
R
0.1ꢀ  
S
R
SUPPLY  
L
0.1µF  
I
5V TO 16V  
100kꢀ  
100ꢀ  
SERIAL  
INTERFACE  
e = 1000 R I =  
S
100mV/mA  
V
REF(REFF*) REFS*  
AD5541/AD5542  
DD  
C
CS  
5V TO 16V  
AD8638  
DIN  
UNIPOLAR  
OUTPUT  
V
OUT  
SCLK  
LDAC*  
AD8638  
DGND  
AGND  
100kꢀ  
100ꢀ  
*AD5542 ONLY  
Figure 54. AD8638 Used as an Output Amplifier  
C
Figure 53. Low-Side Current Sensing  
Rev. F | Page 15 of 20  
 
 
 
 
 
 
AD8638/AD8639  
OUTLINE DIMENSIONS  
3.00  
2.90  
2.80  
5
1
4
3
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
2
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
0.20 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
0.55  
0.45  
0.35  
0.15 MAX  
0.05 MIN  
10°  
5°  
0°  
SEATING  
PLANE  
0.20  
BSC  
0.50 MAX  
0.35 MIN  
COMPLIANT TO JEDEC STANDARDS MO-178-AA  
Figure 55. 5-Lead Small Outline Transistor Package [SOT-23]  
(RJ-5)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 56. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. F | Page 16 of 20  
 
AD8638/AD8639  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 57. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
2.48  
3.00  
BSC SQ  
2.38  
2.23  
5
8
EXPOSED  
PAD  
1.74  
1.64  
1.49  
0.50  
0.40  
0.30  
4
1
INDEX  
AREA  
PIN 1  
INDICATOR  
(R 0.2)  
TOP VIEW  
BOTTOM VIEW  
0.80 MAX  
0.55 NOM  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.18  
0.20 REF  
0.50 BSC  
COMPLIANT TO JEDEC STANDARDS MO-229-WEED-4  
Figure 58. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-8-5)  
Dimensions shown in millimeters  
Rev. F | Page 17 of 20  
AD8638/AD8639  
ORDERING GUIDE  
Model1, 2  
AD8638ARJZ-R2  
AD8638ARJZ-REEL  
AD8638ARJZ-REEL7  
AD8638ARZ  
AD8638ARZ-REEL  
AD8638ARZ-REEL7  
AD8639ACPZ-R2  
AD8639ACPZ-REEL  
AD8639ACPZ-REEL7  
AD8639ARZ  
AD8639ARZ-REEL  
AD8639ARZ-REEL7  
AD8639ARMZ  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
Package Option  
RJ-5  
RJ-5  
RJ-5  
R-8  
Branding  
A1T  
A1T  
A1T  
R-8  
R-8  
CP-8-5  
CP-8-5  
CP-8-5  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
A1Y  
A1Y  
A1Y  
A1Y  
A1Y  
A1Y  
AD8639ARMZ-REEL  
AD8639ARMZ-R7  
AD8639WARZ  
AD8639WARZ-RL  
AD8639WARZ-R7  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
1 Z = RoHS Compliant Part.  
2
W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The AD8639W models are available with controlled manufacturing to support the quality and reliability requirements of automotive  
applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers  
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in  
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to  
obtain the specific Automotive Reliability reports for these models.  
Rev. F | Page 18 of 20  
 
 
AD8638/AD8639  
NOTES  
Rev. F | Page 19 of 20  
AD8638/AD8639  
NOTES  
©2007–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06895-0-6/10(F)  
Rev. F | Page 20 of 20  

相关型号:

AD8639ARMZ-REEL

16 V Auto-Zero, Rail-to-Rail Output Operational Amplifiers
ADI

AD8639ARMZ-REEL

DUAL OP-AMP, 23 uV OFFSET-MAX, 1.35 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8
ROCHESTER

AD8639ARZ

16 V Auto-Zero, Rail-to-Rail Output Operational Amplifiers
ADI

AD8639ARZ-REEL

16 V Auto-Zero, Rail-to-Rail Output Operational Amplifiers
ADI

AD8639ARZ-REEL7

16 V Auto-Zero, Rail-to-Rail Output Operational Amplifiers
ADI

AD8639WARZ

16 V Auto-Zero, Rail-to-Rail Output Operational Amplifiers
ADI

AD8639WARZ-R7

16V Auto-Zero, Rail-to-Rail Output tional Amplifiers
ADI

AD8639WARZ-RL

16V Auto-Zero, Rail-to-Rail Output tional Amplifiers
ADI

AD8641

Low Power, Rail-to-Rail Output Precision JFET Amplifier
ADI

AD8641AKSZ-R2

Low Power, Rail-to-Rail Output Precision JFET Amplifier
ADI

AD8641AKSZ-R2

OP-AMP, 1500 uV OFFSET-MAX, 3.5 MHz BAND WIDTH, PDSO5, ROHS COMPLIANT, MO-203AA, SC-70, 5 PIN
ROCHESTER

AD8641AKSZ-REEL

Low Power, Rail-to-Rail Output Precision JFET Amplifier
ADI