AD8641 [ADI]

Low Power, Rail-to-Rail Output Precision JFET Amplifier; 低功耗,轨到轨输出精密JFET放大器
AD8641
型号: AD8641
厂家: ADI    ADI
描述:

Low Power, Rail-to-Rail Output Precision JFET Amplifier
低功耗,轨到轨输出精密JFET放大器

放大器
文件: 总12页 (文件大小:434K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power, Rail-to-Rail Output  
Precision JFET Amplifier  
AD8641  
FEATURES  
Low supply current: 250 µA max  
Very low input bias current: 1 pA max  
Low offset voltage: 750 µV max  
Single-supply operation: 5 V to 26 V  
Dual-supply operation: 2.5 V to 13 V  
Rail-to-rail output  
OUT  
VEE  
+IN  
1
2
3
5
4
VCC  
–IN  
AD8641  
TOP VIEW  
(Not to Scale)  
Figure 1. 5-Lead SC70 (KS-5)  
Unity gain stable  
No phase reversal  
SC70 package  
NC  
–IN  
1
2
3
4
8
7
6
5
NC  
AD8641  
VCC  
OUT  
NC  
TOP VIEW  
+IN  
APPLICATIONS  
Line-/battery-powered instruments  
Photodiode amplifiers  
Precision current sensing  
Medical instrumentation  
Industrial controls  
Precision filters  
(Not to Scale)  
VEE  
NC = NO CONNECT  
Figure 2. 8-Lead SOIC (R-8)  
Portable audio  
ATE  
GENERAL DESCRIPTION  
The AD8641 is a low power, precision JFET input amplifier  
featuring extremely low input bias current and rail-to-rail  
output. The ability to swing nearly rail-to-rail at the input and  
rail-to-rail at the output enables designers to buffer CMOS  
DACs, ASICs, and other wide output swing devices in single-  
supply systems. The outputs remain stable with capacitive loads  
of more than 500 pF.  
The AD8641 is suitable for applications utilizing multichannel  
boards that require low power to manage heat. Other applica-  
tions include photodiodes, ATE reference level drivers, battery  
management, and industrial controls.  
The AD8641 is fully specified over the extended industrial  
temperature range of –40° to +125°C. The AD8641 is available  
in 5-lead SC70 and 8-lead SOIC lead-free packages.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD8641  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 5  
Typical Performance Characteristics ............................................. 6  
Outline Dimensions....................................................................... 12  
Ordering Guide .......................................................................... 12  
REVISION HISTORY  
10/04—Initial Version: Revision 0  
Rev. 0 | Page 2 of 12  
AD8641  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
@ VS =5.0 V, VCM = 2.5 V, TA =25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
50  
750  
1.5  
1.6  
1
µV  
–40°C < TA < +85°C  
+85°C < TA < +125°C, VCM = 1.5 V  
mV  
mV  
pA  
Input Bias Current  
IB  
0.25  
–40°C < TA < +125°C  
–40°C < TA < +125°C  
180  
0.5  
50  
3
pA  
pA  
pA  
V
dB  
V/mV  
µV/°C  
Input Offset Current  
IOS  
Input Voltage Range  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Offset Voltage Drift  
0
74  
80  
CMRR  
AVO  
∆VOS/∆T  
VCM = 0 V to 2.5 V  
RL = 10 kΩ, VO = 0.5 to 4.5 V  
–40°C < TA < +125°C  
93  
140  
2.5  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IOUT  
4.94  
4.93  
V
V
V
V
IL = 2 mA, –40°C to +125°C  
IL = 2 mA, –40°C to +125°C  
Output Voltage Low  
0.05  
0.05  
0.01  
6
Output Current  
mA  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
VS = 5 V to 26 V  
90  
107  
195  
dB  
µA  
µA  
250  
270  
–40°C < TA < +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
2
V/µs  
Gain Bandwidth Product  
Phase Margin  
GBP  
ØO  
3
50  
MHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
eN p-p  
eN  
iN  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
4.0  
28.5  
0.5  
µV p-p  
nV/√Hz  
fA/√Hz  
Rev. 0 | Page 3 of 12  
 
AD8641  
@ VS= 13 V, VCM = 0 V, TA =25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
70  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
750  
1.5  
1
260  
0.5  
35  
µV  
mV  
pA  
pA  
pA  
–40° < TA < +125°C  
–40°C < TA < +125°C  
–40°C < TA < +125°C  
Input Bias Current  
0.25  
Input Offset Current  
IOS  
pA  
Input Voltage Range  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Offset Voltage Drift  
–13  
90  
215  
+10  
V
dB  
V/mV  
µV/°C  
CMRR  
AVO  
∆VOS/∆T  
VCM = -13 V to +10 V  
RL = 10 kΩ, VO = –11 V to +11 V  
–40°C < TA < +125°C  
107  
290  
2.5  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IOUT  
+12.94  
+12.93  
V
V
V
V
IL = 2 mA, –40°C to +125°C  
IL = 2 mA, –40°C to +125°C  
Output Voltage Low  
+12.94  
–12.93  
Output Current  
12  
mA  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
VS = 2.5 V to 13 V  
–40°C < TA < +125°C  
90  
107  
200  
dB  
µA  
µA  
290  
330  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
3
V/µs  
Gain Bandwidth Product  
Phase Margin  
GBP  
ØO  
3.5  
60  
MHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
eN p-p  
eN  
iN  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
4.2  
27.5  
0.5  
µV p-p  
nV/√Hz  
fA/√Hz  
Rev. 0 | Page 4 of 12  
AD8641  
ABSOLUTE MAXIMUM RATINGS  
Table 3. Absolute Maximum Ratings1  
Parameter  
Supply Voltage  
Input Voltage  
Differential Input Voltage  
Output Short-Circuit Duration  
Storage Temperature Range  
KS-5, R-8 Packages  
Operating Temperature Range  
Junction Temperature Range  
KS-5, R-8 Packages  
Table 4.  
2
Rating  
Package Type  
5-Lead SC70 (KS-5)  
8-Lead SOIC (R-8)  
θJA  
θJC  
Units  
°C/W  
°C/W  
27.3 V  
331.4  
157  
223.9  
56  
VS– to VS+  
Supply Voltage  
Indefinite  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
–65°C to +150°C  
–40°C to +125°C  
–65°C to +150°C  
300°C  
Lead Temperature Range (Soldering, 60 Sec)  
1 Absolute maximum ratings apply at 25°C, unless otherwise noted.  
2 θJA is specified for the worst-case conditions, i.e., θJA is specified for devices  
soldered on circuit boards for surface-mounted packages.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 5 of 12  
 
 
AD8641  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
18  
16  
14  
12  
10  
8
80  
V
= 5V  
= 1.5V  
V
= ±13V  
SY  
SY  
V
CM  
70  
60  
50  
40  
30  
20  
6
4
10  
0
2
0
T
V
(µV/°C)  
OS  
V
(mV)  
C
OS  
Figure 3. Input Offset Voltage  
Figure 6. Offset Voltage Drift  
16  
14  
12  
10  
8
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= ±13V  
SY  
V
= ±13V  
SY  
= 25°C  
T
A
6
4
2
0
–0.5  
–15 –13 –11 –9 –7 –5 –3 –1  
1
3
5
7
9
11 13 15  
OFFSET VOLTAGE (µV/°C)  
V
(V)  
CM  
Figure 4. Offset Voltage Drift  
Figure 7. Input Bias Current vs. VCM  
70  
60  
50  
40  
30  
20  
10  
0
0.5  
0.4  
V
= ±2.5V  
SY  
V
T
= ±13V  
SY  
= 25°C  
A
0.3  
0.2  
0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
–15.0 –12.5 –10.0 –7.5 –5.0 –2.5  
0
2.5  
5.0  
7.5 10.0 12.5 15.0  
V
(V)  
V
(mV)  
CM  
OS  
Figure 8. Input Bias Current vs. VCM  
Figure 5. Input Offset Voltage  
Rev. 0 | Page 6 of 12  
 
AD8641  
1000  
100  
10  
500  
400  
V
= 5V  
V
= ±13V  
SY  
SY  
300  
200  
100  
0
–100  
–200  
–300  
–400  
–500  
1
0.1  
0
25  
50  
75  
100  
125  
150  
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
TEMPERATURE (°C)  
V
CM  
Figure 9. Input Bias Current vs. Temperature  
Figure 12. Input Offset Voltage vs. VCM  
10M  
1M  
1.0  
0.8  
V
= +5V OR ±5V  
SY  
0.6  
0.4  
0.2  
V
=
±
13V  
V
SY  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
100k  
10k  
= ±2.5V  
SY  
0.1  
1
10  
100  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
V
(V)  
LOAD RESISTANCE (k  
)
CM  
Figure 13. Open-Loop Gain vs. Load Resistance  
Figure 10. Input Bias Current vs. VCM  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
100  
10  
V
= ±13V  
SY  
A
B
C
D
E
A. V = ±13V, V = ±11V, R = 10kΩ  
SY  
O
L
B. V = ±13V, V = ±11V, R = 2kΩ  
SY  
O
L
C. V = +5V, V = +0.5V/+4.5V, R = 10kΩ  
SY  
O
L
D. V = +5V, V = +0.5V/+4.5V, R = 2kΩ  
SY  
O
L
E. V = +5V, V = +0.5V/+4.5V, R = 600Ω  
SY  
O
L
–100  
1
0
–15 –13 –11 –9 –7 –5 –3 –1  
1
3
5
7
9
11 13 15  
–50 –30 –10  
10  
30  
50  
70  
90  
110 130 150  
V
(V)  
TEMPERATURE (°C)  
CM  
Figure 11. Input Offset Voltage vs. VCM  
Figure 14. Open-Loop Gain vs. Temperature  
Rev. 0 | Page 7 of 12  
AD8641  
10000  
1000  
100  
10  
600  
V
=
±
13V  
V
= ±13V  
SY  
SY  
500  
400  
V
– V  
OH  
SY  
300  
200  
100  
0
100kΩ  
V
– V  
SY OL  
–100  
–200  
–300  
–400  
–500  
–600  
10k1kΩ  
1
0.001  
0.01  
0.1  
1
10  
100  
–15  
–10  
–5  
0
5
10  
15  
LOAD CURRENT (mA)  
OUTPUT VOLTAGE (V)  
Figure 18. Output Saturation Voltage vs. Load Current  
Figure 15. Input Error Voltage vs. Output Voltage for Resistive Loads  
10000  
1000  
100  
10  
250  
V
SY  
= 5V  
V
=
±
5V  
SY  
200  
150  
POS RAIL  
V
– V  
OH  
SY  
R
R
= 1kΩ  
= 2kΩ  
100  
L
50  
L
V
OL  
0
R = 10kΩ  
L
R
= 100kΩ  
L
–50  
–100  
–150  
–200  
–250  
–300  
–350  
R = 1kΩ  
L
R
= 100kΩ  
L
R
= 10kΩ  
L
NEG RAIL  
R
= 2kΩ  
L
1
0.001  
0.01  
0.1  
1
10  
100  
0
50  
100  
150  
200  
250  
300  
350  
LOAD CURRENT (mA)  
OUTPUT VOLTAGE FROM SUPPLY RAIL (mV)  
Figure 19. Output Saturation Voltage vs. Load Current  
Figure 16. Input Error Voltage vs. Output Voltage  
Within 300 mV of Supply Rails  
70  
60  
800  
700  
600  
500  
400  
300  
200  
100  
0
315  
V
R
C
=
= 2k  
= 40pF  
±
13V  
SY  
270  
225  
180  
135  
90  
L
L
50  
40  
GAIN  
30  
20  
PHASE  
10  
45  
+25°C  
+125°C  
0
0
–10  
–20  
–30  
–45  
–90  
–135  
–55°C  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
4
8
12  
16  
(V)  
20  
24  
28  
V
SY  
Figure 20. Open-Loop Gain and Phase Margin vs. Frequency  
Figure 17. Quiescent Current vs. Supply Voltage at Different Temperatures  
Rev. 0 | Page 8 of 12  
AD8641  
70  
60  
140  
120  
100  
80  
315  
270  
225  
180  
135  
90  
V
SY  
= ±13V  
V
R
C
= 5V  
SY  
= 2k  
L
L
= 40pF  
50  
40  
GAIN  
30  
60  
20  
40  
PHASE  
10  
45  
20  
0
0
0
–10  
–20  
–30  
–45  
–90  
–135  
–20  
–40  
–60  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21. Open-Loop Gain and Phase Margin vs. Frequency  
Figure 24. CMRR vs. Frequency  
70  
60  
140  
120  
100  
80  
V
R
C
=
= 2k  
±
13V  
V
= 5V  
SY  
SY  
L
L
= 40pF  
G = +100  
G = +10  
G = +1  
50  
40  
30  
60  
20  
40  
10  
20  
0
0
–10  
–20  
–30  
–20  
–40  
–60  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22. Closed-Loop Gain vs. Frequency  
Figure 25. CMRR vs. Frequency  
70  
60  
140  
120  
100  
80  
V
SY  
= ±13V  
V
R
C
= 5V  
SY  
= 2kΩ  
L
L
= 40pF  
50  
+PSRR  
40  
G = +100  
G = +10  
G = +1  
30  
60  
20  
–PSRR  
40  
10  
20  
0
0
–10  
–20  
–30  
–20  
–40  
–60  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. Closed-Loop Gain vs. Frequency  
Figure 26. PSRR vs. Frequency  
Rev. 0 | Page 9 of 12  
AD8641  
140  
1.0  
0.8  
T
V
= ±13V  
V
= 5V  
SY  
SY  
120  
100  
80  
0.6  
1
+PSRR  
V
IN  
0.4  
60  
0.2  
40  
0
–PSRR  
20  
–0.2  
–0.4  
0
2
–20  
–40  
–0.6  
V
OUT  
–0.8  
–1.0  
–60  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
CH1 140.0V 3CH2120.0V–1  
0M400  
T
µ
1s  
2
A 3CH1 41.00V5  
0.00000s  
V
(V)  
CM  
Figure 30. No Phase Reversal  
Figure 27. PSRR vs. Frequency  
1000  
15  
10  
5
V
= ±13V  
SY  
V
=
±
13V  
S
GAIN = +5  
G = +100  
100  
10  
TS + (1%)  
TS + (0.1%)  
0
G = +10  
1
–5  
–10  
–15  
G = +1  
TS – (0.1%)  
0.1  
0.01  
TS – (1%)  
1k  
10k  
100k  
1M  
10M  
100M  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
FREQUENCY (Hz)  
SETTLING TIME (  
µ
s)  
Figure 28. Output Impedance vs. Frequency  
Figure 31. Output Swing and Error vs. Settling Time  
70  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
V
=
5V  
SY  
V
R
=
±
13V  
S
= 10k  
= 100mV p-p  
= +1  
L
G = +100  
V
IN  
A
V
G = +10  
OS–  
1
G = +1  
OS+  
0.1  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
1
10  
100  
1000  
FREQUENCY (Hz)  
CAPACITANCE (pF)  
Figure 29. Output Impedance vs. Frequency  
Figure 32. Small Signal Overshoot vs. Load Capacitance  
Rev. 0 | Page 10 of 12  
AD8641  
70  
60  
50  
40  
30  
20  
10  
0
1k  
100  
10  
V
= ±13V  
SY  
V
R
=
±
2.5V  
S
= 10k  
= 100mV p-p  
= +1  
L
V
IN  
A
V
OS–  
OS+  
1
1
10  
100  
1000  
10  
100  
1k  
10k  
CAPACITANCE (pF)  
FREQUENCY (Hz)  
Figure 33. Small Signal Overshoot vs. Load Capacitance  
Figure 36. Voltage Noise Density  
1k  
100  
10  
1.0  
0.8  
0.6  
0.4  
0.2  
V
= 5V  
V
=
±
13V  
G = +1M  
CH1 p-p = 4.26V  
SY  
S
1
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
1
CH1 14.00V –3  
–2  
–1  
0M1.00s1  
(V)  
2
A C3H1  
4–20.0V5  
10  
100  
1k  
10k  
V
FREQUENCY (Hz)  
CM  
Figure 37. Voltage Noise Density  
Figure 34. 0.1 Hz to 10 Hz Noise  
0.004  
0.001  
1.0  
0.8  
0.6  
0.4  
0.2  
V
=
±
2.5V  
G = +1M  
CH1 p-p = 4.06V  
V
= ±13V  
SY  
S
8V p-p INPUT  
LOAD = 100kΩ  
GAIN = +1  
1V p-p INPUT  
2V p-p INPUT  
0.0001  
1
4V p-p INPUT  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0.00001  
0.000001  
1
100  
1k  
FREQUENCY (Hz)  
10k 20k  
CH1 14.00V –3  
–2  
–1  
0M1.00s1  
(V)  
2
A C3H1  
4–20.0V5  
V
CM  
Figure 38. Total Harmonic Distortion + Noise vs. Frequency  
Figure 35. 0.1 Hz to 10 Hz Noise  
Rev. 0 | Page 11 of 12  
AD8641  
OUTLINE DIMENSIONS  
2.00 BSC  
5
1
4
3
1.25 BSC  
PIN 1  
2.10 BSC  
2
0.65 BSC  
1.10 MAX  
1.00  
0.90  
0.70  
0.22  
0.08  
0.46  
0.36  
0.26  
0.30  
0.15  
0.10 M  
AX  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-203AA  
Figure 39. 5-Lead Thin Shrink Small Outline Transistor Package [SC70]  
(KS-5)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 40. 8-Lead Standard Small Outline Package [SOIC]  
(R-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
8-lead SOIC  
Package Option  
Branding  
A07  
A07  
AD8641AKSZ-R21  
AD8641AKSZ-Reel71  
AD8641AKSZ-Reel1  
AD8641ARZ1  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
KS-5  
KS-5  
KS-5  
R-8  
R-8  
R-8  
A07  
AD8641ARZ-Reel71  
AD8641ARZ-Reel1  
8-lead SOIC  
8-lead SOIC  
1 Z = Pb-free part.  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05072-0-10/04(0)  
Rev. 0 | Page 12 of 12  
 
 
 

相关型号:

AD8641AKSZ-R2

Low Power, Rail-to-Rail Output Precision JFET Amplifier
ADI

AD8641AKSZ-R2

OP-AMP, 1500 uV OFFSET-MAX, 3.5 MHz BAND WIDTH, PDSO5, ROHS COMPLIANT, MO-203AA, SC-70, 5 PIN
ROCHESTER

AD8641AKSZ-REEL

Low Power, Rail-to-Rail Output Precision JFET Amplifier
ADI

AD8641AKSZ-REEL7

Low Power, Rail-to-Rail Output Precision JFET Amplifier
ADI

AD8641AKSZ-REEL7

OP-AMP, 1500 uV OFFSET-MAX, 3.5 MHz BAND WIDTH, PDSO5, ROHS COMPLIANT, MO-203AA, SC-70, 5 PIN
ROCHESTER

AD8641ARZ

Low Power, Rail-to-Rail Output Precision JFET Amplifier
ADI

AD8641ARZ

OP-AMP, 1500 uV OFFSET-MAX, 3.5 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
ROCHESTER

AD8641ARZ-REEL

Low Power, Rail-to-Rail Output Precision JFET Amplifier
ADI

AD8641ARZ-REEL7

Low Power, Rail-to-Rail Output Precision JFET Amplifier
ADI

AD8641ARZ-REEL7

OP-AMP, 1500 uV OFFSET-MAX, 3.5 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
ROCHESTER

AD8641ARZ1

Low Power, Rail-to-Rail Output Precision JFET Amplifier
ADI

AD8641_05

Low Power, Rail-to-Rail Output Precision JFET Amplifier
ADI