AD8646 [ADI]

24 MHz Rail-to-Rail Dual Amplifier; 24 MHz轨到轨双通道放大器
AD8646
型号: AD8646
厂家: ADI    ADI
描述:

24 MHz Rail-to-Rail Dual Amplifier
24 MHz轨到轨双通道放大器

放大器
文件: 总12页 (文件大小:472K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
24 MHz Rail-to-Rail  
Dual Amplifier  
AD8646  
FEATURES  
PIN CONFIGURATION  
Offset voltage: 2.5 mV maximum  
Single-supply operation: 2.7 V to 5.5 V  
Low noise: 8 nV/√Hz  
Wide bandwidth: 24 MHz  
Slew rate: 12 V/μs  
OUTA  
–INA  
+INA  
V–  
1
2
3
4
8
7
6
5
V+  
OUTB  
–INB  
+INB  
AD8646  
TOP VIEW  
(Not to Scale)  
Figure 1.  
Short-circuit output current: 150 mA  
No phase reversal  
Low input bias current: 1 pA  
Low supply current: 2 mA maximum  
Unity gain stable  
APPLICATIONS  
Battery-powered instruments  
Multipole filters  
ADC front ends  
Sensors  
Barcode scanners  
ASIC input or output amplifiers  
Audio amplifiers  
Photodiode amplifiers  
Datapath/mux/switch control  
GENERAL DESCRIPTION  
The AD8646 is a dual, rail-to-rail, input and output, single-  
supply amplifier featuring low offset voltage, wide signal  
bandwidth, low input voltage, and low current noise.  
offers high output drive capability, which is excellent for audio  
line drivers and other low impedance applications.  
Applications include portable and low powered instrumenta-  
tion, audio amplification for portable devices, portable phone  
headsets, barcode scanners, and multipole filters. The ability to  
swing rail to rail at both the input and output enables designers  
to buffer CMOS ADCs, DACs, ASICs, and other wide output  
swing devices in single-supply systems.  
The combination of 24 MHz bandwidth, low offset, low noise,  
and very low input bias current makes these amplifiers useful in  
a wide variety of applications. Filters, integrators, photodiode  
amplifiers, and high impedance sensors all benefit from the  
combination of performance features. AC applications benefit  
from the wide bandwidth and low distortion. This amplifier  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
AD8646  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ............................................................5  
Thermal Resistance.......................................................................5  
ESD Caution...................................................................................5  
Typical Performance Characteristics ..............................................6  
Outline Dimensions....................................................................... 12  
Ordering Guide .......................................................................... 12  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
REVISION HISTORY  
8/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 12  
 
AD8646  
SPECIFICATIONS  
VDD = 5 V, VCM = VDD/2, TA = +25oC, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VCM = 2.5 V  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
0.6  
2.5  
3.2  
7.5  
1
50  
550  
0.5  
50  
250  
5
mV  
mV  
μV/°C  
pA  
pA  
pA  
pA  
pA  
pA  
V
Offset Voltage Drift  
Input Bias Current  
ΔVOS/ΔT  
IB  
1.8  
0.3  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
Input Offset Current  
IOS  
0.1  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
Input Voltage Range  
VCM  
0
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
OUTPUT CHARACTERISTICS  
Output Voltage High  
CMRR  
AVO  
VCM = 0 V to 5 V  
RL = 2 kΩ, VO = 0.5 V to 4.5 V  
67  
104  
84  
116  
dB  
dB  
VOH  
IOUT = 1 mA  
4.98  
4.90  
4.85  
4.70  
4.99  
4.92  
8.4  
V
−40°C < TA < +125°C  
IOUT = 10 mA  
−40°C < TA < +125°C  
IOUT = 1 mA  
−40°C < TA < +125°C  
IOUT = 10 mA  
−40°C < TA < +125°C  
Short circuit  
V
V
Output Voltage Low  
VOL  
20  
40  
145  
200  
mV  
mV  
mV  
mV  
mA  
Ω
78  
Output Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
IOUT  
ZOUT  
120  
At 1 MHz, AV = 1  
5
Power Supply Rejection Ratio  
Supply Current per Amplifier  
PSRR  
ISY  
VDD = 2.7 V to 5.0 V  
−40°C < TA < +125°C  
RL = 2 kΩ  
63  
80  
1.5  
dB  
mA  
2.25 mA  
1.9  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Phase Margin  
SR  
GBP  
Øm  
11  
27  
77  
V/μs  
MHz  
Degrees  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
f = 10 kHz  
f = 100 kHz  
2.3  
8
6
−129  
−119  
μV  
nV/√Hz  
nV/√Hz  
dB  
Channel Separation  
CS  
dB  
Total Harmonic Distortion Plus Noise  
THD+N  
V p-p = 0.1 V, RL = 600 Ω, f = 25 kHz,  
TA = 25°C  
AV = +1  
AV = −10  
0.010  
0.021  
%
%
Rev. 0 | Page 3 of 12  
 
AD8646  
VDD = 2.7 V, VCM = VDD/2, TA = +25oC, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VCM = 1.35 V  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
0.6  
2.5  
3.2  
7.0  
1
mV  
mV  
μV/°C  
pA  
pA  
pA  
pA  
pA  
pA  
V
Offset Voltage Drift  
Input Bias Current  
ΔVOS/ΔT  
IB  
1.5  
0.2  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
50  
550  
0.5  
50  
250  
2.7  
Input Offset Current  
IOS  
0.1  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
Input Voltage Range  
VCM  
0
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
OUTPUT CHARACTERISTICS  
Output Voltage High  
CMRR  
AVO  
VCM = 0 V to 2.7 V  
RL = 2 kΩ, VO = 0.5 V to 2.2 V  
62  
95  
79  
107  
dB  
dB  
VOH  
VOL  
IOUT = 1 mA  
−40°C < TA < +125°C  
IOUT = 1 mA  
−40°C < TA < +125°C  
Short circuit  
At 1 MHz, AV = 1  
2.65  
2.60  
2.68  
11  
V
V
mV  
mV  
mA  
Ω
Output Voltage Low  
25  
30  
Output Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
IOUT  
ZOUT  
63  
5
Power Supply Rejection Ratio  
Supply Current per Amplifier  
PSRR  
ISY  
VDD = 2.7 V to 5.0 V  
63  
80  
1.6  
dB  
mA  
mA  
1.9  
2.25  
−40°C < TA < +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
RL = 2 kΩ  
11  
V/μs  
RL = 10 kΩ  
Gain Bandwidth Product  
Phase Margin  
GBP  
Øm  
26  
53  
MHz  
Degrees  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
f = 10 kHz  
f = 100 kHz  
2.3  
8
6
−129  
−121  
μV  
nV/√Hz  
nV/√Hz  
dB  
Channel Separation  
CS  
dB  
Rev. 0 | Page 4 of 12  
AD8646  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
THERMAL RESISTANCE  
Parameter  
Rating  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Supply Voltage  
6 V  
Input Voltage  
GND to VDD  
3 V  
Indefinite  
−65°C to +150°C  
−40°C to +125°C  
300°C  
Table 4. Thermal Resistance  
Differential Input Voltage  
Output Short Circuit to GND  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering 60 sec)  
Junction Temperature  
Package Type  
8-Lead SOIC  
8-Lead MSOP  
θJA  
θJC  
43  
45  
Unit  
°C/W  
°C/W  
121  
210  
150°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 5 of 12  
 
AD8646  
TYPICAL PERFORMANCE CHARACTERISTICS  
300  
200  
180  
160  
140  
120  
100  
80  
V
V
= 2.7V  
V
V
= 5V  
= 2.5V  
SY  
SY  
= 1.35V  
CM  
CM  
T
= 25°C  
T = 25°C  
A
A
250  
200  
150  
100  
50  
2244 AMPLIFIERS  
2244 AMPLIFIERS  
60  
40  
20  
0
0
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
(mV)  
1.0  
1.5  
2.0  
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
(mV)  
1.0  
1.5  
2.0  
V
V
OS  
OS  
Figure 2. Input Offset Voltage Distribution  
Figure 5. Input Offset Voltage Distribution  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
V
= 2.7V  
V
= 5V  
SY  
SY  
–40°C < T < +125°C  
–40°C < T < +125°C  
A
A
0
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
TCV (µV/°C)  
OS  
TCV (µV/°C)  
OS  
Figure 3. VOS Drift (TCVOS) Distribution  
Figure 6. VOS Drift (TCVOS) Distribution  
800  
1000  
800  
V
= 2.7V  
= 25°C  
V
T
= 5V  
SY  
SY  
= 25°C  
T
A
A
600  
400  
600  
400  
200  
200  
0
0
–200  
–400  
–600  
–800  
–1000  
–200  
–400  
–600  
–800  
0
0.3  
0.6  
0.9  
1.2  
1.5  
(V)  
1.8  
2.1  
2.4  
2.7  
0
1
2
3
4
5
V
V
(V)  
CM  
CM  
Figure 4. Input Offset Voltage vs. Input Common-Mode Voltage  
Figure 7. Input Offset Voltage vs. Input Common-Mode Voltage  
Rev. 0 | Page 6 of 12  
 
AD8646  
10000  
1000  
100  
10  
10000  
1000  
100  
10  
V
= 2.7V  
V
= 5V  
SY  
= 25°C  
SY  
T = 25°C  
A
T
A
V
– V  
OH  
DD  
V
OL  
V
– V  
OH  
DD  
1
1
V
OL  
0.1  
0.1  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 8. Output Saturation Voltage vs. Load Current  
Figure 11. Output Saturation Voltage vs. Load Current  
25  
20  
15  
10  
5
120  
100  
80  
60  
40  
20  
0
V
= 2.7V  
V
= 5V  
SY  
SY  
= 1mA  
I
L
V
– V = 10mA  
OH  
SY  
V
– V  
OH  
DD  
V
= 10mA  
OL  
V
OL  
V
– V = 1mA  
OH  
SY  
V
= 1mA  
65  
OL  
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. Output Saturation Voltage vs. Temperature  
Figure 12. Output Saturation Voltage vs. Temperature  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
V
= 2.7V  
V
= 5V  
SY  
= 125°C  
SY  
T = 125°C  
A
T
A
0
0
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
COMMON-MODE VOLTAGE (V)  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 10. Input Bias Current vs. Common-Mode Voltage  
Figure 13. Input Bias Current vs. Common-Mode Voltage  
Rev. 0 | Page 7 of 12  
AD8646  
80  
180  
135  
90  
80  
60  
180  
135  
90  
V
R
C
= 2.7V  
= 1k  
= 10pF  
= 25°C  
V
R
C
= 5V  
SY  
SY  
= 1kΩ  
= 10pF  
= 25°C  
L
L
L
L
60  
T
T
A
A
40  
40  
20  
45  
20  
45  
0
0
0
0
–20  
–40  
–45  
–90  
–135  
–20  
–40  
–60  
–45  
–90  
–135  
–60  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 14. Open-Loop Gain and Phase vs. Frequency  
Figure 17. Open-Loop Gain and Phase vs. Frequency  
60  
40  
60  
40  
20  
0
V
= 2.7V  
V
= 5V  
SY  
= 25°C  
SY  
T = 25°C  
A
T
A
A
A
= 100  
= 10  
A
A
= 100  
= 10  
V
V
V
V
20  
A
= 1  
A
= 1  
V
V
0
–20  
–40  
–60  
–20  
–40  
–60  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 15. Closed-Loop Gain vs. Frequency  
Figure 18. Closed-Loop Gain vs. Frequency  
250  
200  
150  
100  
50  
120  
100  
80  
60  
40  
20  
0
V
= 2.7V  
= 25°C  
V
= 5V  
SY  
SY  
T
T = 25°C  
A
A
A
= 1  
V
A
= 1  
V
A
= 10  
V
A
= 100  
V
A
= 10  
V
A
= 100  
V
0
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 16. ZOUT vs. Frequency  
Figure 19. ZOUT vs. Frequency  
Rev. 0 | Page 8 of 12  
AD8646  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
V
= 2.7V  
V
= 5V  
= 25°C  
SY  
= 25°C  
SY  
T
T
A
A
1k  
10k  
100k  
1M  
10M  
100M  
100M  
1000  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 20. CMRR vs. Frequency  
Figure 23. CMRR vs. Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
V
T
= 2.7V  
V
= 5V  
SY  
SY  
= 25°C  
T = 25°C  
A
A
–PSRR  
+PSRR  
+PSRR  
–PSRR  
–10  
–20  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 21. PSRR vs. Frequency  
Figure 24. PSRR vs. Frequency  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
T
= ±1.35V  
V
= ±2.5V  
SY  
= 25°C  
SY  
T = 25°C  
A
A
–OVERSHOOT  
+OVERSHOOT  
+OVERSHOOT  
–OVERSHOOT  
1
10  
100  
1
10  
100  
1000  
C
(pF)  
C
(pF)  
LOAD  
LOAD  
Figure 22. Small Signal Overshoot vs. Load Capacitance  
Figure 25. Small Signal Overshoot vs. Load Capacitance  
Rev. 0 | Page 9 of 12  
AD8646  
V
= 2.7V, V  
CM  
= 1.35V, V = 100mV p-p,  
IN  
V
= 5V, V  
CM  
= 2.5V, V = 100mV p-p,  
IN  
SY  
= 25°C, R = 10k, C = 100pF  
SY  
T = 25°C, R = 10k, C = 100pF  
A
T
A
L
L
L
L
(200ns/DIV)  
(200ns/DIV)  
Figure 26. 2.7 V Small Signal Transient Response  
Figure 29. 5 V Small Signal Transient Response  
V
T
= 2.7V, V = 2V p-p,  
IN  
V
T
= 5V, V = 4V p-p,  
IN  
SY  
SY  
= 25°C, R = 10k, C = 100pF  
= 25°C, R = 10k, C = 100pF  
A
L
L
A
L
L
(200ns/DIV)  
(200ns/DIV)  
Figure 27. 2.7 V Large Signal Transient Response  
Figure 30. 5 V Large Signal Transient Response  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
V
= ±2.5V  
= 600Ω  
= –10  
V
= ±2.5V  
= 600Ω  
= 1  
SY  
SY  
R
A
T
R
A
T
L
V
L
V
= 25°C  
= 25°C  
A
A
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 31. THD + Noise vs. Frequency  
Figure 28. THD + Noise vs. Frequency  
Rev. 0 | Page 10 of 12  
AD8646  
20  
18  
16  
14  
12  
10  
8
1000  
100  
10  
V
T
= 5V  
V = 5V  
DD  
SY  
= 25°C  
A
6
1
4
2
0
0.1  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
25  
45  
65  
80  
105  
125  
TEMPERATURE (°C)  
Figure 32. Voltage Noise Density vs. Frequency  
Figure 35. Input Bias Current vs. Temperature  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
V
V
A
R
= 5V  
= 4.9V  
= 1  
= 10kΩ  
= 25°C  
T
= 25°C  
SY  
IN  
A
BOTH AMPS  
V
L
T
A
0
100  
1k  
10k  
0
0.5  
1.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
4.5  
5.0  
FREQUENCY (kHz)  
V
SY  
Figure 33. Maximum Output Swing vs. Frequency  
Figure 36. Supply Current vs. Supply Voltage  
0
–20  
V
R
A
= 5V  
V
T
= 2.7V TO 5V  
2.3µV p-p  
SY  
SY  
= 25°C  
= 2k  
= –100  
= 25°C  
L
V
A
A
T
–40  
–60  
–80  
V
= 2V p-p  
IN  
–100  
–120  
V
= 0.5V p-p  
IN  
M4.00s  
A
CH1  
0.00V  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 34. 0.1 Hz to 10 Hz Voltage Noise  
Figure 37. Channel Separation  
Rev. 0 | Page 11 of 12  
AD8646  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 38. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 39. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD8646ARZ1  
AD8646ARZ-REEL1  
AD8646ARZ-REEL71  
AD8646ARMZ-R21  
AD8646ARMZ-REEL1  
Temperature Range  
Package Description  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
Package Option  
Branding  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
R-8  
R-8  
R-8  
RM-8  
RM-8  
A1V  
A1V  
8-Lead MSOP  
1 Z = RoHS Compliant Part.  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06527-0-8/07(0)  
Rev. 0 | Page 12 of 12  
 
 
 
 

相关型号:

AD8646ARMZ

24 MHz Rail-to-Rail Amplifiers with Shutdown Option
ADI

AD8646ARMZ-R2

24 MHz Rail-to-Rail Dual Amplifier
ADI

AD8646ARMZ-REEL

24 MHz Rail-to-Rail Dual Amplifier
ADI

AD8646ARZ

24 MHz Rail-to-Rail Dual Amplifier
ADI

AD8646ARZ-REEL

24 MHz Rail-to-Rail Dual Amplifier
ADI

AD8646ARZ-REEL7

24 MHz Rail-to-Rail Dual Amplifier
ADI

AD8646WARMZ-R7

24 MHz Rail-to-Rail Amplifiers with Shutdown Option
ADI

AD8646WARMZ-RL

24 MHz Rail-to-Rail Amplifiers with Shutdown Option
ADI

AD8646WARZ-R7

24 MHz Rail-to-Rail Amplifiers with Shutdown Option
ADI

AD8646WARZ-RL

24 MHz Rail-to-Rail Amplifiers with Shutdown Option
ADI

AD8646_10

24 MHz Rail-to-Rail Amplifiers with Shutdown Option
ADI

AD8646_15

24 MHz Rail-to-Rail Amplifiers
ADI