AD8652_15 [ADI]

50 MHz, Precision, Low Distortion;
AD8652_15
型号: AD8652_15
厂家: ADI    ADI
描述:

50 MHz, Precision, Low Distortion

文件: 总20页 (文件大小:467K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
50 MHz, Precision, Low Distortion,  
Low Noise CMOS Amplifiers  
Data Sheet  
AD8651/AD8652  
FEATURES  
PIN CONFIGURATIONS  
Bandwidth: 50 MHz at 5 V  
Low noise: 4.5 nV/√Hz  
Offset voltage: 100 μV typical, specified over  
entire common-mode range  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
NC  
AD8652  
OUT B  
–IN B  
+IN B  
AD8651  
+
V
TOP VIEW  
(Not to Scale)  
TOP VIEW  
(Not to Scale)  
OUT  
NC  
V
Slew rate: 41 V/μs  
V
Rail-to-rail input and output swing  
Input bias current: 1 pA  
NC = NO CONNECT  
Figure 1. 8-Lead MSOP (RM-8)  
Figure 2. 8-Lead MSOP (RM-8)  
Single-supply operation: 2.7 V to 5.5 V  
Space-saving MSOP and SOIC_N packaging  
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
NC  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
+
AD8651  
V
AD8652  
OUT B  
–IN B  
+IN B  
OUT  
NC  
TOP VIEW  
(Not to Scale)  
APPLICATIONS  
TOP VIEW  
(Not to Scale)  
V
V
Optical communications  
Laser source drivers/controllers  
Broadband communications  
High speed ADCs and DACs  
Microwave link interface  
Cell phone PA control  
Video line drivers  
NC = NO CONNECT  
Figure 3. 8-Lead SOIC_N (R-8)  
Figure 4. 8-Lead SOIC_N (R-8)  
Audio  
GENERAL DESCRIPTION  
The AD865x family features the newest generation of DigiTrim®  
in-package trimming. This new generation measures and corrects  
the offset over the entire input common-mode range, providing  
less distortion from VOS variation than is typical of other rail-to-  
rail amplifiers. Offset voltage and CMRR are both specified and  
guaranteed over the entire common-mode range as well as over  
the extended industrial temperature range.  
The AD865x family consists of high precision, low noise, low  
distortion, rail-to-rail CMOS operational amplifiers that run  
from a single-supply voltage of 2.7 V to 5.5 V.  
The AD865x family is made up of rail-to-rail input and output  
amplifiers with a gain bandwidth of 50 MHz and a typical  
voltage offset of 100 μV across common mode from a 5 V  
supply. It also features low noise—4.5 nV/√Hz.  
The AD865x family is offered in the narrow 8-lead SOIC  
package and the 8-lead MSOP package. The amplifiers are  
specified over the extended industrial temperature range  
(−40°C to +125°C).  
The AD865x family can be used in communications applications,  
such as cell phone transmission power control, fiber optic  
networking, wireless networking, and video line drivers.  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2006–2014 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD8651/AD8652  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Thermal Resistance.......................................................................5  
Typical Performance Characteristics ..............................................6  
Applications..................................................................................... 14  
Theory of Operation.................................................................. 14  
Layout, Grounding, and Bypassing Considerations.............. 15  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 19  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
REVISION HISTORY  
2/14—Rev. C to Rev. D  
6/04—Rev. 0 to Rev. A  
Change to Figure 18 .............................................................................8  
Change to Figure 21 .............................................................................9  
Change to Figure 29 .............................................................................10  
Change to Figure 30 .............................................................................10  
Change to Figure 43 .............................................................................12  
Change to Figure 44 .............................................................................12  
Change to Figure 47 .............................................................................13  
Change to Figure 57 .............................................................................17  
Changes to Figure 21........................................................................ 8  
Updated Outline Dimensions....................................................... 18  
Changes to Ordering Guide .......................................................... 19  
8/06—Rev. B. to Rev. C  
Changes to Figure 1 to Figure 4...................................................... 1  
Changes to Figure 7 and Figure 9................................................... 6  
Changes to Figure 23........................................................................ 9  
Changes to Figure 53...................................................................... 14  
Updated Outline Dimensions....................................................... 18  
Changes to Ordering Guide .......................................................... 19  
10/03 Revision 0: Initial Version  
9/04—Rev. A to Rev. B  
Added AD8652 ....................................................................Universal  
Change to General Description....................................................... 1  
Changes to Electrical Characteristics ............................................. 3  
Changes to Absolute Maximum Ratings........................................ 5  
Change to Figure 23 .......................................................................... 9  
Change to Figure 26 .......................................................................... 9  
Change to Figure 36 ........................................................................ 11  
Change to Figure 42 ........................................................................ 12  
Change to Figure 49 ........................................................................ 13  
Change to Figure 51 ........................................................................ 13  
Inserted Figure 52............................................................................ 13  
Change to Theory of Operation section....................................... 14  
Change to Input Protection section .............................................. 15  
Changes to Ordering Guide ........................................................... 20  
Rev. D | Page 2 of 20  
Data Sheet  
AD8651/AD8652  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
V+ = 2.7 V, V= 0 V, V CM = V+/2, TA = 25°C, unless otherwise specified.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
AD8651  
VOS  
0 V ≤ VCM ≤ 2.7 V  
100  
350  
1.4  
1.6  
300  
1.3  
μV  
–40°C ≤ TA ≤ +85°C, 0 V ≤ VCM ≤ 2.7 V  
–40°C ≤ TA ≤ +125°C, 0 V ≤ VCM ≤ 2.7 V  
0 V ≤ VCM ≤ 2.7 V  
mV  
mV  
μV  
AD8652  
90  
0.4  
4
–40°C ≤ TA ≤ +125°C, 0 V ≤ VCM ≤ 2.7 V  
mV  
μV/°C  
pA  
pA  
pA  
pA  
pA  
V
Offset Voltage Drift  
Input Bias Current  
TCVOS  
IB  
1
10  
–40°C ≤ TA ≤ +125°C  
600  
10  
Input Offset Current  
IOS  
1
–40°C ≤ TA ≤ +85°C  
–40°C ≤ TA ≤ +125°C  
30  
600  
+2.8  
Input Voltage Range  
Common-Mode Rejection Ratio  
AD8651  
VCM  
–0.1  
CMRR  
V+ = 2.7 V, –0.1 V < VCM < +2.8 V  
75  
95  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
–40°C ≤ TA ≤ +85°C, –0.1 V < VCM < +2.8 V  
–40°C ≤ TA ≤ +125°C, –0.1 V < VCM < +2.8 V  
V+ = 2.7 V, –0.1 V < VCM < +2.8 V  
70  
88  
65  
85  
AD8652  
77  
95  
–40°C ≤ TA ≤ +125°C, –0.1 V < VCM < +2.8 V  
RL = 1 kΩ, 200 mV < VO < 2.5 V  
73  
90  
Large Signal Voltage Gain  
AVO  
100  
100  
95  
115  
114  
108  
RL = 1 kΩ, 200 mV < VO < 2.5 V, TA = 85°C  
RL = 1 kΩ, 200 mV < VO < 2.5 V, TA = 125°C  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Short-Circuit Limit  
VOH  
VOL  
ISC  
IL = 250 μA, –40°C ≤ TA ≤ +125°C  
IL = 250 μA, –40°C ≤ TA ≤ +125°C  
Sourcing  
2.67  
V
30  
mV  
mA  
mA  
mA  
80  
80  
40  
Sinking  
Output Current  
IO  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 5.5 V, VCM = 0 V  
–40°C ≤ TA ≤ +125°C  
76  
74  
94  
93  
dB  
dB  
Supply Current  
AD8651  
IO = 0  
9
12  
mA  
mA  
mA  
mA  
–40°C ≤ TA ≤ +125°C  
IO = 0  
14.5  
19.5  
22.5  
AD8652  
17.5  
–40°C ≤ TA ≤ +125°C  
INPUT CAPACITANCE  
Differential  
CIN  
6
9
pF  
pF  
Common Mode  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
G = 1, RL = 10 kΩ  
41  
V/μs  
MHz  
μs  
Gain Bandwidth Product  
Settling Time, 0.01%  
Overload Recovery Time  
Total Harmonic Distortion + Noise  
NOISE PERFORMANCE  
Voltage Noise Density  
GBP  
G = 1  
50  
G = 1, 2 V step  
VIN × G = 1.48 V+  
0.2  
0.1  
μs  
THD + N  
G = 1, RL = 600 Ω, f = 1 kHz, VIN = 2 V p-p  
0.0006  
%
en  
in  
f = 10 kHz  
f = 100 kHz  
f = 10 kHz  
5
nV/√Hz  
nV/√Hz  
fA/√Hz  
4.5  
4
Current Noise Density  
Rev. D | Page 3 of 20  
 
 
AD8651/AD8652  
Data Sheet  
V+ = 5 V, V = 0 V, V CM = V+/2, TA = 25°C, unless otherwise specified.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
AD8651  
VOS  
0 V ≤ VCM ≤ 5 V  
100  
350  
1.4  
1.7  
300  
1.4  
μV  
–40°C ≤ TA ≤ +85°C, 0 V ≤ VCM ≤ 5 V  
–40°C ≤ TA ≤ +125°C, 0 V ≤ VCM ≤ 5 V  
0 V ≤ VCM ≤ 5 V  
mV  
mV  
μV  
AD8652  
90  
0.4  
4
–40°C ≤ TA ≤ +125°C, 0 V ≤ VCM ≤ 5 V  
mV  
μV/°C  
pA  
pA  
pA  
pA  
pA  
pA  
V
Offset Voltage Drift  
Input Bias Current  
TCVOS  
IB  
1
10  
–40°C ≤ TA ≤ +85°C  
–40°C ≤ TA ≤ +125°C  
30  
600  
10  
Input Offset Current  
IOS  
1
–40°C ≤ TA ≤ +85°C  
–40°C ≤ TA ≤ +125°C  
30  
600  
+5.1  
Input Voltage Range  
Common-Mode Rejection Ratio  
AD8651  
VCM  
–0.1  
CMRR  
0.1 V < VCM < 5.1 V  
80  
75  
70  
84  
76  
100  
98  
95  
95  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
–40°C ≤ TA ≤ +85°C, 0.1 V < VCM < 5.1 V  
–40°C ≤ TA ≤ +125°C, 0.1 V < VCM < 5.1 V  
0.1 V < VCM < 5.1 V  
94  
90  
AD8652  
100  
95  
–40°C ≤ TA ≤ +125°C, 0.1 V < VCM < 5.1 V  
RL = 1 kΩ, 200 mV < VO < 4.8 V  
Large Signal Voltage Gain  
AVO  
115  
114  
111  
RL = 1 kΩ, 200 mV < VO < 4.8 V, TA = 85°C  
RL = 1 kΩ, 200 mV < VO < 4.8 V, TA = 125°C  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Short-Circuit Limit  
VOH  
VOL  
ISC  
IL = 250 µA, –40°C ≤ TA ≤ +125°C  
IL = 250 µA, –40°C ≤ TA ≤ +125°C  
Sourcing  
4.97  
V
30  
mV  
mA  
mA  
mA  
80  
80  
40  
Sinking  
Output Current  
IO  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 5.5 V, VCM = 0 V  
–40°C ≤ TA ≤ +125°C  
76  
74  
94  
93  
dB  
dB  
Supply Current  
AD8651  
IO = 0  
9.5  
14.0  
15  
mA  
mA  
mA  
mA  
–40°C ≤ TA ≤ +125°C  
IO = 0  
AD8652  
17.5  
20.0  
23.5  
–40°C ≤ TA ≤ +125°C  
INPUT CAPACITANCE  
Differential  
CIN  
6
9
pF  
pF  
Common Mode  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
G = 1, RL = 10 kΩ  
41  
V/µs  
MHz  
μs  
Gain Bandwidth Product  
Settling Time, 0.01%  
Overload Recovery Time  
Total Harmonic Distortion + Noise  
NOISE PERFORMANCE  
Voltage Noise Density  
GBP  
G = 1  
50  
G = 1, 2 V step  
VIN × G = 1.2 V+  
0.2  
0.1  
μs  
THD + N  
G = 1, RL = 600 Ω, f = 1 kHz, VIN = 2 V p-p  
0.0006  
%
en  
in  
f = 10 kHz  
f = 100 kHz  
f = 10 kHz  
5
nV/√Hz  
nV/√Hz  
fA/√Hz  
4.5  
4
Current Noise Density  
Rev. D | Page 4 of 20  
Data Sheet  
AD8651/AD8652  
ABSOLUTE MAXIMUM RATINGS  
Absolute maximum ratings apply at 25°C, unless otherwise noted.  
Table 3.  
ESD CAUTION  
Parameter  
Rating  
Supply Voltage  
6.0 V  
Input Voltage  
GND to VS + 0.3 V  
6.0 V  
Indefinite  
4000 V  
Differential Input Voltage  
Output Short-Circuit Duration to GND  
Electrostatic Discharge (HBM)  
Storage Temperature Range  
RM, R Package  
Operating Temperature Range  
Junction Temperature Range  
RM, R Package  
THERMAL RESISTANCE  
−65°C to +150°C  
−40°C to +125°C  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 4. Thermal Resistance  
−65°C to +150°C  
300°C  
Package Type  
θJA  
θJC  
45  
43  
Unit  
°C/W  
°C/W  
Lead Temperature (Soldering, 10 sec)  
8-Lead MSOP (RM)  
8-Lead SOIC_N (R)  
210  
158  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. D | Page 5 of 20  
 
 
 
AD8651/AD8652  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
60  
100  
80  
60  
40  
20  
V
= 5V  
V
= ±2.5V  
S
S
V
= 0V  
CM  
50  
40  
30  
20  
10  
0
0
–20  
0
1
2
3
4
5
6
140  
6
COMMON-MODE VOLTAGE (V)  
V
(µV)  
OS  
Figure 5. Input Offset Voltage Distribution  
Figure 8. Input Offset Voltage vs. Common-Mode Voltage  
300  
500  
400  
300  
200  
100  
0
V
= ±2.5V  
V
V
= ±2.5V  
S
S
= 0V  
CM  
200  
100  
0
–100  
–200  
–300  
–50  
0
50  
100  
150  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 6. Input Offset Voltage vs. Temperature  
Figure 9. Input Bias Current vs. Temperature  
60  
50  
40  
30  
20  
10  
V
V
= ±2.5V  
S
= 0V  
CM  
T
: –40°C TO +125°C  
A
8
6
4
2
0
10  
0
0
1
2
3
4
5
6
7
8
9
10 11  
0
1
2
3
4
5
TCV (µV/°C)  
OS  
SUPPLY VOLTAGE (V)  
Figure 7. TCVOS Distribution  
Figure 10. Supply Current vs. Supply Voltage  
Rev. D | Page 6 of 20  
 
Data Sheet  
AD8651/AD8652  
12  
11  
10  
9
2.50  
V
= 5V  
= 250µA  
V
= ±2.5V  
S
S
I
L
2.00  
1.50  
1.00  
8
0.50  
0
7
6
–50  
0
50  
100  
150  
–50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Supply Current vs. Temperature  
Figure 14. Output Voltage Swing Low vs. Temperature  
500  
400  
300  
200  
100  
80  
60  
40  
20  
0
V
= ±2.5V  
V
= ±2.5V  
S
S
V
OH  
V
OL  
100  
0
0
20  
40  
60  
80  
100  
10  
100  
1k  
10k  
100k  
1M  
10M  
CURRENT LOAD (mA)  
FREQUENCY (Hz)  
Figure 12. Output Voltage to Supply Rail vs. Load Current  
Figure 15. CMRR vs. Frequency  
4.997  
110  
105  
100  
95  
V
S
= ±2.5V  
V
= 5V  
= 250µA  
S
I
L
4.996  
4.995  
4.994  
4.993  
4.992  
4.991  
4.990  
90  
–50  
0
50  
100  
150  
–50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. Output Voltage Swing High vs. Temperature  
Figure 16. CMRR vs. Temperature  
Rev. D | Page 7 of 20  
AD8651/AD8652  
Data Sheet  
100  
97  
94  
91  
88  
100  
V
= ±2.5V  
S
10  
85  
82  
1
10  
–50  
0
50  
100  
150  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 17. CMRR vs. Temperature  
Figure 20. Voltage Noise Density vs. Frequency  
100  
40  
30  
20  
V
= ±2.5V  
V = ±2.5V  
S
S
80  
60  
40  
20  
0
+PSRR  
–PSRR  
10  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. PSRR vs. Frequency  
Figure 21. Current Noise Density vs. Frequency  
100  
95  
90  
85  
80  
V
V
= ±2.5V  
S
V
= ±2.5V  
S
= 6.4V  
IN  
V
IN  
V
OUT  
0
–50  
0
50  
100  
150  
TIME (200µs/DIV)  
TEMPERATURE (°C)  
Figure 19. PSRR vs. Temperature  
Figure 22. No Phase Reversal  
Rev. D | Page 8 of 20  
Data Sheet  
AD8651/AD8652  
140  
0
60  
40  
20  
V
R
C
= ±2.5V  
= 1M  
= 47pF  
S
V
= ±2.5V  
S
L
L
120  
G = 100  
100  
80  
60  
40  
20  
–45  
G = 10  
G = 1  
–90  
0
–20  
–40  
–135  
–180  
0
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
5k  
50k  
500k  
5M  
50M  
300M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. Open-Loop Gain and Phase vs. Frequency  
Figure 26. Closed-Loop Gain vs. Frequency  
117  
6
5
4
V
R
= ±2.5V  
= 1k  
S
L
116  
115  
V
= 5V  
S
3
2
114  
V
= 2.7V  
S
113  
112  
1
0
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
–50  
0
50  
100  
150  
TEMPERATURE (°C)  
Figure 24. Open-Loop Gain vs. Temperature  
Figure 27. Maximum Output Swing vs. Frequency  
140  
130  
V
C
A
= ±2.5V  
= 47pF  
= 1  
S
V
= ±2.5V  
S
L
V
I
I
= 250µA  
= 2.5mA  
L
L
120  
110  
100  
90  
I
= 4.2mA  
L
80  
70  
60  
0
50  
100  
150  
200  
250  
TIME (100µs/DIV)  
OUTPUT VOLTAGE SWING FROM THE RAILS (mV)  
Figure 25. Open-Loop Gain vs. Output Voltage Swing  
Figure 28. Large Signal Response  
Rev. D | Page 9 of 20  
AD8651/AD8652  
Data Sheet  
V
V
A
= ±2.5V  
= 200mV  
= 1  
S
V
V
= ±2.5V  
S
IN  
= 200mV  
IN  
V
GAIN = –15  
0V  
OUTPUT  
–2.5V  
200mV  
0V  
INPUT  
TIME (10µs/DIV)  
TIME (200ns/DIV)  
Figure 29. Small Signal Response  
Figure 32. Positive Overload Recovery Time  
30  
25  
20  
15  
10  
40  
30  
20  
V = ±2.5V  
S
V
V
A
= ±2.5V  
S
= 200mV  
= 1  
IN  
V
–OS  
GAIN = 10  
+OS  
GAIN = 1  
10  
0
5
0
GAIN = 100  
0
10  
20  
30  
40  
50  
60  
70  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
CAPACITANCE (pF)  
Figure 30. Small Signal Overshoot vs. Load Capacitance  
Figure 33. Output Impedance vs. Frequency  
60  
50  
40  
30  
20  
V
V
= ±2.5V  
V
S
= ±1.35V  
= 0V  
S
2.5V  
= 200mV  
V
IN  
CM  
GAIN = –15  
0V  
0V  
–200mV  
10  
0
TIME (200ns/DIV)  
V
(µV)  
OS  
Figure 31. Negative Overload Recovery Time  
Figure 34. Input Offset Voltage Distribution  
Rev. D | Page 10 of 20  
 
 
Data Sheet  
AD8651/AD8652  
300  
500  
400  
300  
200  
V
= ±1.35V  
V
V
= ±1.35V  
S
S
= 0V  
CM  
200  
100  
0
V
OH  
V
–100  
OL  
100  
0
–200  
–300  
–50  
0
50  
100  
150  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
CURRENT LOAD (mA)  
Figure 35. Input Offset Voltage vs. Temperature  
Figure 38. Output Voltage to Supply Rail vs. Load Current  
80  
60  
40  
20  
2.697  
V
S
= 2.7V  
V
= 2.7V  
= 250µA  
S
I
L
2.696  
2.695  
2.694  
2.693  
2.692  
2.691  
2.690  
0
–20  
0
1
2
3
–50  
0
50  
100  
150  
INPUT COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 36. Input Offset Voltage vs. Common-Mode Voltage  
Figure 39. Output Voltage Swing High vs. Temperature  
11  
3.00  
2.50  
2.00  
1.50  
1.00  
V
= ±1.35V  
V
= 2.7V  
S
S
I
= 250µA  
L
10  
9
8
7
0.50  
0
6
–50  
0
50  
100  
150  
–50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 37. Supply Current vs. Temperature  
Figure 40. Output Voltage Swing Low vs. Temperature  
Rev. D | Page 11 of 20  
AD8651/AD8652  
Data Sheet  
30  
25  
20  
15  
10  
5
V
A
= ±1.35V  
= 1  
V
V
= ±1.35V  
= 200mV  
S
S
V
IN  
–OS  
+OS  
0
0
10  
20  
30  
40  
50  
60  
70  
TIME (200µs/DIV)  
CAPACITANCE (pF)  
Figure 41. No Phase Reversal  
Figure 44. Small Signal Overshoot vs. Load Capacitance  
V
C
A
= ±1.35V  
= 47pF  
= 1  
V
V
= ±1.35V  
S
S
= 200mV  
L
V
IN  
GAIN = –10  
1.35V  
0V  
0V  
–200mV  
TIME (100µs/DIV)  
TIME (200ns/DIV)  
Figure 42. Large Signal Response  
Figure 45. Negative Overload Recovery Time  
V
V
C
A
= ±1.35V  
= 200mV  
= 47pF  
= 1  
S
V
V
= ±1.35V  
= 200mV  
S
IN  
IN  
L
V
GAIN = –10  
0V  
–1.35V  
200mV  
0V  
TIME (200ns/DIV)  
TIME (10µs/DIV)  
Figure 43. Small Signal Response  
Figure 46. Positive Overload Recovery Time  
Rev. D | Page 12 of 20  
Data Sheet  
AD8651/AD8652  
100  
80  
60  
40  
20  
0
120  
118  
116  
114  
V
= ±1.35V  
V
R
= ±1.35V  
= 1kΩ  
S
S
L
112  
110  
108  
10  
100  
1k  
10k  
100k  
1M  
10M  
–50  
0
50  
100  
150  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 47. CMRR vs. Frequency  
Figure 50. Open-Loop Gain vs. Temperature  
60  
40  
20  
100  
V
= ±1.35V  
V
R
C
= ±1.35V  
= 1MΩ  
= 47pF  
S
S
L
L
80  
60  
40  
20  
0
G = 100  
G = 10  
G = 1  
+PSRR  
–PSRR  
0
–20  
–40  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
5k  
50k  
500k  
5M  
50M  
300M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 48. PSRR vs. Frequency  
Figure 51. Closed-Loop Gain vs. Frequency  
0
–20  
140  
120  
0
R1  
10kΩ  
V
= ±1.35V  
S
+2.5V  
R2  
100Ω  
V+  
V–  
V–  
V+  
V
IN  
28mV p-p  
100  
80  
60  
40  
20  
–45  
–40  
V
OUT  
–60  
–2.5V  
–90  
–80  
–100  
–120  
–140  
–135  
–180  
0
V
= ±2.5V  
S
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 49. Open-Loop Gain and Phase vs. Frequency  
Figure 52. Channel Separation vs. Frequency  
Rev. D | Page 13 of 20  
AD8651/AD8652  
Data Sheet  
APPLICATIONS  
THEORY OF OPERATION  
The NMOS and PMOS input stages are separately trimmed  
using DigiTrim to minimize the offset voltage in both differen-  
tial pairs. Both NMOS and PMOS input differential pairs are  
active in a 500 mV transition region when the input common-  
mode voltage is approximately 1.5 V below the positive supply  
voltage. A special design technique improves the input offset  
voltage in the transition region that traditionally exhibits a  
slight VOS variation. As a result, the common-mode rejection  
ratio is improved within this transition band. Compared to the  
Burr Brown OPA350 amplifier, shown in Figure 53, the  
AD865x, shown in Figure 54, exhibits much lower offset voltage  
shift across the entire input common-mode range, including the  
transition region.  
The AD865x family consists of voltage feedback, rail-to-rail  
input and output precision CMOS amplifiers that operate from  
2.7 V to 5.5 V of power supply voltage. These amplifiers use  
Analog Devices, Inc. DigiTrim technology to achieve a higher  
degree of precision than is available from most CMOS  
amplifiers. DigiTrim technology, used in a number of Analog  
Devices amplifiers, is a method of trimming the offset voltage of  
the amplifier after it has been assembled. The advantage of  
post-package trimming is that it corrects any offset voltages  
caused by the mechanical stresses of assembly.  
The AD865x family is available in standard op amp pinouts,  
making DigiTrim completely transparent to the user. The input  
stage of the amplifiers is a true rail-to-rail architecture, allowing  
the input common-mode voltage range of the op amp to extend  
to both positive and negative supply rails. The open-loop gain  
of the AD865x with a load of 1 kΩ is typically 115 dB.  
600  
400  
200  
0
The AD865x can be used in any precision op amp application.  
The amplifiers do not exhibit phase reversal for common-mode  
voltages within the power supply. With voltage noise of  
4.5 nV/√Hz and –105 dB distortion for 10 kHz, 2 V p-p signals,  
the AD865x is a great choice for high resolution data  
acquisition systems. Their low noise, sub-pA input bias current,  
precision offset, and high speed make them superb preamps for  
fast photodiode applications. The speed and output drive  
capabilities of the AD865x also make the amplifiers useful in  
video applications.  
–200  
–400  
–600  
0
1
2
3
4
5
6
COMMON-MODE VOLTAGE (V)  
Figure 53. Input Offset Distribution over Common-Mode  
Voltage for the OPA350  
Rail-to-Rail Output Stage  
The voltage swing of the output stage is rail-to-rail and is  
achieved by using an NMOS and PMOS transistor pair con-  
nected in a common source configuration. The maximum  
output voltage swing is proportional to the output current, and  
larger currents will limit how close the output voltage can get to  
the proximity of the output voltage to the supply rail. This is a  
characteristic of all rail-to-rail output amplifiers. With 40 mA of  
output current, the output voltage can reach within 5 mV of the  
positive and negative rails. At light loads of >100 kΩ, the output  
swings within ~1 mV of the supplies.  
600  
400  
200  
0
–200  
–400  
–600  
Rail-to-Rail Input Stage  
The input common-mode voltage range of the AD865x extends  
to both positive and negative supply voltages. This maximizes  
the usable voltage range of the amplifier, an important feature  
for single-supply and low voltage applications. This rail-to-rail  
input range is achieved by using two input differential pairs, one  
NMOS and one PMOS, placed in parallel. The NMOS pair is active  
at the upper end of the common-mode voltage range, and the  
PMOS pair is active at the lower end of the common-mode range.  
0
1
2
3
4
5
6
COMMON-MODE VOLTAGE (V)  
Figure 54. Input Offset Distribution over Common-Mode  
Input Protection for the AD865x  
Rev. D | Page 14 of 20  
 
 
 
 
Data Sheet  
AD8651/AD8652  
Bypassing schemes are designed to minimize the supply  
Input Protection  
impedance at all frequencies with a parallel combination of  
capacitors of 0.1 µF and 4.7 µF. Chip capacitors of 0.1 µF (X7R  
or NPO) are critical and should be as close as possible to the  
amplifier package. The 4.7 µF tantalum capacitor is less critical  
for high frequency bypassing, and, in most cases, only one is  
needed per board at the supply inputs.  
As with any semiconductor device, if a condition exists for the  
input voltage to exceed the power supply, the device input  
overvoltage characteristic must be considered. The inputs of the  
AD865x family are protected with ESD diodes to either power  
supply. Excess input voltage energizes internal PN junctions in  
the AD865x, allowing current to flow from the input to the  
supplies. This results in an input stage with picoamps of input  
current that can withstand up to 4000 V ESD events (human  
body model) with no degradation.  
Grounding  
A ground plane layer is important for densely packed PC  
boards to spread the current-minimizing parasitic inductances.  
However, an understanding of where the current flows in a  
circuit is critical to implementing effective high speed circuit  
design. The length of the current path is directly proportional to  
the magnitude of parasitic inductances and, therefore, the high  
frequency impedance of the path. High speed currents in an  
inductive ground return create an unwanted voltage noise.  
Excessive power dissipation through the protection devices  
destroys or degrades the performance of any amplifier. Differential  
voltages greater than 7 V result in an input current of approximately  
(| VCC – VEE | – 0.7 V)/RI, where RI is the resistance in series with  
the inputs. For input voltages beyond the positive supply, the  
input current is approximately (VIN – VCC – 0.7)/RI. For input  
voltages beyond the negative supply, the input current is about  
(VIN – VEE + 0.7)/RI. If the inputs of the amplifier sustain  
differential voltages greater than 7 V or input voltages beyond  
the amplifier power supply, limit the input current to 10 mA by  
using an appropriately sized input resistor (RI), as shown in  
Figure 55.  
The length of the high frequency bypass capacitor leads is  
critical. A parasitic inductance in the bypass grounding works  
against the low impedance created by the bypass capacitor.  
Place the ground leads of the bypass capacitors at the same  
physical location. Because load currents also flow from the  
supplies, the ground for the load impedance should be at the  
same physical location as the bypass capacitor grounds. For the  
larger value capacitors, intended to be effective at lower  
frequencies, the current return path distance is less critical.  
(V – V – 0.7V)  
(| V – V | – 0.7V)  
IN  
EE  
CC  
EE  
R >  
I
R >  
I
30mA  
30mA  
(V – V + 0.7V)  
IN  
EE  
R >  
I
FOR LARGE | V – V  
CC EE  
|
30mA  
+
FOR V BEYOND  
IN  
SUPPLY VOLTAGES  
O
AD865x  
Leakage Currents  
+ V  
– V  
+
IN  
Poor PC board layout, contaminants, and the board insulator  
material can create leakage currents that are much larger than the  
input bias current of the AD865x family. Any voltage differential  
between the inputs and nearby traces sets up leakage currents  
through the PC board insulator, for example 1 V/100 G = 10 pA.  
Similarly, any contaminants on the board can create significant  
leakage (skin oils are a common problem).  
R
I
Figure 55. Input Protection Method  
Overdrive Recovery  
Overdrive recovery is defined as the time it takes for the output  
of an amplifier to come off the supply rail after an overload signal is  
initiated. This is usually tested by placing the amplifier in a closed-  
loop gain of 15 with an input square wave of 200 mV p-p while the  
amplifier is powered from either 5 V or 3 V. T h e AD865x family  
has excellent recovery time from overload conditions (see Figure 31  
and Figure 32). The output recovers from the positive supply rail  
within 200 ns at all supply voltages. Recovery from the negative rail  
is within 100 ns at 5 V supply.  
To significantly reduce leakages, put a guard ring (shield)  
around the inputs and the input leads that are driven to the  
same voltage potential as the inputs. This ensures that there is  
no voltage potential between the inputs and the surrounding  
area to set up any leakage currents. To be effective, the guard  
ring must be driven by a relatively low impedance source and  
should completely surround the input leads on all sides, above  
and below, using a multilayer board.  
LAYOUT, GROUNDING, AND BYPASSING  
CONSIDERATIONS  
Power Supply Bypassing  
Another effect that can cause leakage currents is the charge  
absorption of the insulator material itself. Minimizing the  
amount of material between the input leads and the guard  
ring helps to reduce the absorption. Also, low absorption  
materials, such as Teflon® or ceramic, may be necessary in  
some instances.  
Power supply pins can act as inputs for noise, so care must be  
taken that a noise-free, stable dc voltage is applied. The purpose  
of bypass capacitors is to create low impedances from the supply  
to ground at all frequencies, thereby shunting or filtering most  
of the noise.  
Rev. D | Page 15 of 20  
 
 
AD8651/AD8652  
Data Sheet  
Input Capacitance  
Another way to stabilize an op amp driving a large capacitive  
load is to use a snubber network, as shown in Figure 57. Because  
there is not any isolation resistor in the signal path, this method  
has the significant advantage of not reducing the output swing.  
The exact values of RS and CS are derived experimentally. In  
Figure 57, an optimum RS and CS combination for a capacitive  
load drive ranging from 50 pF to 1 nF was chosen. For this,  
RS = 3 Ω and CS = 10 nF were chosen.  
Along with bypassing and grounding, high speed amplifiers can be  
sensitive to parasitic capacitance between the inputs and ground. A  
few picofarads of capacitance reduces the input impedance at high  
frequencies, which in turn increases the amplifier gain, causing  
peaking in the frequency response or oscillations. With the  
AD865x, additional input damping is required for stability with  
capacitive loads greater than 47 pF with direct input to output  
feedback (see the Output Capacitance section).  
+
V
Output Capacitance  
+
+
V
V
When using high speed amplifiers, it is important to consider  
the effects of the capacitive loading on amplifier stability.  
Capacitive loading interacts with the output impedance of the  
amplifier, causing reduction of the BW as well as peaking and  
ringing of the frequency response. To reduce the effects of the  
capacitive loading and allow higher capacitive loads, there are  
two commonly used methods.  
OUT  
AD865x  
R
C
S
S
V
C
R
L
L
200mV  
V
Figure 57. Snubber Network  
Settling Time  
The settling time of an amplifier is defined as the time it takes  
for the output to respond to a step change of input and enter  
and remain within a defined error band, as measured relative to  
the 50% point of the input pulse. This parameter is especially  
important in measurements and control circuits where amplifi-  
ers are used to buffer A/D inputs or DAC outputs. The design of  
the AD865x family combines a high slew rate and a wide gain  
bandwidth product to produce an amplifier with very fast  
settling time. The AD865x is configured in the noninverting  
gain of 1 with a 2 V p-p step applied to its input. The AD865x  
family has a settling time of about 130 ns to 0.01% (2 mV). The  
output is monitored with a 10×, 10 M, 11.2 pF scope probe.  
As shown in Figure 56, place a small value resistor (RS) in  
series with the output to isolate the load capacitor from the  
amplifier output. Heavy capacitive loads can reduce the  
phase margin of an amplifier and cause the amplifier  
response to peak or become unstable. The AD865x is able  
to drive up to 47 pF in a unity gain buffer configuration  
without oscillation or external compensation. However, if  
an application requires a higher capacitive load drive when  
the AD865x is in unity gain, the use of external isolation  
networks can be used. The effect produced by this resistor  
is to isolate the op amp output from the capacitive load.  
The required amount of series resistance has been  
THD Readings vs. Common-Mode Voltage  
tabulated in Table 5 for different capacitive loads. While  
this technique improves the overall capacitive load drive  
for the amplifier, its biggest drawback is that it reduces the  
output swing of the overall circuit.  
Total harmonic distortion of the AD865x family is well below  
0.0004% with any load down to 600 Ω. The distortion is a  
function of the circuit configuration, the voltage applied, and  
the layout, in addition to other factors. The AD865x family  
outperforms its competitor for distortion, especially at  
frequencies below 20 kHz, as shown in Figure 58.  
V
CC  
U1  
3
2
V
+
IN  
+
V
V
R
OUT  
S
0.1  
AD865x  
V
V
= +3.5V/–1.5V  
= 2.0V p-p  
SY  
OUT  
V
0.05  
C
R
L
L
0.02  
0.01  
0
0
0
Figure 56. Driving Large Capacitive Loads  
0.005  
0.002  
0.001  
OPA350  
Table 5. Optimum Values for Driving Large Capacitive Loads  
CL  
RS  
0.0005  
100 pF  
500 pF  
1.0 nF  
50 Ω  
35 Ω  
25 Ω  
AD8651  
0.0002  
0.0001  
20  
50  
100  
500  
1k  
2k  
5k  
20k  
FREQUENCY (Hz)  
Figure 58. Total Harmonic Distortion  
Rev. D | Page 16 of 20  
 
 
 
 
 
Data Sheet  
AD8651/AD8652  
5V  
+3.5V  
+
10kΩ  
10kΩ  
U1  
3
2
V
AD865x  
OUT  
+
V
+
V
CC  
33Ω  
600Ω  
47pF  
AD865x  
IN  
1µF  
AD7685  
V
V
IN  
2.7nF  
–1.5V  
2V p-p  
1kΩ  
V
IN  
0V TO 5V  
= 45kHz  
f
IN  
Figure 59. THD + N Test Circuit  
1kΩ  
Figure 61. AD865x Driving a 16-Bit ADC  
Driving a 16-Bit ADC  
The AD865x family is an excellent choice for driving high  
speed, high precision ADCs. The driver amplifier for this type  
of application needs low THD + N as well as quick settling time.  
Figure 61 shows a complete single-supply data acquisition  
solution. The AD865x family drives the AD7685, a 250 kSPS,  
16-bit data converter.1  
Table 6. Data Acquisition Solution of Figure 60  
Parameter  
Reading (dB)  
THD + N  
105.2  
SFDR  
106.6  
2nd Harmonics  
3rd Harmonics  
107.7  
113.6  
The AD865x is configured in an inverting gain of 1 with a 5 V  
single supply. Input of 45 kHz is applied, and the ADC samples  
at 250 kSPS. The results of this solution are listed in Table 6.  
The advantage of this circuit is that the amplifier and ADC can  
be powered with the same power supply. For the case of  
a noninverting gain of 1, the input common-mode voltage  
encompasses both supplies.  
1 For more information about the AD7685 data converter, go to  
http://www.analog.com/Analog_Root/productPage/productHome/0%2C21  
21%2CAD7685%2C00.html  
0
f
f
= 250kSPS  
SAMPLE  
= 45kHz  
IN  
–20  
–40  
INPUT RANGE = 0V TO 5V  
–60  
–80  
–100  
–120  
–140  
–160  
0
10 20  
30 40 50 60 70 80 90 100 110 120  
FREQUENCY (kHz)  
Figure 60. Frequency Response of AD865x Driving a 16-Bit ADC  
Rev. D | Page 17 of 20  
 
 
 
AD8651/AD8652  
Data Sheet  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 62. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 63. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. D | Page 18 of 20  
 
 
Data Sheet  
AD8651/AD8652  
ORDERING GUIDE  
Model1  
AD8651ARMZ-REEL  
AD8651ARMZ  
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Package Description  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
Package Option  
Branding  
BEA#  
BEA#  
RM-8  
RM-8  
R-8  
R-8  
R-8  
AD8651ARZ  
AD8651ARZ-REEL  
AD8651ARZ-REEL7  
AD8652ARMZ  
AD8652ARMZ-REEL  
AD8652ARZ  
RM-8  
RM-8  
R-8  
R-8  
R-8  
A05  
A05  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
AD8652ARZ-REEL  
AD8652ARZ-REEL7  
1 Z = RoHS compliant part; # denotes lead-free product may be top or bottom marked.  
Rev. D | Page 19 of 20  
 
 
AD8651/AD8652  
NOTES  
Data Sheet  
©2006–2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C03301-0-2/14(D)  
Rev. D | Page 20 of 20  

相关型号:

AD8654AR

IC QUAD OP-AMP, 300 uV OFFSET-MAX, 50 MHz BAND WIDTH, PDSO14, SOIC-14, Operational Amplifier
ADI

AD8654AR-REEL

IC QUAD OP-AMP, 300 uV OFFSET-MAX, 50 MHz BAND WIDTH, PDSO14, SOIC-14, Operational Amplifier
ADI

AD8654AR-REEL7

IC QUAD OP-AMP, 300 uV OFFSET-MAX, 50 MHz BAND WIDTH, PDSO14, SOIC-14, Operational Amplifier
ADI

AD8654ARU

IC QUAD OP-AMP, 300 uV OFFSET-MAX, 50 MHz BAND WIDTH, PDSO14, TSSOP-14, Operational Amplifier
ADI

AD8654ARU-REEL

IC QUAD OP-AMP, 300 uV OFFSET-MAX, 50 MHz BAND WIDTH, PDSO14, TSSOP-14, Operational Amplifier
ADI

AD8655

Low Noise, Precision CMOS Amplifier
ADI

AD8655ARMZ

Low Noise, Precision CMOS Amplifier
ADI

AD8655ARMZ-R2

Low Noise, Precision CMOS Amplifier
ADI

AD8655ARMZ-REEL

Low Noise, Precision CMOS Amplifier
ADI

AD8655ARZ

Low Noise, Precision CMOS Amplifier
ADI

AD8655ARZ-REEL

Low Noise, Precision CMOS Amplifier
ADI

AD8655ARZ-REEL7

Low Noise, Precision CMOS Amplifier
ADI