AD8657_11 [ADI]

18 V, Precision, Micropower CMOS RRIO Operational Amplifier; 18 V ,精密,微功耗CMOS RRIO运算放大器
AD8657_11
型号: AD8657_11
厂家: ADI    ADI
描述:

18 V, Precision, Micropower CMOS RRIO Operational Amplifier
18 V ,精密,微功耗CMOS RRIO运算放大器

运算放大器
文件: 总24页 (文件大小:677K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
18 V, Precision, Micropower  
CMOS RRIO Operational Amplifier  
AD8657  
FEATURES  
PIN CONFIGURATION  
Micropower at high voltage (18 V): 18 μA typical  
Low offset voltage: 350 ꢀV maximum  
Single-supply operation: 2.7 V to 18 V  
Dual-supply operation: 1.35 V to 9 V  
Low input bias current: 20 pA  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8657  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Figure 1. 8-Lead MSOP  
Gain bandwidth: 200 kHz  
Unity-gain stable  
OUT A 1  
–IN A 2  
+IN A 3  
V– 4  
8
7
V+  
Excellent electromagnetic interference immunity  
AD8657  
TOP VIEW  
(Not to Scale)  
OUT B  
APPLICATIONS  
6 –IN B  
5 +IN B  
Portable operating systems  
Current monitors  
NOTES  
1. IT IS RECOMMENDED TO CONNECT  
THE EXPOSED PAD TO V–.  
4 mA to 20 mA loop drivers  
Buffer/level shifting  
Multipole filters  
Figure 2. 8-Lead LFCSP  
Remote/wireless sensors  
Low power transimpedance amplifiers  
GENERAL DESCRIPTION  
Table 1. Micropower Op Amps  
The AD8657 is a dual, micropower, precision, rail-to-rail  
input/output amplifier optimized for low power and wide  
operating supply voltage range applications.  
Supply Voltage  
5 V  
12 V to 16 V 36 V  
Single  
AD8500  
ADA4505-1  
AD8505  
AD8541  
AD8603  
AD8502  
ADA4505-2  
AD8506  
AD8542  
AD8607  
AD8504  
ADA4505-4  
AD8508  
AD8544  
AD8609  
AD8663  
The AD8657 operates from 2.7 V up to 18 V with a typical  
quiescent supply current of 18 μA. It uses the Analog Devices,  
Inc., patented DigiTrim® trimming technique, which achieves  
low offset voltage. The AD8657 also has high immunity to  
electromagnetic interference.  
Dual  
AD8667  
OP281  
OP295  
ADA4062-2  
The combination of low supply current, low offset voltage, very  
low input bias current, wide supply range, and rail-to-rail input  
and output makes the AD8657 ideal for current monitoring and  
current loops in process and motor control applications. The  
combination of precision specifications makes this device ideal  
for dc gain and buffering of sensor front ends or high impedance  
input sources in wireless or remote sensors or transmitters.  
Quad  
AD8669  
OP481  
OP495  
ADA4062-4  
The AD8657 is specified over the extended industrial tempera-  
ture range (−40°C to +125°C) and is available in an 8-lead MSOP  
package and an 8-lead LFCSP package.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD8657  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications Information.............................................................. 17  
Input Stage................................................................................... 17  
Output Stage................................................................................ 17  
Rail to Rail................................................................................... 18  
Resistive Load ............................................................................. 18  
Comparator Operation.............................................................. 19  
EMI Rejection Ratio .................................................................. 20  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—2.7 V Operation ............................ 3  
Electrical Characteristics—10 V Operation ............................. 4  
Electrical Characteristics—18 V Operation ............................. 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Typical Performance Characteristics ............................................. 7  
4 mA to 20 mA Process Control Current Loop  
Transmitter.................................................................................. 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 21  
REVISION HISTORY  
3/11—Rev. 0 to Rev. A  
Added LFCSP Package Information ........................... Throughout  
Added Figure 2, Renumbered Subsequent Figures ...................1  
Changes to Table 2, Introductory Text; Input Characteristics,  
Offset Voltage and Common-Mode Rejection Ratio Test  
Conditions/Comments; and Dynamic Performance, Phase  
Margin Values ................................................................................... 3  
Changes to Table 3, Introductory Text; Input Characteristics,  
Offset Voltage and Common-Mode Rejection Ratio Test  
Conditions/Comments .................................................................... 4  
Changes to Table 4, Introductory Text; Input Characteristics,  
Offset Voltage and Common-Mode Rejection Ratio Test  
Conditions/Comments .................................................................... 5  
Changes to Thermal Resistance Section and Table 5................... 6  
Updated Outline Dimensions....................................................... 21  
Changes to Ordering Guide .......................................................... 21  
1/11—Revision 0: Initial Version  
Rev. A | Page 2 of 24  
 
AD8657  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—2.7 V OPERATION  
VSY = 2.7 V, V CM = VSY/2 V, TA = 25°C, unless otherwise specified.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VCM = 0 V to 2.7 V  
350  
1
2.5  
4
10  
2.6  
20  
500  
2.7  
µV  
mV  
mV  
mV  
pA  
nA  
pA  
pA  
V
VCM = 0.3 V to 2.4 V; −40°C ≤ TA ≤ +85°C  
VCM = 0.3 V to 2.4 V; −40°C ≤ TA ≤ +125°C  
VCM = 0 V to 2.7 V; −40°C ≤ TA ≤ +125°C  
Input Bias Current  
IB  
1
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 2.7 V  
79  
70  
63  
60  
94  
75  
65  
95  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
μV/°C  
GΩ  
pF  
VCM = 0.3 V to 2.4 V; −40°C ≤ TA ≤ +85°C  
VCM = 0.3 V to 2.4 V; −40°C ≤ TA ≤ +125°C  
VCM = 0 V to 2.7 V; −40°C ≤ TA ≤ +125°C  
RL = 100 kΩ, VO = 0.5 V to 2.2 V  
−40°C ≤ TA ≤ +85°C  
Large Signal Voltage Gain  
105  
−40°C ≤ TA ≤ +125°C  
Offset Voltage Drift  
Input Resistance  
Input Capacitance, Differential Mode CINDM  
Input Capacitance, Common Mode  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ΔVOS/ΔT  
RIN  
2
10  
3.5  
3.5  
CINCM  
pF  
VOH  
VOL  
ISC  
RL = 100 kΩ to VCM; −40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to VCM; −40°C ≤ TA ≤ +125°C  
2.69  
V
10  
mV  
mA  
4
20  
ZOUT  
f = 1 kHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 2.7 V to 18 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
105  
70  
125  
18  
dB  
dB  
µA  
µA  
Supply Current per Amplifier  
22  
33  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time to 0.1%  
Gain Bandwidth Product  
Phase Margin  
SR  
ts  
GBP  
ΦM  
CS  
RL = 1 MΩ, CL = 10 pF, AV = 1  
VIN = 1 V step, RL = 100 kΩ, CL = 10 pF  
RL = 1 MΩ, CL = 10 pF, AV = 1  
RL = 1 MΩ, CL = 10 pF, AV = 1  
f = 10 kHz, RL = 1 MΩ  
38  
14  
170  
60  
105  
90  
V/ms  
µs  
kHz  
Degrees  
dB  
Channel Separation  
EMI Rejection Ratio of +IN x  
EMIRR  
VIN = 100 mVPEAK; f = 400 MHz, 900 MHz,  
1800 MHz, 2400 MHz  
dB  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
6
µV p-p  
nV/√Hz  
nV/√Hz  
pA/√Hz  
60  
56  
0.1  
Current Noise Density  
in  
f = 1 kHz  
Rev. A | Page 3 of 24  
 
 
 
AD8657  
ELECTRICAL CHARACTERISTICS—10 V OPERATION  
VSY = 10 V, V CM = VSY/2 V, TA = 25°C, unless otherwise specified.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
VCM = 0 V to 10 V  
VCM = 0 V to 10 V; −40°C ≤ TA ≤ +125°C  
350  
9
15  
2.6  
30  
500  
10  
µV  
mV  
pA  
nA  
pA  
pA  
V
Input Bias Current  
2
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 10 V  
90  
64  
105  
95  
67  
105  
120  
dB  
dB  
dB  
dB  
dB  
μV/°C  
GΩ  
pF  
VCM = 0 V to 10 V; −40°C ≤ TA ≤ +125°C  
RL = 100 kΩ, VO = 0.5 V to 9.5 V  
−40°C ≤ TA ≤ +85°C  
Large Signal Voltage Gain  
−40°C ≤ TA ≤ +125°C  
Offset Voltage Drift  
Input Resistance  
Input Capacitance, Differential Mode  
Input Capacitance, Common Mode  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ΔVOS/ΔT  
RIN  
CINDM  
CINCM  
2
10  
3.5  
3.5  
pF  
VOH  
VOL  
ISC  
RL = 100 kΩ to VCM; −40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to VCM; −40°C ≤ TA ≤ +125°C  
9.98  
V
20  
mV  
mA  
11  
15  
ZOUT  
f = 1 kHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 2.7 V to 18 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
105  
70  
125  
18  
dB  
dB  
µA  
µA  
Supply Current per Amplifier  
22  
33  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time to 0.1%  
Gain Bandwidth Product  
Phase Margin  
SR  
ts  
GBP  
ΦM  
CS  
RL = 1 MΩ, CL = 10 pF, AV = 1  
VIN = 1 V step, RL = 100 kΩ, CL = 10 pF  
RL = 1 MΩ, CL = 10 pF, AV = 1  
RL = 1 MΩ, CL = 10 pF, AV = 1  
f = 10 kHz, RL = 1 MΩ  
60  
13  
200  
60  
105  
90  
V/ms  
µs  
kHz  
Degrees  
dB  
Channel Separation  
EMI Rejection Ratio of +IN x  
EMIRR  
VIN = 100 mVPEAK; f = 400 MHz, 900 MHz,  
1800 MHz, 2400 MHz  
dB  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
5
µV p-p  
nV/√Hz  
nV/√Hz  
pA/√Hz  
50  
45  
0.1  
Current Noise Density  
in  
f = 1 kHz  
Rev. A | Page 4 of 24  
 
 
AD8657  
ELECTRICAL CHARACTERISTICS—18 V OPERATION  
VSY = 18 V, V CM = VSY/2 V, TA = 25°C, unless otherwise specified.  
Table 4.  
Parameter  
Symbol Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VCM = 0 V to 18 V  
350  
1.2  
2
11  
20  
2.9  
40  
500  
18  
µV  
mV  
mV  
mV  
pA  
nA  
pA  
pA  
V
VCM = 0.3 V to 17.7 V; −40°C ≤ TA ≤ +85°C  
VCM = 0.3 V to 17.7 V; −40°C ≤ TA ≤ +125°C  
VCM = 0 V to 18 V; −40°C ≤ TA ≤ +125°C  
Input Bias Current  
IB  
5
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 18 V  
95  
83  
80  
67  
110  
105  
73  
110  
120  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
μV/°C  
GΩ  
pF  
VCM = 0.3 V to 17.7 V; −40°C ≤ TA ≤ +85°C  
VCM = 0.3 V to 17.7 V; −40°C ≤ TA ≤ +125°C  
VCM = 0 V to 18 V; −40°C ≤ TA ≤ +125°C  
RL = 100 kΩ, VO = 0.5 V to 17.5 V  
−40°C ≤ TA ≤ +85°C  
Large Signal Voltage Gain  
−40°C ≤ TA ≤ +125°C  
Offset Voltage Drift  
Input Resistance  
Input Capacitance, Differential Mode  
Input Capacitance, Common Mode  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ΔVOS/ΔT  
RIN  
CINDM  
CINCM  
2
10  
3.5  
10.5  
pF  
VOH  
VOL  
ISC  
RL = 100 kΩ to VCM; −40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to VCM; −40°C ≤ TA ≤ +125°C  
17.97  
V
30  
mV  
mA  
12  
15  
ZOUT  
f = 1 kHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 2.7 V to 18 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
105  
70  
125  
18  
dB  
dB  
µA  
µA  
Supply Current per Amplifier  
22  
33  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time to 0.1%  
Gain Bandwidth Product  
Phase Margin  
SR  
ts  
GBP  
ΦM  
CS  
RL = 1 MΩ, CL = 10 pF, AV = 1  
VIN = 1 V step, RL = 100 kΩ, CL = 10 pF  
RL = 1 MΩ, CL = 10 pF, AV = 1  
RL = 1 MΩ, CL = 10 pF, AV = 1  
f = 10 kHz, RL = 1 MΩ  
70  
12  
200  
60  
105  
90  
V/ms  
µs  
kHz  
Degrees  
dB  
Channel Separation  
EMI Rejection Ratio of +IN x  
EMIRR  
VIN = 100 mVPEAK; f = 400 MHz, 900 MHz,  
1800 MHz, 2400 MHz  
dB  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
5
µV p-p  
nV/√Hz  
nV/√Hz  
pA/√Hz  
50  
45  
0.1  
Current Noise Density  
in  
f = 1 kHz  
Rev. A | Page 5 of 24  
 
AD8657  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages using a  
standard 4-layer JEDEC board. The exposed pad is soldered to  
the board.  
Parameter  
Rating  
Supply Voltage  
Input Voltage  
Input Current1  
Differential Input Voltage  
Output Short-Circuit  
Duration to GND  
Temperature Range  
Storage  
Operating  
Junction  
Lead Temperature  
(Soldering, 60 sec)  
20.5 V  
(V−) − 300 mV to (V+) + 300 mV  
10 mA  
VSY  
Table 5. Thermal Resistance  
Indefinite  
Package Type  
θJA  
142  
75  
θJC  
45  
12  
Unit  
°C/W  
°C/W  
8-Lead MSOP (RM-8)  
8-Lead LFCSP (CP-8-11)  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
ESD CAUTION  
1 The input pins have clamp diodes to the power supply pins. Limit the input  
current to 10 mA or less whenever input signals exceed the power supply  
rail by 0.3 V.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 6 of 24  
 
 
 
 
AD8657  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
160  
160  
140  
120  
100  
80  
V
V
= 2.7V  
= V /2  
SY  
V
V
= 18V  
= V /2  
SY  
SY  
SY  
140  
120  
100  
80  
CM  
CM  
60  
60  
40  
40  
20  
20  
0
0
V
(µV)  
V
(µV)  
OS  
OS  
Figure 3. Input Offset Voltage Distribution  
Figure 6. Input Offset Voltage Distribution  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
V
= 2.7V  
V
= 18V  
SY  
SY  
–40°C ≤ T ≤ +125°C  
–40°C ≤ T ≤ +125°C  
A
A
6
6
4
4
2
2
0
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
TCV (µV/°C)  
OS  
TCV (µV/°C)  
OS  
Figure 4. Input Offset Voltage Drift Distribution  
Figure 7. Input Offset Voltage Drift Distribution  
300  
200  
100  
0
300  
200  
100  
0
V
= 2.7V  
V
= 18V  
SY  
SY  
–100  
–200  
–300  
–100  
–200  
–300  
0
0.3  
0.6  
0.9  
1.2  
1.5  
(V)  
1.8  
2.1  
2.4  
2.7  
0
2
4
6
8
10  
(V)  
12  
14  
16  
18  
V
V
CM  
CM  
Figure 5. Input Offset Voltage vs. Common-Mode Voltage  
Figure 8. Input Offset Voltage vs. Common-Mode Voltage  
Rev. A | Page 7 of 24  
 
 
 
AD8657  
2.0  
4
3
V
= 2.7V  
SY  
–40°C ≤ T ≤ +85°C  
V
= 18V  
1.5  
SY  
–40°C ≤ T ≤ +85°C  
A
A
2
1.0  
1
0.5  
0
0
–1  
–2  
–3  
–4  
–0.5  
–1.0  
–1.5  
–2.0  
0
0
2
4
6
8
10  
(V)  
12  
14  
16  
18  
0.3  
0.6  
0.9  
1.2  
1.5  
(V)  
1.8  
2.1  
2.4  
2.7  
V
CM  
V
CM  
Figure 12. Input Offset Voltage vs. Common-Mode Voltage  
Figure 9. Input Offset Voltage vs. Common-Mode Voltage  
6
2.0  
1.5  
V
= 2.7V  
SY  
–40°C ≤ T ≤ +125°C  
V
= 18V  
SY  
–40°C ≤ T ≤ +125°C  
4
2
A
A
1.0  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2  
–4  
–6  
0
0.3  
0.6  
0.9  
1.2  
1.5  
(V)  
1.8  
2.1  
2.4  
2.7  
0
2
4
6
8
10  
(V)  
12  
14  
16  
18  
V
CM  
V
CM  
Figure 13. Input Offset Voltage vs. Common-Mode Voltage  
Figure 10. Input Offset Voltage vs. Common-Mode Voltage  
10000  
1000  
100  
10  
10000  
1000  
100  
10  
V
= 18V  
V
= 2.7V  
SY  
SY  
I
I
+
I
I
+
B
B
B
B
1
1
0.1  
0.1  
25  
50  
75  
100  
125  
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Input Bias Current vs. Temperature  
Figure 14. Input Bias Current vs. Temperature  
Rev. A | Page 8 of 24  
 
 
 
 
AD8657  
4
3
4
3
V
= 2.7V  
V
= 18V  
SY  
SY  
2
2
1
1
0
0
125°C  
85°C  
25°C  
125°C  
85°C  
25°C  
–1  
–2  
–3  
–4  
–1  
–2  
–3  
–4  
0
0.3  
0.6  
0.9  
1.2  
1.5  
(V)  
1.8  
2.1  
2.4  
2.7  
0
2
4
6
8
10  
(V)  
12  
14  
16  
18  
V
V
CM  
CM  
Figure 15. Input Bias Current vs. Common-Mode Voltage  
Figure 18. Input Bias Current vs. Common-Mode Voltage  
10  
1
10  
1
V
= 2.7V  
V
= 18V  
SY  
SY  
–40°C  
+25°C  
+85°C  
+125°C  
–40°C  
+25°C  
+85°C  
+125°C  
100m  
10m  
1m  
100m  
10m  
1m  
0.1m  
0.01m  
0.1m  
0.01m  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 16. Output Voltage (VOH) to Supply Rail vs. Load Current  
Figure 19. Output Voltage (VOH) to Supply Rail vs. Load Current  
10  
10  
V
= 2.7V  
V
= 18V  
SY  
SY  
1
100m  
10m  
1
100m  
10m  
–40°C  
+25°C  
+85°C  
+125°C  
–40°C  
+25°C  
+85°C  
+125°C  
1m  
1m  
0.1m  
0.01m  
0.1m  
0.01m  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 17. Output Voltage (VOL) to Supply Rail vs. Load Current  
Figure 20. Output Voltage (VOL) to Supply Rail vs. Load Current  
Rev. A | Page 9 of 24  
 
 
 
 
 
 
AD8657  
2.700  
18.000  
17.995  
17.990  
17.985  
17.980  
17.975  
R = 1MΩ  
L
R
= 1MΩ  
L
2.699  
2.698  
2.697  
R
= 100kΩ  
L
R
= 100kΩ  
L
2.696  
V
= 2.7V  
V
= 18V  
–25  
SY  
SY  
2.695  
–50  
–50  
0
25  
50  
75  
100  
125  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 21. Output Voltage (VOH) vs. Temperature  
Figure 24. Output Voltage (VOH) vs. Temperature  
12  
10  
8
12  
10  
8
V
= 2.7V  
V
= 18V  
SY  
SY  
R
= 100kΩ  
L
6
6
4
4
R
= 100kΩ  
L
2
2
R
= 1MΩ  
L
R
= 1MΩ  
L
0
–50  
0
–50  
–25  
0
25  
50  
75  
100  
125  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 22. Output Voltage (VOL) vs. Temperature  
Figure 25. Output Voltage (VOL) vs. Temperature  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
V
= 18V  
V
= 2.7V  
SY  
SY  
–40°C  
+25°C  
+85°C  
+125°C  
–40°C  
+25°C  
+85°C  
+125°C  
0
0
0
0
3
6
9
12  
15  
18  
0.3  
0.6  
0.9  
1.2  
V
1.5  
(V)  
1.8  
2.1  
2.4  
2.7  
V
(V)  
CM  
CM  
Figure 23. Supply Current vs. Common-Mode Voltage  
Figure 26. Supply Current vs. Common-Mode Voltage  
Rev. A | Page 10 of 24  
 
 
AD8657  
35  
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
V
V
= 2.7V  
= 18V  
SY  
SY  
–40°C  
+25°C  
+85°C  
+125°C  
0
0
3
6
9
12  
15  
18  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
V
(V)  
SY  
Figure 27. Supply Current vs. Supply Voltage  
Figure 30. Supply Current vs. Temperature  
135  
90  
135  
90  
60  
40  
60  
40  
V
R
= 18V  
= 1MΩ  
V
R
= 2.7V  
SY  
SY  
= 1MΩ  
PHASE  
PHASE  
L
L
45  
45  
20  
20  
GAIN  
0
0
0
0
GAIN  
–45  
–90  
–135  
–45  
–90  
–20  
–40  
–60  
–20  
–40  
–60  
C
C
= 10pF  
C
C
= 10pF  
L
L
L
= 100pF  
= 100pF  
L
–135  
1M  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 28. Open-Loop Gain and Phase vs. Frequency  
Figure 31. Open-Loop Gain and Phase vs. Frequency  
60  
40  
60  
40  
V
= 2.7V  
V
= 18V  
SY  
SY  
A
= 100  
A
= 100  
V
V
A
A
= 10  
= 1  
A
A
= 10  
= 1  
V
V
V
V
20  
20  
0
0
–20  
–40  
–60  
–20  
–40  
–60  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 32. Closed-Loop Gain vs. Frequency  
Figure 29. Closed-Loop Gain vs. Frequency  
Rev. A | Page 11 of 24  
AD8657  
1000  
1000  
100  
10  
A
= 100  
A = 100  
V
V
A
= 10  
A = 10  
V
V
100  
10  
A
= 1  
A = 1  
V
V
V
= 2.7V  
V
= 18V  
SY  
SY  
1
1
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 33. Output Impedance vs. Frequency  
Figure 36. Output Impedance vs. Frequency  
140  
120  
100  
80  
140  
120  
100  
80  
V
V
= 2.7V  
= 2.4V  
V
V
= 18V  
SY  
SY  
= V /2  
SY  
CM  
CM  
60  
60  
40  
40  
20  
20  
0
0
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 34. CMRR vs. Frequency  
Figure 37. CMRR vs. Frequency  
100  
80  
60  
40  
20  
100  
80  
60  
40  
20  
0
V
= 2.7V  
V
= 18V  
SY  
SY  
PSRR+  
PSRR–  
PSRR+  
PSRR–  
0
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 35. PSRR vs. Frequency  
Figure 38. PSRR vs. Frequency  
Rev. A | Page 12 of 24  
AD8657  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
V
V
R
= 2.7V  
= 10mV p-p  
= 1MΩ  
V
V
R
= 18V  
= 10mV p-p  
= 1MΩ  
SY  
IN  
SY  
IN  
OS+  
OS–  
OS+  
OS–  
L
L
10  
100  
CAPACITANCE (pF)  
1000  
10  
100  
CAPACITANCE (pF)  
1000  
Figure 39. Small Signal Overshoot vs. Load Capacitance  
Figure 42. Small Signal Overshoot vs. Load Capacitance  
V
= ±1.35V  
SY  
A
R
C
= 1  
= 1MΩ  
= 100pF  
V
L
L
V
= ±9V  
= 1  
= 1MΩ  
= 100pF  
SY  
A
R
C
V
L
L
TIME (100µs/DIV)  
TIME (100µs/DIV)  
Figure 40. Large Signal Transient Response  
Figure 43. Large Signal Transient Response  
V
= ±1.35V  
= 1  
= 1MΩ  
= 100pF  
SY  
V
= ±9V  
= 1  
= 1MΩ  
= 100pF  
SY  
A
R
C
V
L
L
A
R
C
V
L
L
TIME (100µs/DIV)  
TIME (100µs/DIV)  
Figure 41. Small Signal Transient Response  
Figure 44. Small Signal Transient Response  
Rev. A | Page 13 of 24  
AD8657  
V
A
R
= ±9V  
= –10  
= 1MΩ  
SY  
0
–0.2  
–0.4  
V
L
INPUT  
INPUT  
0
–1  
–2  
V
A
R
= ±1.35  
= –10  
= 1MΩ  
SY  
V
L
2
1
0
10  
5
OUTPUT  
OUTPUT  
0
TIME (40µs/DIV)  
TIME (40µs/DIV)  
Figure 45. Positive Overload Recovery  
Figure 48. Positive Overload Recovery  
V
A
R
= ±9V  
= –10  
= 1MΩ  
SY  
0.4  
0.2  
0
2
1
0
V
L
INPUT  
INPUT  
OUTPUT  
OUTPUT  
0
0
V
A
R
= ±1.35V  
= –10  
= 1MΩ  
SY  
–1  
–2  
–5  
–10  
V
L
TIME (40µs/DIV)  
TIME (40µs/DIV)  
Figure 46. Negative Overload Recovery  
Figure 49. Negative Overload Recovery  
INPUT  
INPUT  
V
R
C
= 2.7V  
= 100kΩ  
= 10pF  
V
R
C
= 18V  
= 100kΩ  
= 10pF  
SY  
SY  
L
L
L
L
+5mV  
0
+5mV  
0
ERROR BAND  
ERROR BAND  
OUTPUT  
OUTPUT  
–5mV  
–5mV  
TIME (10µs/DIV)  
TIME (10µs/DIV)  
Figure 47. Positive Settling Time to 0.1%  
Figure 50. Positive Settling Time to 0.1%  
Rev. A | Page 14 of 24  
AD8657  
V
R
C
= 2.7V  
= 100kΩ  
= 10pF  
V
R
C
=18V  
= 100kΩ  
= 10pF  
SY  
SY  
L
L
L
L
INPUT  
INPUT  
+5mV  
0
+5mV  
0
OUTPUT  
OUTPUT  
ERROR BAND  
ERROR BAND  
–5mV  
–5mV  
TIME (10µs/DIV)  
TIME (10µs/DIV)  
Figure 51. Negative Settling Time to 0.1%  
Figure 54. Negative Settling Time to 0.1%  
1000  
100  
10  
1000  
100  
10  
V
= 2.7V  
V
= 18V  
SY  
SY  
1
1
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 52. Voltage Noise Density vs. Frequency  
Figure 55. Voltage Noise Density vs. Frequency  
V
= 2.7V  
V
= 18V  
SY  
SY  
TIME (2s/DIV)  
TIME (2s/DIV)  
Figure 53. 0.1 Hz to 10 Hz Noise  
Figure 56. 0.1 Hz to 10 Hz Noise  
Rev. A | Page 15 of 24  
AD8657  
20  
18  
16  
14  
12  
10  
8
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
V
V
R
= 18V  
= 17.9V  
= 1MΩ  
= 1  
V
V
R
= 2.7V  
= 2.6V  
= 1MΩ  
= 1  
SY  
IN  
SY  
IN  
L
V
L
V
A
A
6
4
2
0
0
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
100k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 60. Output Swing vs. Frequency  
Figure 57. Output Swing vs. Frequency  
100  
10  
1
100  
10  
V
V
R
A
= 2.7V  
= 0.2V rms  
= 1MΩ  
V
V
R
A
= 18V  
= 0.2V rms  
= 1MΩ  
SY  
IN  
SY  
IN  
L
V
L
V
= 1  
= 1  
1
0.1  
0.1  
0.01  
0.01  
10  
100  
1k  
10k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 58. THD + N vs. Frequency  
Figure 61. THD + N vs. Frequency  
0
–20  
0
–20  
1MΩ  
1MΩ  
10kΩ  
V
R
A
= 2.7V  
= 1MΩ  
= –100  
V
R
A
= 18V  
SY  
= 1MΩ  
= –100  
SY  
10kΩ  
L
V
L
V
R
L
R
–40  
–40  
L
V
V
V
V
V
= 1V p-p  
= 5V p-p  
= 10V p-p  
= 15V p-p  
= 17V p-p  
IN  
IN  
IN  
IN  
IN  
–60  
–60  
V
V
V
= 0.5V p-p  
= 1.5V p-p  
= 2.6V p-p  
IN  
IN  
IN  
–80  
–80  
–100  
–120  
–100  
–120  
–140  
–140  
100  
1k  
10k  
FREQUENCY (Hz)  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
Figure 59. Channel Separation vs. Frequency  
Figure 62. Channel Separation vs. Frequency  
Rev. A | Page 16 of 24  
AD8657  
APPLICATIONS INFORMATION  
The AD8657 is a low power, rail-to-rail input and output  
precision CMOS amplifier that operates over a wide supply  
voltage range of 2.7 V to 18 V. This amplifier uses the Analog  
Devices DigiTrim technique to achieve a higher degree of  
precision than is available from other CMOS amplifiers. The  
DigiTrim technique is a method of trimming the offset voltage  
of an amplifier after assembly. The advantage of postpackage  
trimming is that it corrects any shifts in offset voltage caused by  
mechanical stresses of assembly.  
Figure 9, Figure 10, Figure 12, and Figure 13 for typical perfor-  
mance data).  
Current Source I1 drives the PMOS transistor pair. As the input  
common-mode voltage approaches the upper rail, I1 is steered  
away from the PMOS differential pair through the M5 transistor.  
The bias voltage, VB1, controls the point where this transfer occurs.  
M5 diverts the tail current into a current mirror consisting of the  
M6 and M7 transistors. The output of the current mirror then  
drives the NMOS pair. Note that the activation of this current  
mirror causes a slight increase in supply current at high common-  
mode voltages (see Figure 23 and Figure 26 for more details).  
The AD8657 also employs unique input and output stages to  
achieve a rail-to-rail input and output range with a very low  
supply current.  
The AD8657 achieves its high performance by using low voltage  
MOS devices for its differential inputs. These low voltage MOS  
devices offer excellent noise and bandwidth per unit of current.  
Each differential input pair is protected by proprietary regulation  
circuitry (not shown in the simplified schematic). The regula-  
tion circuitry consists of a combination of active devices that  
maintain the proper voltages across the input pairs during normal  
operation and passive clamping devices that protect the amplifier  
during fast transients. However, these passive clamping devices  
begin to forward bias as the common-mode voltage approaches  
either power supply rail. This causes an increase in the input  
bias current (see Figure 15 and Figure 18).  
INPUT STAGE  
Figure 63 shows the simplified schematic of the AD8657. The  
input stage comprises two differential transistor pairs, an NMOS  
pair (M1, M2) and a PMOS pair (M3, M4). The input common-  
mode voltage determines which differential pair turns on and is  
more active than the other.  
The PMOS differential pair is active when the input voltage  
approaches and reaches the lower supply rail. The NMOS pair  
is needed for input voltages up to and including the upper supply  
rail. This topology allows the amplifier to maintain a wide  
dynamic input voltage range and to maximize signal swing to  
both supply rails.  
The input devices are also protected from large differential  
input voltages by clamp diodes (D1 and D2). These diodes are  
buffered from the inputs with two 10 kΩ resistors (R1 and R2).  
The differential diodes turn on whenever the differential voltage  
exceeds approximately 600 mV; in this condition, the differential  
input resistance drops to 20 kΩ.  
For the majority of the input common-mode voltage range, the  
PMOS differential pair is active. Differential pairs commonly  
exhibit different offset voltages. The handoff from one pair to the  
other creates a step-like characteristic that is visible in the VOS vs.  
VCM graph (see Figure 5 and Figure 8). This is inherent in all rail-  
OUTPUT STAGE  
to-rail amplifiers that use the dual differential pair topology.  
Therefore, always choose a common-mode voltage that does not  
include the region of handoff from one input differential pair to  
the other.  
The AD8657 features a complementary output stage consisting  
of the M16 and M17 transistors. These transistors are configured  
in Class AB topology and are biased by the voltage source, VB2.  
This topology allows the output voltage to go within millivolts  
of the supply rails, achieving a rail-to-rail output swing. The output  
voltage is limited by the output impedance of the transistors, which  
are low RON MOS devices. The output voltage swing is a function  
of the load current and can be estimated using the output voltage to  
the supply rail vs. load current diagrams (see Figure 16, Figure 17,  
Figure 19, and Figure 20).  
Additional steps in the VOS vs. VCM curves are also visible as the  
input common-mode voltage approaches the power supply rails.  
These changes are a result of the load transistors (M8, M9, M14,  
and M15) running out of headroom. As the load transistors are  
forced into the triode region of operation, the mismatch of their  
drain impedances contributes to the offset voltage of the amplifier.  
This problem is exacerbated at high temperatures due to the  
decrease in the threshold voltage of the input transistors (see  
Rev. A | Page 17 of 24  
 
 
 
AD8657  
V+  
VB1  
I1  
M8  
M9  
M5  
M10  
M11  
M3  
M4  
+IN x  
–IN x  
M16  
M17  
R1  
R2  
D1  
D2  
VB2  
OUT x  
M1 M2  
M12  
M14  
M13  
M15  
M7  
M6  
V–  
Figure 63. Simplified Schematic  
Inverting Configuration  
RAIL TO RAIL  
Figure 65 shows AD8657 in an inverting configuration with  
a resistive load, RL, at the output. The actual load seen by the  
amplifier is the parallel combination of the feedback resistor,  
R2, and load, RL. Having a feedback resistor of 1 kΩ and a load  
of 1 MΩ results in an equivalent load resistance of 999 Ω at the  
output. In this condition, the AD8657 is incapable of driving  
such a heavy load; therefore, its performance degrades greatly.  
To avoid loading the output, use a larger feedback resistor, but  
consider the resistor thermal noise effect on the overall circuit.  
R2  
The AD8657 features rail-to-rail input and output with a supply  
voltage from 2.7 V to 18 V. Figure 64 shows the input and output  
waveforms of the AD8657 configured as a unity-gain buffer with  
a supply voltage of 9 V and a resistive load of 1 MΩ. With an  
input voltage of 9 V, the AD8657 allows the output to swing  
very close to both rails. Additionally, it does not exhibit phase  
reversal.  
V
R
= ±9V  
= 1MΩ  
SY  
INPUT  
L
OUTPUT  
+V  
SY  
R1  
V
IN  
AD8657  
1/2  
V
OUT  
R
L
–V  
SY  
R
= R || R2  
L, EFF  
L
Figure 65. Inverting Op Amp  
Noninverting Configuration  
TIME (200µs/DIV)  
Figure 66 shows the AD8657 in a noninverting configuration  
with a resistive load, RL, at the output. The actual load seen by  
the amplifier is the parallel combination of R1 + R2 and RL.  
R2  
Figure 64. Rail-to-Rail Input and Output  
RESISTIVE LOAD  
The feedback resistor alters the load resistance that an amplifier  
sees. It is, therefore, important to be aware of the value of feed-  
back resistors chosen for use with the AD8657. The AD8657 is  
capable of driving resistive loads down to 100 kΩ. The following  
two examples, inverting and noninverting configurations, show  
how the feedback resistor changes the actual load resistance  
seen at the output of the amplifier.  
+V  
SY  
R1  
AD8657  
1/2  
V
OUT  
R
L
V
IN  
–V  
SY  
R
= R || (R1 + R2)  
L, EFF  
L
Figure 66. Noninverting Op Amp  
Rev. A | Page 18 of 24  
 
 
 
 
 
 
AD8657  
consist of substrate PNP bipolar transistors, and conduct whenever  
the differential input voltage exceeds approximately 600 mV; how-  
ever, these diodes also allow a current path from the input to the  
lower supply rail, thus resulting in an increase in the total supply  
current of the system. As shown in Figure 71, both configurations  
yield the same result. At 18 V of power supply, ISY+ remains at  
36 μA per dual amplifier, but ISY− increases to 140 μA in magni-  
tude per dual amplifier.  
COMPARATOR OPERATION  
Op amps are designed to operate in a closed-loop configuration  
with feedback from its output to its inverting input. Figure 67  
shows the AD8657 configured as a voltage follower with an input  
voltage that is always kept at midpoint of the power supplies.  
The same configuration is applied to the unused channel. A1 and  
A2 indicate the placement of ammeters to measure supply current.  
ISY+ refers to the current flowing from the upper supply rail to  
the op amp, and ISY− refers to the current flowing from the op  
amp to the lower supply rail. As shown in Figure 68, as expected,  
in normal operating condition, the total current flowing into the  
op amp is equivalent to the total current flowing out of the op amp,  
where, ISY+ = ISY− = 36 μA for the dual AD8657 at VSY = 18 V.  
+V  
SY  
A1  
I
+
SY  
100kΩ  
100kΩ  
AD8657  
+V  
V
SY  
OUT  
1/2  
A1  
I
+
SY  
A2  
I
SY  
100kΩ  
100kΩ  
–V  
SY  
AD8657  
V
OUT  
1/2  
Figure 69. Comparator A  
+V  
SY  
A2  
I
SY  
A1  
I
+
SY  
–V  
SY  
100kΩ  
Figure 67. Voltage Follower  
AD8657  
V
OUT  
40  
35  
30  
25  
20  
15  
10  
5
1/2  
100kΩ  
A2  
I
SY  
–V  
SY  
Figure 70. Comparator B  
160  
140  
120  
100  
80  
I
I
+
SY  
SY  
0
0
2
4
6
8
10  
(V)  
12  
14  
16  
18  
V
I
+
SY  
SY  
I
SY  
Figure 68. Supply Current vs. Supply Voltage (Voltage Follower)  
60  
In contrast to op amps, comparators are designed to work in an  
open-loop configuration and to drive logic circuits. Although  
op amps are different from comparators, occasionally an unused  
section of a dual op amp is used as a comparator to save board  
space and cost; however, this is not recommended.  
40  
20  
0
0
2
4
6
8
10  
(V)  
12  
14  
16  
18  
V
SY  
Figure 69 and Figure 70 show the AD8657 configured as a com-  
parator, with 100 kΩ resistors in series with the input pins. Any  
unused channels are configured as buffers with the input voltage  
kept at the midpoint of the power supplies. The AD8657 has input  
devices that are protected from large differential input voltages  
by Diode D1 and Diode D2 (refer to Figure 63). These diodes  
Figure 71. Supply Current vs. Supply Voltage (AD8657 as a Comparator)  
Note that 100 kΩ resistors are used in series with the input of  
the op amp. If smaller resistor values are used, the supply current of  
the system increases much more. For more details on op amps as  
comparators, refer to the AN-849 Application Note Using Op  
Amps as Comparators.  
Rev. A | Page 19 of 24  
 
 
 
 
 
 
AD8657  
choice due to its low supply current of 33 μA per amplifier over  
temperature and supply voltage. The current transmitter controls  
the current flowing in the loop, where a zero-scale input signal  
is represented by 4 mA of current and a full-scale input signal  
is represented by 20 mA. The transmitter also floats from the  
control loop power supply, VDD, while signal ground is in the  
receiver. The loop current is measured at the load resistor, RL,  
at the receiver side.  
EMI REJECTION RATIO  
Circuit performance is often adversely affected by high frequency  
electromagnetic interference (EMI). In the event where signal  
strength is low and transmission lines are long, an op amp must  
accurately amplify the input signals. However, all op amp pins—  
the noninverting input, inverting input, positive supply, negative  
supply, and output pins—are susceptible to EMI signals. These  
high frequency signals are coupled into an op amp by various  
means such as conduction, near field radiation, or far field radi-  
ation. For instance, wires and PCB traces can act as antennas and  
pick up high frequency EMI signals.  
With a zero-scale input, a current of VREF/RNULL flows through  
R. This creates a current flowing through the sense resistor,  
I
SENSE, determined by the following equation (see Figure 73 for  
details):  
SENSE, MIN = (VREF × R)/(RNULL × RSENSE  
Precision op amps, such as the AD8657, do not amplify EMI or  
RF signals because of their relatively low bandwidth. However,  
due to the nonlinearities of the input devices, op amps can rectify  
these out-of-band signals. When these high frequency signals  
are rectified, they appear as a dc offset at the output.  
I
)
With a full-scale input voltage, current flowing through Ris  
increased by the full-scale change in VIN/RSPAN. This creates an  
increase in the current flowing through the sense resistor.  
To describe the ability of the AD8657 to perform as intended in  
the presence of an electromagnetic energy, the electromagnetic  
interference rejection ratio (EMIRR) of the noninverting pin is  
specified in Table 2, Table 3, and Table 4 of the Specifications  
section. A mathematical method of measuring EMIRR is  
defined as follows:  
I
SENSE, DELTA = (Full-Scale Change in VIN × R)/(RSPAN × RSENSE  
)
Therefore  
ISENSE, MAX = ISENSE, MIN + ISENSE, DELTA  
When R>> RSENSE, the current through the load resistor at the  
receiver side is almost equivalent to ISENSE  
.
EMIRR = 20 log (VIN_PEAKVOS)  
140  
Figure 73 is designed for a full-scale input voltage of 5 V. At 0 V  
of input, loop current is 3.5 mA, and at a full scale of 5 V, the  
loop current is 21 mA. This allows software calibration to fine  
tune the current loop to the 4 mA to 20 mA range.  
120  
100  
80  
The AD8657 and ADR125 both consume only 160 µA quiescent  
current, making 3.34 mA current available to power additional  
signal conditioning circuitry or to power a bridge circuit.  
ADR125  
V
REF  
V
V
OUT  
IN  
60  
GND  
R
NULL  
1MΩ  
1%  
C2  
C3  
C4  
C5  
10µF 0.1µF  
0.1µF 10µF  
40  
V
V
= 100mV  
PEAK  
= 2.7V TO 18V  
IN  
SY  
R
SPAN  
20  
10M  
200kΩ  
1/2  
AD8657  
100M  
1G  
10G  
1%  
V
Q1  
IN  
0V TO 5V  
V
FREQUENCY (Hz)  
DD  
18V  
R4  
3.3kΩ  
R1  
68kΩ  
1%  
Figure 72. EMIRR vs. Frequency  
D1  
4mA  
TO  
20mA  
R3  
1.2kΩ  
C1  
390pF  
4 mA TO 20 mA PROCESS CONTROL CURRENT  
LOOP TRANSMITTER  
R
R2  
2kΩ  
1%  
L
100Ω  
R
SENSE  
100Ω  
1%  
The 2-wire current transmitters are often used in distributed  
control systems and process control applications to transmit  
analog signals between sensors and process controllers. Figure 73  
shows a 4 mA to 20 mA current loop transmitter.  
NOTES  
1. R1 + R2 = R´.  
Figure 73. 4 mA to 20 mA Current Loop Transmitter  
The transmitter powers directly from the control loop power  
supply, and the current in the loop carries signal from 4 mA to  
20 mA. Thus, 4 mA establishes the baseline current budget within  
which the circuit must operate. Using the AD8657 is an excellent  
Rev. A | Page 20 of 24  
 
 
 
AD8657  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 74. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
2.44  
2.34  
2.24  
3.10  
3.00 SQ  
0.50 BSC  
2.90  
8
5
PIN 1 INDEX  
EXPOSED  
PAD  
1.70  
1.60  
1.50  
AREA  
0.50  
0.40  
0.30  
4
1
PIN 1  
INDICATOR  
(R 0.15)  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.203 REF  
COMPLIANT TOJEDEC STANDARDS MO-229-WEED  
Figure 75. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-8-11)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
RM-8  
RM-8  
RM-8  
CP-8-11  
CP-8-11  
Branding  
A2N  
A2N  
A2N  
A2N  
AD8657ARMZ  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
AD8657ARMZ-R7  
AD8657ARMZ-RL  
AD8657ACPZ-R7  
AD8657ACPZ-RL  
A2N  
1 Z = RoHS Compliant Part.  
Rev. A | Page 21 of 24  
 
 
 
AD8657  
NOTES  
Rev. A | Page 22 of 24  
AD8657  
NOTES  
Rev. A | Page 23 of 24  
AD8657  
NOTES  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08804-0-3/11(A)  
Rev. A | Page 24 of 24  

相关型号:

AD8659

Operational Amplifiers Selection Guide
ADI

AD8659*

Operational Amplifiers Selection Guide
ADI

AD8659ACPZ-R7

22 mu A, RRIO, CMOS,18 V Operational Amplifiers
ADI

AD8659ACPZ-RL

22 mu A, RRIO, CMOS,18 V Operational Amplifiers
ADI

AD8659ARZ

22 mu A, RRIO, CMOS,18 V Operational Amplifiers
ADI

AD8659ARZ-R7

22 mu A, RRIO, CMOS,18 V Operational Amplifiers
ADI

AD8659ARZ-RL

22 mu A, RRIO, CMOS,18 V Operational Amplifiers
ADI

AD8661

16V Low Cost, High Performance CMOS Rail-to-Rail Operational Amplifiers
ADI

AD8661ACP

16V Low Cost, High Performance CMOS Rail-to-Rail Operational Amplifiers
ADI

AD8661ACPZ-R2

Low Noise, Precision 16 V CMOS, Rail-to-Rail Operational Amplifiers
ADI

AD8661ACPZ-REEL

Low Noise, Precision 16 V CMOS, Rail-to-Rail Operational Amplifiers
ADI

AD8661ACPZ-REEL7

Low Noise, Precision 16 V CMOS, Rail-to-Rail Operational Amplifiers
ADI