AD9002BD [ADI]

High Speed 8-Bit Monolithic A/D Converter; 高速8位单片机A / D转换器
AD9002BD
型号: AD9002BD
厂家: ADI    ADI
描述:

High Speed 8-Bit Monolithic A/D Converter
高速8位单片机A / D转换器

转换器 CD
文件: 总8页 (文件大小:157K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed 8-Bit  
a
Monolithic A/D Converter  
AD9002  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
150 MSPS Encode Rate  
Low Input Capacitance: 17 pF  
Low Power: 750 mW  
–5.2 V Single Supply  
MIL-STD-883 Compliant Versions Available  
OVERFLOW  
AD9002  
INHIBIT  
ANALOG IN  
256  
255  
R
OVERFLOW  
BIT 8 (MSB)  
+V  
REF  
R
R
APPLICATIONS  
Radar Systems  
D
E
C
O
D
I
BIT 7  
Digital Oscilloscopes/ATE Equipment  
Laser/Radar Warning Receivers  
Digital Radio  
Electronic Warfare (ECM, ECCM, ESM)  
Communication/Signal Intelligence  
BIT 6  
BIT 5  
128  
127  
L
A
T
C
H
N
G
R/2  
R/2  
REF  
MID  
L
O
G
I
BIT 4  
BIT 3  
C
R
R
2
1
GENERAL DESCRIPTION  
BIT 2  
The AD9002 is an 8-bit, high speed, analog-to-digital converter.  
The AD9002 is fabricated in an advanced bipolar process that  
allows operation at sampling rates in excess of 150 megasamples/  
second. Functionally, the AD9002 is comprised of 256 parallel  
comparator stages whose outputs are decoded to drive the ECL  
compatible output latches.  
BIT 1 (LSB)  
–V  
REF  
ENCODE  
ENCODE  
GND  
HYSTERESIS  
–V  
S
An exceptionally wide large signal analog input bandwidth of  
160 MHz is due to an innovative comparator design and very  
close attention to device layout considerations. The wide input  
bandwidth of the AD9002 allows very accurate acquisition of  
high speed pulse inputs, without an external track-and-hold.  
The comparator output decoding scheme minimizes false codes,  
which is critical to high speed linearity.  
bit to indicate overrange inputs. This overflow output can be  
disabled with the overflow inhibit pin.  
The AD9002 is available in two grades, one with 0.5 LSB lin-  
earity and one with 0.75 LSB linearity. Both versions are offered  
in an industrial grade, –25°C to +85°C, packaged in a 28-lead  
DIP and a 28-leaded JLCC. The military temperature range  
devices, –55°C to +125°C, are available in ceramic DIP and  
LCC packages and comply with MIL-STD-883 Class B.  
The AD9002 provides an external hysteresis control pin that  
can be used to optimize comparator sensitivity to further im-  
prove performance. Additionally, the AD9002’s low power  
dissipation of 750 mW makes it usable over the full extended  
temperature range. The AD9002 also incorporates an overflow  
REV. D  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
AD9002–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (–VS = –5.2 V; Differential Reference Voltage = 2.0 V; unless otherwise noted)  
AD9002AD/AJ  
AD9002BD/BJ  
AD9002SD/SE  
AD9002TD/TE  
Parameter  
Temp  
Min  
Typ  
Max Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Units  
RESOLUTION  
8
8
8
8
Bits  
DC ACCURACY  
Differential Linearity  
+25°C  
Full  
+25°C  
Full  
Full  
0.6  
0.6  
0.75  
1.0  
1.0  
1.2  
0.4  
0.4  
0.5  
0.75  
0.5  
1.2  
0.6  
0.6  
0.75  
1.0  
1.0  
1.2  
0.4  
0.4  
0.5  
0.75  
0.5  
1.2  
LSB  
LSB  
LSB  
LSB  
Integral Linearity  
No Missing Codes  
GUARANTEED  
GUARANTEED  
GUARANTEED  
GUARANTEED  
INITIAL OFFSET ERROR  
Top of Reference Ladder  
+25°C  
Full  
+25°C  
Full  
Full  
8
14  
17  
10  
12  
8
14  
17  
10  
12  
8
14  
17  
10  
12  
8
14  
17  
10  
12  
mV  
mV  
Bottom of Reference Ladder  
Offset Drift Coefficient  
4
4
4
4
mV  
mV  
µV/°C  
20  
20  
20  
20  
ANALOG INPUT  
Input Bias Current1  
+25°C  
60  
200  
200  
60  
200  
200  
60  
200  
200  
60  
200  
200  
µA  
Full  
µA  
Input Resistance  
+25°C 25  
+25°C  
+25°C  
+25°C  
200  
17  
160  
440  
25  
40  
200  
17  
160  
440  
25  
40  
200  
17  
160  
440  
25  
40  
200  
17  
160  
440  
kΩ  
pF  
MHz  
V/µs  
Input Capacitance  
Large Signal Bandwidth2  
Input Slew Rate3  
22  
22  
22  
22  
REFERENCE INPUT  
Reference Ladder Resistance  
Ladder Temperature Coefficient  
Reference Input Bandwidth  
+25°C 40  
+25°C  
80  
0.25  
10  
110  
80  
0.25  
10  
110  
80  
0.25  
10  
110  
80  
0.25  
10  
110  
/°C  
MHz  
DYNAMIC PERFORMANCE  
Conversion Rate  
+25°C 125  
+25°C  
150  
1.3  
15  
3.7  
6
125  
2.5  
150  
1.3  
15  
3.7  
6
125  
2.5  
150  
1.3  
15  
3.7  
6
125  
2.5  
150  
1.3  
15  
3.7  
6
MSPS  
ns  
Aperture Delay  
Aperture Uncertainty (Jitter)  
+25°C  
ps  
4, 5  
Output Delay (tPD  
)
+25°C 2.5  
+25°C  
5.5  
5.5  
5.5  
5.5  
ns  
Transient Response6  
Overvoltage Recovery Time7  
Output Rise Time4  
ns  
+25°C  
6
6
6
6
ns  
+25°C  
3.0  
2.5  
3.0  
2.5  
3.0  
2.5  
3.0  
2.5  
ns  
Output Fall Time4  
+25°C  
ns  
Output Time Skew4, 8  
+25°C  
0.6  
0.6  
0.6  
0.6  
ns  
ENCODE INPUT  
Logic “1” Voltage4  
Full  
–1.1  
–1.1  
–1.1  
–1.1  
V
Logic “0” Voltage4  
Full  
–1.5  
150  
120  
–1.5  
150  
120  
–1.5  
150  
120  
–1.5  
150  
120  
V
Logic “1” Current  
Full  
Full  
+25°C  
+25°C 1.5  
+25°C 1.5  
µA  
µA  
pF  
ns  
ns  
Logic “0” Current  
Input Capacitance  
3
3
3
3
Encode Pulsewidth (Low)9  
Encode Pulsewidth (High)9  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
OVERFLOW INHIBIT INPUT  
0 V Input Current  
Full  
144  
7.6  
300  
144  
7.6  
300  
144  
7.6  
300  
144  
7.6  
300  
µA  
AC LINEARITY10  
Effective Bits11  
+25°C  
Bits  
In-Band Harmonics  
dc to 1.23 MHz  
+25°C 48  
+25°C  
55  
48  
46  
55  
48  
46  
55  
48  
46  
55  
dB  
dB  
dB  
dB  
dB  
dc to 9.3 MHz  
50  
50  
50  
50  
dc to 19.3 MHz  
+25°C  
44  
47.6  
60  
44  
47.6  
60  
44  
47.6  
60  
44  
47.6  
60  
Signal-to-Noise Ratio12  
+25°C 46  
Two Tone Intermod Rejection13 +25°C  
DIGITAL OUTPUTS4  
Logic “1” Voltage  
Logic “0” Voltage  
Full  
Full  
–1.1  
–1.1  
–1.1  
–1.1  
V
V
–1.5  
–1.5  
–1.5  
–1.5  
POWER SUPPLY14  
Supply Current (–5.2 V)  
+25°C  
Full  
145  
175  
200  
145  
175  
200  
145  
175  
200  
145  
175  
200  
mA  
mA  
Nominal Power Dissipation  
Reference Ladder Dissipation  
Power Supply Rejection Ratio15  
+25°C  
+25°C  
+25°C  
750  
50  
0.8  
750  
50  
0.8  
750  
50  
0.8  
750  
50  
0.8  
mW  
mW  
mV/V  
1.5  
1.5  
1.5  
1.5  
bit-to-bit time skew differences.  
NOTES  
9ENCODE signal rise/fall times should be less than 10 ns for normal operation.  
10Measured at 125 MSPS encode rate.  
1Measured with AIN = 0 V.  
2Measured by FFT analysis where fundamental is –3 dBc.  
11Analog input frequency = 1.23 MHz.  
3Input slew rate derived from rise time (10 to 90%) of full scale input.  
40utputs terminated through 100 to –2 V.  
12RMS signal to rms noise, with 1.23 MHz analog input signal.  
13Input signals 1 V p-p @ 1.23 MHz and 1 V p-p @ 2.30 MHz.  
14Supplies should remain stable within ±5% for normal operation.  
15Measured at –5.2 V ±5%.  
5Measured from ENCODE in to data out for LSB only.  
6For full-scale step input, 8-bit accuracy is attained in specified time.  
7Recovers to 8-bit accuracy in specified time after 150% full-scale input overvoltage.  
8Output time skew includes high-to-low and low-to-high transitions as well as  
Specifications subject to change without notice.  
–2–  
REV. D  
AD9002  
Recommended Operating Conditions  
ABSOLUTE MAXIMUM RATINGS1  
Supply Voltage (–VS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . –6 V  
Analog-to-Digital Supply Voltage Differential . . . . . . . . .0.5 V  
Analog Input Voltage . . . . . . . . . . . . . . . . . . . . . –VS to +0.5 V  
Input Voltage  
Nominal  
Parameter  
Min  
Max  
Digital Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . –VS to 0 V  
–VS  
+VREF  
–VREF  
Analog Input  
–5.46  
–VREF  
–2.1  
–5.20  
0.0 V  
–2.0  
–4.94  
+0.1  
+VREF  
+VREF  
2
Reference Input Voltage (+VREF – VREF  
)
. . . . –3.5 V to 0.1 V  
Differential Reference Voltage . . . . . . . . . . . . . . . . . . . . .2.1 V  
Reference Midpoint Current . . . . . . . . . . . . . . . . . . . . ±4 mA  
ENCODE to ENCODE Differential Voltage . . . . . . . . . . . 4 V  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating Temperature Range  
–VREF  
EXPLANATION OF TEST LEVELS  
AD9002AD/BD/AJ/BJ . . . . . . . . . . . . . . . . –25°C to +85°C  
AD9002SE/SD/TD/TE . . . . . . . . . . . . . . –55°C to +125°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature3 . . . . . . . . . . . . . . . . . . . . . . . .+175°C  
Lead Soldering Temperature (10 sec) . . . . . . . . . . . . .+300°C  
Test Level I  
Test Level II  
100% production tested.  
100% production tested at +25°C, and  
sample tested at specified temperatures.  
Sample tested only.  
Parameter is guaranteed by design and  
characterization testing.  
Test Level III  
Test Level IV  
NOTES  
1Absolute maximum ratings are limiting values, to be applied individually, and  
beyond which the serviceability of the circuit may be impaired. Functional  
operability under any of these conditions is not necessarily implied. Exposure to  
absolute maximum rating conditions for extended periods of time may affect device  
reliability.  
Test Level V  
Test Level VI  
Parameter is a typical value only.  
All devices are 100% production tested at  
+25°C. 100% production tested at tempera-  
ture extremes for extended temperature  
devices; sample tested at temperature ex-  
tremes for commercial/industrial devices.  
2+VREF –VREF under all circumstances.  
3Maximum junction temperature (tJ max) should not exceed +175°C for ceramic  
packages, and +150°C for plastic packages:  
tJ = PD (θJA) + tA  
PD (θJC) + tC  
where  
ORDERING GUIDE  
PD = power dissipation  
θJA = thermal impedance from junction to ambient (°C/W)  
θJC = thermal impedance from junction to case (°C/W)  
tA = ambient temperature (°C)  
Package  
Model  
Linearity Temperature Range Option*  
tC = case temperature (°C)  
AD9002AD  
AD9002BD  
AD9002AJ  
AD9002BJ  
0.75 LSB –25°C to +85°C  
0.50 LSB –25°C to +85°C  
0.75 LSB –25°C to +85°C  
0.50 LSB –25°C to +85°C  
D-28  
D-28  
J-28  
Typical thermal impedances are:  
Ceramic DIP θJA = 56°C/W; θJC = 20°C/W  
Ceramic LCC θJA = 69°C/W; θJC = 23°C/W  
PLCC θJA = 60°C/W; θJC = 19°C/W.  
J-28  
AD9002SD/883B 0.75 LSB –55°C to +125°C  
AD9002SE/883B 0.75 LSB –55°C to +125°C  
AD9002TD/883B 0.50 LSB –55°C to +125°C  
AD9002TE/883B 0.50 LSB –55°C to +125°C  
D-28  
E-28A  
D-28  
E-28A  
*D = Ceramic DIP; E = Leadless Ceramic Chip Carrier; J = Ceramic Chip  
Carrier, J-Formed Leads.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD9002 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. D  
–3–  
AD9002  
FUNCTIONAL DESCRIPTION  
Pin #  
Name  
Description  
1
2
DIGITAL GROUND  
OVERFLOW INH  
One of four digital ground pins. All digital ground pins should be connected together.  
OVERFLOW INHIBIT controls the data output polarity for overvoltage inputs.  
Overflow Enabled  
(Floating or –5.2 V)  
of D1–D8  
Overflow Inhibited (GND)  
of D1–D8  
Analog Input  
VIN > +VREF  
1 0  
0
0
0
0
0
0
0
0 1  
1
1
1
1
1
1 1  
V
IN +VREF  
0 X X X X X X X X  
0 X X X X X X X X  
3
HYSTERESIS  
The Hysteresis control voltage varies the comparator hysteresis from 0 mV to 10 mV, for a change  
from –5.2 V to –2.2 V at the Hysteresis control pin. Normally converted to –5.2 V.  
The most positive reference voltage for the internal resistor ladder.  
One of two analog input pins. Both analog input pins should be connected together.  
One of two analog ground pins. Both analog ground pins should be connected together.  
Noninverted input of the differential encode input. This pin is driven in conjunction with  
ENCODE. Data is latched on the rising edge of the ENCODE signal.  
Inverted input of the differential encode input. This pin is driven in conjunction with ENCODE.  
One of two analog ground pins. Both analog ground pins should be connected together.  
One of two analog input pins. Both analog inputs should be connected together.  
The most negative reference voltage for the internal resistor ladder.  
The midpoint tap on the internal resistor ladder.  
4
5
6
7
+VREF  
ANALOG INPUT  
ANALOG GROUND  
ENCODE  
8
9
ENCODE  
ANALOG GROUND  
ANALOG INPUT  
–VREF  
REFMID  
DIGITAL GROUND  
DIGITAL –VS  
10  
11  
12  
13  
14  
One of four digital ground pins. All digital ground pins should be connected together.  
One of two negative digital supply pins (nominally –5.2 V). Both digital supply pins should be con-  
nected together.  
15  
D1 (LSB)  
Digital data output.  
16–19  
20  
21, 22  
D2–D5  
DIGITAL GROUND  
ANALOG –VS  
Digital data output.  
One of four digital ground pins. All digital ground pins should be connected together.  
One of two negative analog supply pins (nominally –5.2 V). Both analog supply pins should be con-  
nected together.  
23  
24, 25  
26  
DIGITAL GROUND  
D6, D7  
D8 (MSB)  
One of four digital ground pins. All digital ground pins should be connected together.  
Digital data output.  
Digital data output.  
27  
OVERFLOW  
Overflow data output. Logic high indicates an input overvoltage (VIN > +VREF) if OVERFLOW  
INHIBIT is enabled (overflow enabled, –5.2 V). See OVERFLOW INHIBIT.  
One of two negative digital supply pins (nominally –5.2 V). Both digital supply pins should be  
connected together.  
28  
DIGITAL –VS  
PIN DESIGNATIONS  
LCC  
JLCC  
DIP  
DIGITAL  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
DIGITAL –V  
S
GROUND  
2
3
OVERFLOW INH  
OVERFLOW  
D8(MSB)  
HYSTERESIS  
+V  
4
REF  
D7  
D6  
ANALOG INPUT  
5
4
3
1 28 27 26  
2
25 24 23 22 21 20 19  
ANALOG  
GROUND  
DIGITAL  
GROUND  
6
AD9002  
D8(MSB)  
D4  
26  
27  
28  
1
18  
17  
16  
15  
5
6
ANALOG INPUT  
25  
D7  
7
ENCODE  
ANALOG –V  
S
S
TOP VIEW  
(Not to Scale)  
OVERFLOW  
D3  
ANALOG  
GROUND  
ENCODE  
24 D6  
8
ANALOG –V  
ENCODE  
DIGITAL –V  
S
DIGITAL  
GROUND  
D2  
DIGITAL  
GROUND  
ANALOG –V  
7
8
9
AD9002  
23  
22  
AD9002  
ANALOG  
GROUND  
ANALOG INPUT  
DIGITAL  
GROUND  
D1(LSB)  
9
TOP VIEW  
ENCODE  
ANALOG  
GROUND  
TOP VIEW  
S
S
(Not to Scale)  
2
14 DIGITAL –V  
(Not to Scale)  
OVERFLOW INH  
S
10  
11  
12  
13  
14  
21 ANALOG –V  
D5  
DIGITAL  
13  
3
DIGITAL  
HYSTERESIS  
10  
11  
20  
ANALOG INPUT  
GROUND  
–V  
18 D4  
GROUND  
REF  
12  
+V  
4
REF  
REF  
19  
MID  
–V  
D 5  
REF  
REF  
MID  
17  
16  
15  
D3  
5
6
7
8
9
10 11  
DIGITAL  
GROUND  
D2  
12  
13 14 15 16 17 18  
DIGITAL –V  
D1(LSB)  
S
REV. D  
–4–  
AD9002  
N + 1  
ANALOG  
INPUT  
N
N + 2  
APERTURE  
DELAY  
ENCODE  
tPD  
OUTPUT  
DATA  
N + 1  
N – 1  
N
Figure 1. Timing Diagram  
+V  
AD9002  
REF  
AD9002  
R
AD9002  
R/2  
R/2  
ENCODE  
REF  
MID  
ANALOG  
INPUT  
DIGITAL  
OUTPUT  
–5.2V  
–5.2V  
ENCODE  
R
–V  
REF  
–5.2V  
–5.2V  
–5.2V  
COMPARATOR CELLS  
Figure 2. Input/Output Circuits  
OVERFLOW  
INHIBIT  
DIGITAL –V  
S
HYSTERESIS  
DIGITAL  
GROUND  
OVERFLOW  
0.1F  
+V  
D8 (MSB)  
–5.2V  
REF  
–V  
D7  
D6  
S
1k⍀  
1k⍀  
1k⍀  
1k⍀  
1k⍀  
ANALOG  
INPUT  
OVERFLOW  
HYSTERESIS  
D8  
D7  
D6  
D5  
OVERFLOW INH  
100⍀  
1k⍀  
ANALOG  
GROUND  
DIGITAL  
GROUND  
AD1  
AD2  
AD3  
ANALOG IN  
ENCODE  
ENCODE  
1k⍀  
ANALOG –V  
S
ENCODE  
1k⍀  
1k⍀  
1k⍀  
1k⍀  
ENCODE  
DIGITAL  
GROUND  
D4  
D3  
–V  
–2V  
REF  
ANALOG  
GROUND  
0.1F  
AD9002  
D2  
D1  
D5  
D4  
+V  
REF  
ANALOG  
INPUT  
GROUND  
STATIC BURN IN  
AD1 = 0V  
AD2 = ECL HIGH  
AD3 = ECL LOW  
D2  
D1 (LSB)  
DIGITAL  
D3  
DYNAMIC BURN IN  
DIGITAL  
GROUND  
MID  
–V  
REF  
0V  
REF  
–V  
AD1  
S
–2V  
ECL HIGH  
ECL LOW  
AD2  
Figure 4. Die Layout and Mechanical Information  
ECL HIGH  
ECL LOW  
AD3  
Die Dimensions . . . . . . . . . . . . . . . . .106 × 114 × 15 (±2) mils  
Pad Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 × 4 mils  
Metalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gold  
Backing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . None  
Substrate Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –VS  
Passivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Nitride  
Die Attach . . . . . . . . . . . . . . . . . . . . . Gold Eutectic (Ceramic)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Epoxy (Plastic)  
Bond Wire . . . . . . . . . . . . . 1-1.3 mil Gold; Gold Ball Bonding  
ALL RESISTORS ؎ 5%, ⍀  
ALL CAPACITORS ؎ 20%, F  
ALL SUPPLIES ؎ 5%  
Figure 3. Burn-in Diagram  
REV. D  
–5–  
AD9002  
APPLICATION INFORMATION  
LAYOUT SUGGESTIONS  
The AD9002 is compatible with all standard ECL logic families,  
including 10K and 10KH. 100K ECL’s logic levels are tempera-  
ture compensated, and are therefore compatible with the  
AD9002 (and most other ECL device families) only over a  
limited temperature range. To operate at the highest encode  
rates, the supporting logic around the AD9002 will need to be  
equally fast. Whichever of the ECL logic families is used, special  
care must be exercised to keep digital switching noise away from  
the analog circuits around the AD9002. The two most critical  
items are digital supply lines and digital ground return.  
Designs using the AD9002, like all high speed devices, must  
follow a few basic layout rules to insure optimum performance.  
Essentially, these guidelines are meant to avoid many of the  
problems associated with high speed designs. The first require-  
ment is for a substantial ground plane around and under the  
AD9002. Separate ground plane areas for the digital and analog  
components may be useful, but these separate grounds should  
be connected together at the AD9002 to avoid the effects of  
“ground loop” currents.  
The second area that requires an extra degree of attention in-  
The input capacitance of the AD9002 is an exceptionally low  
17 pF. This allows the use of a wide range of input amplifiers,  
both hybrid and monolithic. To take full advantage of the wide  
input bandwidth of the AD9002, a hybrid amplifier such as the  
AD9610 will be required. For those applications that do not  
require the full input bandwidth of the AD9002, more tradi-  
tional monolithic amplifiers, such as the AD846, will work very  
well. Overall performance with any amplifier can be improved  
by inserting a 10 resistor in series with the amplifier output.  
volves the three reference inputs, +VREF, REFMID, and –VREF  
The +VREF input and the –VREF input should both be driven  
from a low impedance source (note that the +VREF input is  
typically tied to analog ground). A low drift amplifier should  
provide satisfactory results, even over an extended temperature  
range. Adjustments at the REFMID input may be useful in im-  
proving the integral linearity by correcting any reference ladder  
skews. The application circuit shown below demonstrates a  
simple and effective means of driving the reference circuit.  
.
The output data is buffered through the ECL compatible output  
latches. All data is delayed by one clock cycle, in addition to the  
latch propagation delay (tPD), before becoming available at the  
outputs. Both the analog-to-digital conversion cycle and the  
data transfer to the output latches are triggered on the rising  
edge of the differential, ECL compactible ENCODE signal (see  
timing diagram). In applications where only a single-ended  
signal is available, the AD96685, a high speed, ECL voltage  
comparator, can be employed to generate the differential sig-  
nals. All ECL signals (including the overflow bit) should be  
terminated properly to avoid ringing and reflection.  
The reference inputs should be adequately decoupled to ground  
through 0.1 µF chip capacitors to limit the effects of system  
noise on conversion accuracy. The power supply pins must also  
be decoupled to ground to improve noise immunity; 0.1 µF and  
0.01 µF chip capacitors are recommended.  
The analog input signal is brought into the AD9002 through  
two separate input pins. It is very important that the two input  
pins be driven symmetrically with equal length electrical con-  
nections. Otherwise, aperture delay errors may degrade con-  
verter performance at high frequencies.  
–15V  
The AD9002 also incorporates a HYSTERESIS control pin  
which provides from 0 mV to 10 mV of additional hysteresis in  
the comparator input stages. Adjustments in the HYSTERESIS  
control voltage may help improve noise immunity and overall  
performance in harsh environments.  
1k⍀  
4k⍀  
100⍀  
ANALOG  
INPUT  
(0V TO +2V)  
0.1F  
1.5k⍀  
2N3906  
10⍀  
AD741  
The OVERFLOW INHIBIT pin of the AD9002 determines  
how the converter handles overrange inputs (AIN +VREF). In  
the “enabled” state (floating at –5.2 V), the OVERFLOW out-  
put will be at logic HIGH and all other outputs will be at logic  
LOW for overrange inputs (return-to-zero operation). In the  
“inhibited” state (tied to ground), the OVERFLOW output will  
be at logic LOW, and all other outputs will be at logic HIGH  
for overrange inputs (nonreturn-to-zero operation).  
NYQUEST  
FILTER  
0.1F  
A
IN  
–V  
+V  
REF  
REF  
OVERFLOW  
40⍀  
EQUAL  
D8 (MSB)  
DISTANCE  
50⍀  
D7  
AD9611  
A
D6  
IN  
AD9002  
D5  
ENCODE  
INPUT  
D4  
ENCODE  
D3  
(GROUND  
THRESHOLD)  
The AD9002 provides outstanding error rate performance. This  
is due to tight control of comparator offset matching and a fault  
tolerant decoding stage. Additional improvements in error rate  
are possible through the addition of hysteresis (see HYSTER-  
ESIS control pin). This level of performance is extremely im-  
portant in fault-sensitive applications such as digital radio  
(QAM).  
D2  
50⍀  
ENCODE  
D1 (LSB)  
–5.2D  
–5.2A  
AD96685  
0.1F  
0.01F  
0.01F  
0.1F  
Figure 5. Typical Application  
Dramatic improvements in comparator design and construction  
give the AD9002 excellent dynamic characteristics, especially  
SNR (signal-to-noise ratio). The 160 MHz input bandwidth  
and low error rate performance give the AD9002 an SNR of  
48 dB with a 1.23 MHz input. High SNR performance is par-  
ticularly important in wide bandwidth applications, such as  
pulse signature analysis, commonly performed in advanced  
radar receivers.  
REV. D  
–6–  
AD9002  
LINEARITY OUTPUT  
(ERROR WAVEFORM)  
RECONSTRUCTED  
OUTPUT  
HOS100  
HOS100  
50⍀  
1k⍀  
–15V  
1k⍀  
4.3k⍀  
3.75⍀  
150⍀  
0.1F  
902090⍀  
2N3906  
AD741  
AD9768  
DAC  
0.01F  
0.1F  
50⍀  
–V  
IN  
+V  
REF  
REF  
REF  
MID  
ANALOG  
INPUT  
A
75⍀  
OVERFLOW  
D8(MSB)  
D7  
10F  
EQUAL  
DISTANCE  
50⍀  
HOS200  
2k⍀  
A
IN  
D6  
D5  
AD96687  
ENCODE  
REGISTER  
100151  
LINE  
DRIVER  
100114  
37 PIN  
D
CONNECTOR  
AD9002*  
ENCODE  
D4  
1k⍀  
0.1F  
3.9k⍀  
OVERFLOW  
INH  
D3  
D2  
HYSTERESIS  
D1(LSB)  
–15V  
1k⍀  
0.1F  
–5.2A  
–5.2D  
625⍀  
–5.2V  
ENCODE INPUT  
(GROUND  
THRESHOLD)  
0.1F  
0.1F  
0.01F  
0.01F  
NOTE:  
100114 LINE DRIVER OUTPUTS  
REQUIRE 510PULL-DOWN  
RESISTORS TO –5.2V. ALL OTHER  
ECL OUTPUTS SHOULD BE  
TERMINATED TO –2V WITH  
100RESISTERS, UNLESS  
OTHERWISE SPECIFIED.  
AD96687  
AD96687  
AD96687  
510⍀  
50⍀  
510⍀  
–5.2V  
RESISTORS ARE IN .  
CAPACITORS ARE IN F.  
–5.2V  
DELAY  
0.1F  
1k⍀  
13k⍀  
–15V  
1kDELAY  
*CONTACT FACTORY ABOUT  
EVALUATION BOARD AVAILABILITY  
880⍀  
13k⍀  
–15V  
880⍀  
Figure 6. AD9002 Evaluation Circuit  
65  
60  
55  
50  
2ND HARMONIC  
3RD HARMONIC  
SNR  
45  
40  
35  
30  
1MHz  
10MHz  
100MHz  
ANALOG INPUT FREQUENCY (0.1dB BELOW FULL SCALE)  
125 MSPS ENCODE RATE  
Figure 7. Dynamic Performance  
REV. D  
–7–  
AD9002  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
28-Lead Ceramic Side-Brazed DIP  
(D-28)  
0.098 (2.49) MAX  
0.005 (0.13) MIN  
28  
15  
0.310 (7.87)  
0.220 (5.59)  
14  
1
0.606 (15.4)  
0.58 (14.74)  
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
1.490 (37.85) MAX  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.110 (2.79) 0.070 (1.78)  
0.090 (2.29) 0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
28-Lead Ceramic Leadless Chip Carrier  
(E-28A)  
0.300 (7.62)  
BSC  
0.150  
0.075  
(1.91)  
REF  
0.100 (2.54)  
0.064 (1.63)  
0.458 (11.63)  
0.442 (11.23)  
SQ  
(3.51)  
BSC  
0.015 (0.38)  
MIN  
0.095 (2.41)  
0.075 (1.90)  
4
26  
28  
25  
5
0.028 (0.71)  
0.022 (0.56)  
1
0.458  
0.011 (0.28)  
0.007 (0.18)  
R TYP  
TOP  
VIEW  
BOTTOM  
VIEW  
(11.63)  
MAX  
SQ  
0.050  
(1.27)  
BSC  
12  
19  
18  
0.075  
(1.91)  
REF  
11  
45؇ TYP  
0.200  
(5.08)  
BSC  
0.088 (2.24)  
0.054 (1.37)  
0.055 (1.40)  
0.045 (1.14)  
28-Leaded JLCC  
(J-28)  
0.171 (4.34)  
MAX  
0.450 ؎0.006  
SQ  
(11.43 ؎0.152)  
19  
0.039 ؎0.005  
(0.991 ؎0.127)  
25  
26  
18  
0.028 ؎0.002  
(0.711 ؎0.051)  
0.050  
(1.27)  
BSC  
PIN 1  
0.300  
(7.62)  
TYP  
TOP VIEW  
(PINS DOWN)  
0.420 ؎0.010  
(10.668 ؎0.254)  
BOTTOM VIEW  
0.019 ؎0.002  
(0.483 ؎0.051)  
12  
4
11  
5
0.006 ؎0.0006  
(0.152 ؎0.015)  
0.488 ؎0.010  
(11.43 ؎0.254)  
SQ  
0.022 ؎0.003  
(0.559 ؎0.076)  
0.102 ؎0.010  
(1.448 ؎0.254)  
REV. D  
–8–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY