AD9012TE [ADI]

High Speed 8-Bit TTL A/D Converter; 高速8位TTL A / D转换器
AD9012TE
型号: AD9012TE
厂家: ADI    ADI
描述:

High Speed 8-Bit TTL A/D Converter
高速8位TTL A / D转换器

转换器
文件: 总8页 (文件大小:145K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed 8-Bit  
TTL A/D Converter  
a
AD9012  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
100 MSPS Encode Rate  
Very Low Input Capacitance—16 pF  
Low Power—1 W  
OVERFLOW  
INHIBIT  
AD9012  
ANALOG IN  
256  
255  
R
TTL Compatible Outputs  
MIL-STD-883 Compliant Versions Available  
OVERFLOW  
؉V  
REF  
R
R
D
D
(MSB)  
8
7
APPLICATIONS  
Radar Guidance  
D
E
C
O
D
I
Digital Oscilloscopes/ATE Equipment  
Laser/Radar Warning Receivers  
Digital Radio  
Electronic Warfare (ECM, ECCM, ESM)  
Communication/Signal Intelligence  
D
D
128  
127  
6
L
A
T
C
H
N
G
R/2  
R/2  
5
REF  
MID  
L
O
G
I
D
D
4
C
3
R
R
2
1
GENERAL DESCRIPTION  
D
D
2
The AD9012 is an 8-bit, ultrahigh speed, analog-to-digital  
converter. The AD9012 is fabricated in an advanced bipolar  
process that allows operation at sampling rates up to one hun-  
dred megasamples/second. Functionally, the AD9012 is com-  
prised of 256 parallel comparator stages whose outputs are  
decoded to drive the TTL compatible output latches.  
(LSB)  
1
؊V  
REF  
ENCODE  
GND  
HYSTERESIS ؊V ؉V  
S S  
The exceptionally wide large-signal analog input bandwidth of  
160 MHz is due to an innovative comparator design and very  
close attention to device layout considerations. The wide input  
bandwidth of the AD9012 allows very accurate acquisition of  
high speed pulse inputs without an external track-and-hold. The  
comparator output decoding scheme minimizes false codes,  
which is critical to high speed linearity.  
an industrial grade, –25°C to +85°C, packaged in a 28-lead DIP  
and a 28-lead JLCC. The military temperature range devices,  
–55°C to +125°C, are available in ceramic DIP and LCC pack-  
ages and are compliant to MIL-STD-883 Class B.  
The AD9012 is available in versions compliant with MIL-STD-  
883. Refer to the Analog Devices Military Products Databook  
or current AD9012/883B data sheet for detailed specifications.  
The AD9012 is available in two grades: one with 0.5 LSB linear-  
ity and one with 0.75 LSB linearity. Both versions are offered in  
REV. D  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
AD9012–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (+VS = +5.0 V; –VS = –5.2 V; Differential Reference Voltage = 2.0 V; unless otherwise noted)  
Test  
AD9012AQ/AJ  
AD9012BQ/BJ  
AD9012SQ/SE  
AD9012TQ/TE  
Parameter  
Temp  
Level Min Typ  
Max Min  
Typ  
Max Min  
Typ Max Min Typ Max  
Units  
RESOLUTION  
8
8
8
8
Bits  
DC ACCURACY  
Differential Linearity  
+25°C  
Full  
+25°C  
Full  
I
VI  
I
VI  
VI  
0.6  
0.6  
0.75  
1.0  
1.0  
0.4  
0.4  
0.5  
0.75  
0.5  
0.6  
0.6  
0.75  
1.0  
1.0  
0.4  
0.4  
0.5  
0.75  
0.5  
1.2  
LSB  
LSB  
LSB  
LSB  
Integral Linearity  
No Missing Codes  
1.2  
1.2  
1.2  
Full  
GUARANTEED  
GUARANTEED  
GUARANTEED  
GUARANTEED  
INITIAL OFFSET ERROR  
Top of Reference Ladder  
+25°C  
Full  
+25°C  
Full  
I
VI  
I
VI  
V
7
15  
18  
10  
13  
7
15  
18  
10  
13  
7
15  
18  
10  
13  
7
15  
18  
10  
13  
mV  
mV  
mV  
mV  
Bottom of Reference Ladder  
Offset Drift Coefficient  
6
6
6
6
Full  
25  
25  
25  
25  
µV/°C  
ANALOG INPUT  
Input Bias Current1  
+25°C  
Full  
+25°C  
+25°C III  
+25°C  
+25°C  
I
VI  
I
60  
200  
200  
60  
200  
200  
60  
200  
200  
60  
200  
200  
µA  
µA  
kΩ  
pF  
MHz  
V/µs  
Input Resistance  
25  
40  
200  
16  
160  
440  
25  
40  
200  
16  
160  
440  
25  
40  
200  
16  
160  
440  
25  
40  
200  
16  
160  
440  
Input Capacitance  
18  
18  
18  
18  
Large Signal Bandwidth2  
Analog Input Slew Rate3  
V
V
REFERENCE INPUT  
Reference Ladder Resistance  
Ladder Temperature Coefficient  
Reference Input Bandwidth  
+25°C VI  
80  
0.25  
10  
110  
80  
0.25  
10  
110  
80  
0.25  
10  
110  
80  
0.25  
10  
110  
/°C  
MHz  
V
V
+25°C  
DYNAMIC PERFORMANCE  
Conversion Rate  
Aperture Delay  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
I
75  
4
100  
3.8  
15  
4.9  
8
75  
4
100  
3.8  
15  
4.9  
8
75  
4
100  
3.8  
15  
4.9  
8
75  
4
100  
3.8  
15  
4.9  
8
MSPS  
ns  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
V
V
I
V
V
I
Aperture Uncertainty (Jitter)  
4, 5  
Output Delay (tPD  
)
11  
11  
11  
11  
Transient Response6  
Overvoltage Recovery Time7  
Output Rise Time4  
8
8
8
8
6.6  
3.3  
3.0  
8.0  
4.3  
6.6  
3.3  
3.0  
8.0  
4.3  
6.6  
3.3  
3.0  
8.0  
4.3  
6.6  
3.3  
3.0  
8.0  
4.3  
Output Fall Time4  
I
V
Output Time Skew4, 8  
ENCODE INPUT  
Logic “1” Voltage4  
Full  
Full  
Full  
Full  
+25°C  
+25°C  
+25°C  
VI  
VI  
VI  
VI  
V
I
I
2.0  
2.0  
2.0  
2.0  
V
V
µA  
µA  
pF  
ns  
ns  
Logic “0” Voltage4  
0.8  
250  
400  
0.8  
250  
400  
0.8  
250  
400  
0.8  
250  
400  
Logic “1” Current  
Logic “0” Current  
Input Capacitance  
2.5  
2.5  
2.5  
2.5  
Encode Pulsewidth (Low)9  
Encode Pulsewidth (High)9  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
OVERFLOW INHIBIT INPUT  
0 V Input Current  
Full  
VI  
V
200  
7.5  
250  
200  
7.5  
250  
200  
7.5  
250  
200  
7.5  
250  
µA  
AC LINEARITY10  
Effective Bits11  
+25°C  
Bits  
In-Band Harmonics  
dc to 1.23 MHz  
dc to 9.3 MHz  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
I
48  
46  
55  
50  
44  
47.6  
37  
48  
46  
55  
50  
44  
47.6  
37  
48  
46  
55  
50  
44  
47.6  
37  
48  
46  
55  
50  
44  
47.6  
37  
dBc  
dBc  
dBc  
dBc  
dBc  
V
V
I
dc to 19.3 MHz  
Signal-to-Noise Ratio12  
Noise Power Ratio13  
V
DIGITAL OUTPUT  
Logic “1” Voltage  
Logic “0” Voltage  
Full  
Full  
VI  
VI  
2.4  
2.4  
2.4  
2.4  
V
V
0.4  
0.4  
0.4  
0.4  
POWER SUPPLY14  
Positive Supply Current (+5.0 V) +25°C  
I
33  
45  
33  
45  
33  
45  
33  
45  
mA  
Full  
+25°C  
Full  
+25°C  
+25°C  
+25°C  
VI  
I
VI  
V
V
I
48  
179  
191  
48  
179  
191  
48  
179  
191  
48  
179  
191  
mA  
mA  
mA  
mW  
mW  
mV/V  
Supply Current (–5.2 V)  
152  
152  
152  
152  
Nominal Power Dissipation  
Reference Ladder Dissipation  
Power Supply Rejection Ratio15  
955  
44  
0.85  
955  
44  
0.85  
955  
44  
0.8  
955  
44  
0.8  
2.5  
2.5  
2.5  
2.5  
REV. D  
–2–  
AD9012  
9ENCODE signal rise/fall times should be less than 30 ns for normal operation.  
NOTES  
1Measured with Analog Input = 0 V.  
10Measured at 75 MSPS encode rate. Harmonic data based on worst case harmonics.  
11Analog input frequency = 1.23 MHz.  
2Measured by FFT analysis where fundamental is –3 dBc.  
3Input slew rate derived from rise time (10% to 90%) of full-scale step input.  
4Outputs terminated with two equivalent ’LS00 type loads. (See load circuit.)  
5Measured from ENCODE into data out for LSB only.  
6For full-scale step input, 8-bit accuracy is attained in specified time.  
7Recovers to 8-bit accuracy in specified time, after 150% full-scale input overvoltage.  
12RMS signal to rms noise, including harmonics with 1.23 MHz. analog input  
signal.  
13NPR measured @ 0.5 MHz. Noise Source is 250 mW (rms) from 0.5 MHz  
to 8 MHz.  
14Supplies should remain stable within ±5% for normal operation.  
15Measured at –5.2 V ± 5% and +5.0 V ± 5%.  
8Output time skew includes high-to-low and low-to-high transitions as well a  
bit-to-bit time skew differences.  
s
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS1  
V
S
Positive Supply Voltage (+VS) . . . . . . . . . . . . . . . . . . . . . +6 V  
Analog to Digital Supply Voltage Differential (–VS) . . . .0.5 V  
Negative Supply Voltage (–VS) . . . . . . . . . . . . . . . . . . . . –6 V  
Analog Input Voltage . . . . . . . . . . . . . . . . . . . . . –VS to +0.5 V  
ENCODE Input Voltage . . . . . . . . . . . . . . . . . –0.5 V to +5 V  
1k  
TTL  
OUTPUT  
15pF  
OVERFLOW INH Input Voltage . . . . . . . . . . . –5.2 V to 0 V  
2
Reference Input Voltage (+VREF –VREF  
)
. . . . –3.5 V to +0.1 V  
Figure 1. Load Circuit  
Differential Reference Voltage . . . . . . . . . . . . . . . . . . . . .2.1 V  
Reference Midpoint Current . . . . . . . . . . . . . . . . . . . . ±4 mA  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 30 mA  
Operating Temperature Range  
EXPLANATION OF TEST LEVELS  
Test Level  
AD9012AQ/BQ/AJ/BJ . . . . . . . . . . . . . . . . –25°C to +85°C  
AD9012SE/SQ/TE/TQ . . . . . . . . . . . . . . –55°C to +125°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature3 . . . . . . . . . . . . . . . . . . . . . . . .+175°C  
Lead Soldering Temperature (10 sec) . . . . . . . . . . . . .+300°C  
I
– 100% production tested.  
II – 100% production tested at +25°C, and sample tested at  
specified temperatures. AC testing done on sample basis.  
III – Sample tested only.  
NOTES  
IV – Parameter is guaranteed by design and characterization  
testing.  
1Absolute maximum ratings are limiting values, to be applied individually, and  
beyond which the serviceability of the circuit may be impaired. Functional  
operability under any of these conditions is not necessarily implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device  
reliability.  
V
– Parameter is a typical value only.  
VI – All devices are 100% production tested at +25°C. 100%  
production tested at temperature extremes for extended  
temperature devices; guaranteed by design and  
characterization testing for industrial devices.  
2+VREF –VREF under all circumstances.  
3Maximum junction temperature (tJ max) should not exceed +175°C for ceramic  
packages, and +150°C for plastic packages:  
tJ = PD (θJA) + tA  
PD (θJC) + tc  
where  
ORDERING GUIDE  
PD = power dissipation  
Temperature  
Ranges  
Package  
Options*  
θJA = thermal impedance from junction to ambient (°C/W)  
θJC = thermal impedance from junction to case (°C/W)  
tA = ambient temperature (°C)  
Device  
Linearity  
AD9012AQ  
AD9012BQ  
AD9012AJ  
AD9012BJ  
AD9012SQ  
AD9012SE  
AD9012TQ  
AD9012TE  
0.75 LSB  
0.50 LSB  
0.75 LSB  
0.50 LSB  
0.75 LSB  
0.75 LSB  
0.50 LSB  
0.50 LSB  
–25°C to +85°C  
–25°C to +85°C  
–25°C to +85°C  
–25°C to +85°C  
–55°C to +125°C  
–55°C to +125°C  
–55°C to +125°C  
–55°C to +125°C  
Q-28  
Q-28  
J-28A  
J-28A  
Q-28  
E-28A  
Q-28  
E-28A  
tC = case temperature (°C)  
typical thermal impedances are:  
Ceramic DIP θJA = 42°C/W; θJC = 10°C/W  
Ceramic LCC θJA = 50°C/W; θJC = 15°C/W  
JLCC θJA = 59°C/W; θJC = 15°C/W.  
Recommended Operating Conditions  
Input Voltage  
Parameter  
Min  
Nominal  
Max  
*E = Leadless Ceramic Chip Carrier; J = Ceramic Leaded Chip Carrier;  
Q = Cerdip.  
–VS  
+VS  
+VREF  
–VREF  
–5.46  
+4.75  
–VREF  
–2.1  
–5.20  
5.00  
0.0 V  
–2.0  
–4.94  
+5.25  
+0.1  
+VREF  
Analog Input  
–VREF  
+VREF  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD9012 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. D  
–3–  
AD9012  
PIN FUNCTION DESCRIPTIONS  
Description  
Pin #  
Name  
11  
12  
DIGITAL +VS  
OVERFLOW INH  
One of three positive digital supply pins (nominally +5.0 V).  
OVERFLOW INHIBIT controls the data output coding for overvoltage inputs (AIN + VREF).  
ANALOG  
INPUT  
OVERFLOW ENABLED (FLOATING)  
OF Dl D2 D3 D4 D5 D6 D7 D8  
OVERFLOW INHIBITED (GND)  
OF Dl D2 D3 D4 D5 D6 D7 D8  
V
IN + VREF  
1
0
0
0
0
0
0
X
0
0
0
0
0
1
1
1
1
1
1 1 1  
VIN < + VREF  
X X X X  
X X X  
X X X X X X X X  
13  
HYSTERESIS  
The Hysteresis control voltage varies the comparator hysteresis from 0 mV to 10 mV, for a  
change from –5.2 V to –2.2 V at the Hysteresis control pin.  
14  
15  
16  
17  
18  
19  
10  
11  
12  
13  
14  
+VREF  
The most positive reference voltage for the internal resistor ladder.  
One of two analog input pins. Both analog input pins should be connected together.  
One of two analog ground pins. Both analog ground pins should be connected together.  
TTL level encode command input. ENCODE is rising edge sensitive.  
One of three positive digital supply pins (nominally +5.0 V).  
One of two analog ground pins. Both analog ground pins should be connected together.  
One of two analog input pins. Both analog inputs should be connected together.  
The most negative reference voltage for the internal resistor ladder.  
The midpoint tap on the internal resistor ladder.  
ANALOG INPUT  
ANALOG GROUND  
ENCODE  
DIGITAL +VS  
ANALOG GROUND  
ANALOG INPUT  
–VREF  
REFMID  
DIGITAL +VS  
DIGITAL –VS  
One of three positive digital supply pins (nominally +5.0 V).  
One of two negative digital supply pins (nominally –5.2 V). Both digital supply pins should be  
connected together.  
15  
16–19  
D1 (LSB)  
D2–D5  
Digital data output. D1 (LSB) is the least significant bit of the digital output word.  
Digital data output.  
20  
21, 22  
DIGITAL GROUND  
ANALOG –VS  
One of two digital ground pins. Both digital grounds pins should be connected together.  
One of two negative analog supply pins (nominally –5.2 V). Both analog supply pins should be  
connected together.  
23  
24, 25  
26  
DIGITAL GROUND  
D6, D7  
D8 (MSB)  
One of two digital ground pins. Both digital ground pins should be connected together.  
Digital data output.  
Digital data output D8 (MSB) is the most significant bit of the digital output word.  
Overflow data output. Logic HIGH indicates an input overvoltage (VIN > + VREF), if  
OVERFLOW INHIBIT is enabled (overflow enabled, floating). See OVERFLOW INHIBIT.  
One of two negative digital supply pins (nominally –5.2 V). Both digital supply pins should be  
connected together.  
27  
OVERFLOW  
28  
DIGITAL –VS  
PIN CONFIGURATIONS  
DIGITAL V +  
S
1
28  
DIGITAL V –  
S
2
3
27 OVERFLOW  
26  
OVERFLOW INH  
HYSTERESIS  
D
D
D
(MSB)  
8
7
6
4
3
1
28 27 26  
2
4
25  
24  
23  
+V  
REF  
5
ANALOG INPUT  
ANALOG GROUND  
ENCODE  
5
6
25  
24  
ANALOG INPUT  
ANALOG GROUND  
ENCODE  
D
D
7
6
6
DIGITAL GROUND  
AD9012  
TOP VIEW  
7
8
23  
22  
DIGITAL GROUND  
AD9012  
TOP VIEW  
(Not to Scale)  
7
22 ANALOG V –  
S
DIGITAL V +  
S
ANALOG V –  
S
(Not to Scale)  
8
DIGITAL V +  
S
21 ANALOG V –  
S
9
21  
ANALOG V –  
S
ANALOG GROUND  
ANALOG INPUT  
9
20 DIGITAL GROUND  
ANALOG GROUND  
ANALOG INPUT  
20  
19  
10  
11  
DIGITAL GROUND  
10  
11  
12  
13  
14  
19  
18  
17  
16  
15  
D
5
D
D
D
D
–V  
5
4
3
2
REF  
–V  
REF  
12  
13 14 15 16 17 18  
REF  
MID  
DIGITAL V +  
S
DIGITAL V –  
S
D
(LSB)  
1
REV. D  
–4–  
AD9012  
N + 1  
ANALOG  
INPUT  
N
N + 2  
APERTURE  
DELAY  
ENCODE  
tPD  
OUTPUT  
DATA  
N + 1  
N – 1  
N
Figure 2. Timing Diagram  
؉V  
REF  
R
؉5.0V  
؉5.0V  
ANALOG  
INPUT  
R/2  
R/2  
ENCODE  
REF  
MID  
DIGITAL  
OUTPUTS  
R
؊V  
256 COMPARATOR  
CELLS  
REF  
؊5.2V  
Figure 3. Input Output Circuits  
DIE LAYOUT AND MECHANICAL INFORMATION  
–5.2V  
+5.0V  
0.1F  
0.1F  
ONE JUMPER  
PER BOARD  
–V  
S
+V  
S
1k⍀  
1k⍀  
OVERFLOW  
(MSB)  
100⍀  
D
AIN  
AD1  
8
1k⍀  
1k⍀  
1k⍀  
D
7
AD9012  
D
D
D
6
5
510⍀  
AD2  
ENCODE  
1k⍀  
1k⍀  
1k⍀  
–V  
–2.0V  
REF  
4
D
3
V
H
D
2
1k⍀  
+V  
D (LSB)  
D 1(LSB)  
1
REF  
LOAD  
RESISTORS  
ANALOG  
GROUND  
DIGITAL  
GROUND  
ALL RESISTORS ؎ 5%  
ALL CAPACITORS ؎ 20%  
ALL SUPPLY VOLTAGES ؎ 5%  
OPTION #1 (STATIC) AD1 = –2.0V; AD2 = +2.4V  
OPTION #2 (DYNAMIC) SEE WAVEFORMS  
0V  
AD1  
–2V  
640s  
+2.4V  
+0.4V  
Die Dimensions . . . . . . . . . . . . . . . . 111 × 123 × 15 (±2) mils  
Pad Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 × 4 mils  
Metalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gold  
Backing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . None  
Substrate Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –VS  
Passivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nitride  
Die Attach . . . . . . . . . . . . . . . . . . . . Gold Eutectic (Ceramic)  
Epoxy (Plastic)  
AD2  
5s  
Figure 4. Burn-In Diagram  
Bond Wire . . . . . . . . . . . . . 1–1.3 mil Gold; Gold Ball Bonding  
REV. D  
–5–  
AD9012  
APPLICATION INFORMATION  
LAYOUT SUGGESTIONS  
The AD9012 is compatible with all standard TTL logic fami-  
lies. However, to operate at the highest encode rates, the sup-  
porting logic around the AD9012 will need to be equally fast.  
Two possible choices are the AS and the ALS families. Which-  
ever of the TTL logic families is used, special care must be  
exercised to keep digital switching noise away from the analog  
circuits around the AD9012. The two most critical items are the  
digital supply lines and the digital ground return.  
Designs using the AD9012, like all high-speed devices, must  
follow a few basic layout rules to insure optimum performance.  
Essentially, these guidelines are meant to avoid many of the  
problems associated with high-speed designs. The first require-  
ment is for a substantial ground plane around and under the  
AD9012. Separate ground plane areas for the digital and analog  
components may be useful, but the separate grounds should  
be connected together at the AD9012 to avoid the effects of  
“ground loop” currents.  
The input capacitance of the AD9012 is an exceptionally low  
16 pF. This allows the use of a wide range of input amplifiers,  
both hybrid and monolithic. To take full advantage of the  
160 MHz input bandwidth of the AD9012, a hybrid amplifier  
like the AD9610/AD9611 will be required. For those applica-  
tions that do not require the full input bandwidth of the AD9012,  
some of the more traditional monolithic amplifiers, like the  
AD846, should work very well. Overall performance with mono-  
lithic amplifiers can be improved by inserting a 40 resistor in  
series with the amplifier output.  
The second area that requires an extra degree of attention  
involves the three reference inputs, +VREF, REFMID, and –VREF  
The +VREF input and the –VREF input should both be driven  
from a low impedance source (note that the +VREF input is  
typically tied to analog ground). A low drift amplifier should  
.
provide satisfactory results, even over an extended temperature  
range. Adjustments at the REFMID input may be useful in im-  
proving the integral linearity by correcting any reference ladder  
skews.  
The output data is buffered through the TTL compatible out-  
put latches. In addition to the latch propagation delay (tPD), all  
data is delayed by one clock cycle, before becoming available at  
the outputs. Both the analog-to-digital conversion cycle and the  
data transfer to the output latches are triggered on the rising edge  
of the TTL-compatible ENCODE signal (see timing diagram).  
The reference inputs should be adequately decoupled to ground  
through 0.1 µF chip capacitors to limit the effects of system  
noise on conversion accuracy. The power supply pins must also  
be decoupled to ground to improve noise immunity; 0.1 µF and  
0.01 µF chip capacitors should be very effective.  
The analog input signal is brought into the AD9012 through  
two separate input pins. It is very important that the two input  
pins be driven symmetrically with equal length electrical  
connections. Otherwise, aperture delay errors may degrade  
converter performance at high frequencies.  
The AD9012 also incorporates a HYSTERESIS control pin  
which provides from 0 mV to 10 mV of additional hysteresis in  
the comparator input stages. Adjustments in the HYSTERESIS  
control voltage may help to improve noise immunity and overall  
performance in harsh environments.  
–15V  
The OVERFLOW INHIBIT pin of the AD9012 determines  
how the converter handles overrange inputs (AIN + VREF). In  
the “enabled” state (floating at –5.2 V), the OVERFLOW out-  
put will be at logic HIGH and all other outputs will be at logic  
LOW for overrange inputs (return-to-zero operation). In the  
“inhibited” state (tied to ground), the OVERFLOW output will  
be at logic LOW for overrange inputs, and all other digital out-  
puts will be at logic HIGH (nonreturn-to-zero operation).  
1k⍀  
4k⍀  
100⍀  
2N3906  
0.1F  
10⍀  
AD741  
ANALOG  
INPUT  
(0 TO +2V)  
0.1F  
–V  
+V  
REF  
NYQUEST  
FILTER  
REF  
The AD9012 provides outstanding error rate performance. This  
is due to tight control of comparator offset matching and a fault  
tolerant decoding stage. Additional improvements in error rate  
are possible through the addition of hysteresis (see HYSTER-  
ESIS control pin). This level of performance is extremely impor-  
tant in fault sensitive applications such as digital radio (QAM).  
1.5k⍀  
OVERFLOW  
D
(MSB)  
8
A
IN  
40⍀  
D
7
EQUAL  
DISTANCE  
50⍀  
D
6
A
IN  
AD9611  
D
5
AD9012  
D
D
D
4
3
2
TTL  
ENCODE  
INPUT  
ENCODE  
Dramatic improvements in comparator design and construction  
give the AD9012 excellent dynamic characteristics, namely SNR  
(signal-to-noise ratio). The 160 MHz input bandwidth and low  
error rate performance give the AD9012 an SNR of 47 dB with  
a 1.23 MHz input. High SNR performance is particularly im-  
portant in broadcast video applications where signals may pass  
through the converter several times before the processing is  
complete. Pulse signature analysis, commonly performed in  
advanced radar receivers, is another area that is especially  
dependent on high quality dynamic performance.  
50⍀  
D
(LSB)  
1
+5.0V  
–5.2V  
0.01F  
0.01F 0.1F  
0.1F  
Figure 5. Typical Application  
REV. D  
–6–  
AD9012  
LINEARITY OUTPUT  
(ERROR WAVEFORM)  
RECONSTRUCTED  
OUTPUT  
430  
430⍀  
50⍀  
NOTE:  
10124, ECL OUTPUTS,  
SHOULD BE TERMINATED  
TO –2V WITH  
100⍀  
–5.2V  
AD642  
AD642  
50⍀  
100REGISTERS.  
160⍀  
82⍀  
2N3906  
37.5⍀  
2N3906  
10⍀  
AD741  
100⍀  
240⍀  
1N747  
500⍀  
240⍀  
AD9768  
0.1F  
0.01F  
0.1F  
REF  
0.1F  
+V  
10124  
10124  
–V  
REF  
MID  
REF  
50⍀  
OVERFLOW  
D
(MSB)  
8
A
A
IN  
ANALOG  
INPUT  
(2V p-p MAX)  
D
7
EQUAL  
DISTANCE  
D
6
LATCH  
AD9012  
100⍀  
IN  
D
5
HOS200  
74AS843  
25 PIN  
D
D
4
ENCODE  
CONNECTOR  
D
3
OVERFLOW  
INH  
D
2
D
(LSB)  
HYSTERESIS  
+5.0V  
1
CLK  
0.1F  
–5.2V  
1k⍀  
560⍀  
1k⍀  
–5.2V  
0.01F  
0.1F  
0.1F 0.01F  
1k⍀  
TTL  
ENCODE  
INPUT  
74AS04  
Figure 6. Evaluation Circuit  
70  
65  
60  
2ND HARMONIC  
55  
50  
45  
40  
3RD HARMONIC  
SNR*  
*WITH HARMONICS  
INPUT = 0.1dB BELOW FULL SCALE  
ENCODE RATE = 75MSPS  
35  
30  
1
10  
100  
ANALOG INPUT FREQUENCY – MHz  
Figure 7. Dynamic Performance  
REV. D  
–7–  
AD9012  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
28-Lead JLCC  
(J-28A)  
0.171 (4.34)  
MAX  
0.456 (11.582)  
0.444 (11.278)  
0.044 (1.118)  
0.034 (0.864)  
SQ  
25  
19  
26  
18  
0.030 (0.762)  
0.026 (0.660)  
0.050  
(1.27)  
BSC  
PIN 1  
0.300  
(7.62)  
TYP  
0.430 (10.922)  
0.410 (10.414)  
0.021 (0.534)  
TOP VIEW  
(PINS DOWN)  
BOTTOM VIEW  
0.017 (0.432)  
12  
4
5
11  
0.0066 (0.167)  
0.0054 (0.137)  
0.498 (12.649)  
0.478 (12.141)  
SQ  
0.025 (0.635)  
0.019 (0.483)  
0.112 (1.702)  
0.092 (1.194)  
28-Lead Cerdip  
(Q-28)  
1.490 (37.84) MAX  
28  
15  
0.525 (13.33)  
0.515 (13.08)  
PIN 1  
1
14  
0.62 (15.74)  
0.59 (14.93)  
0.18 (4.57)  
MAX  
GLASS SEALANT  
0.22  
(5.59)  
MAX  
0.125  
(3.175)  
MIN  
0.012 (0.305)  
0.008 (0.203)  
0.02 (0.5)  
0.016 (0.406) 0.099 (2.28)  
0.11 (2.79)  
0.06 (1.52)  
0.05 (1.27)  
15؇  
0؇  
SEATING  
PLANE  
LEAD NO. 1 IDENTIFIED BY DOT OR NOTCH  
LEADS ARE SOLDER OR TIN PLATED KOVAR OR ALLOY 42  
28-Terminal Leadless Chip Carrier  
(E-28A)  
1
0.100 (2.54)  
0.064 (1.63)  
PIN 1  
INDEX  
0.075 (1.91)  
REF  
2
0.458 (11.63)  
0.442 (11.23)  
0.020 
؋
 45؇  
(0.51 
؋
 45؇)  
REF  
4
26  
25  
28  
5
1
0.055 (1.40)  
0.045 (1.14)  
0.028 (0.71)  
0.022 (0.56)  
TOP  
VIEW  
BOTTOM  
VIEW  
19  
18  
12  
11  
0.040 
؋
 45؇  
(1.02 
؋
 45؇)  
REF 3 PLCS  
0.055 (1.40)  
0.045 (1.14)  
NOTES  
1
THIS DIMENSION CONTROLS THE OVERALL PACKAGE THICKNESS.  
APPLIES TO ALL FOUR SIDES.  
2
TERMINALS ARE GOLD PLATED OR SOLDER DIPPED.  
–8–  
REV. D  

相关型号:

AD9012TE/883B

IC 1-CH 8-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, CQCC28, CERAMIC, LCC-28, Analog to Digital Converter
ADI

AD9012TE/883B

ADC, Proprietary Method, 8-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, Bipolar, CQCC28, CERAMIC, LCC-28
ROCHESTER

AD9012TQ

High Speed 8-Bit TTL A/D Converter
ADI

AD9012TQ883B

1-CH 8-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, CDIP28, CERDIP-28
ADI

AD9014J

Analog-to-Digital Converter, 14-Bit
ETC

AD9014J-50

Analog-to-Digital Converter, 14-Bit
ETC

AD9014K

Analog-to-Digital Converter, 14-Bit
ETC

AD9014K-50

Analog-to-Digital Converter, 14-Bit
ETC

AD9016KE

Analog-to-Digital Converter, 6-Bit
ETC

AD9016KZ

Analog-to-Digital Converter, 6-Bit
ETC

AD9020

10-Bit 60 MSPS A/D Converter
ADI

AD9020/PCB

10-Bit 60 MSPS A/D Converter
ADI