AD9022AQ [ADI]

12-Bit 20 MSPS Monolithic A/D Converter; 12位20 MSPS单片A / D转换器
AD9022AQ
型号: AD9022AQ
厂家: ADI    ADI
描述:

12-Bit 20 MSPS Monolithic A/D Converter
12位20 MSPS单片A / D转换器

转换器
文件: 总12页 (文件大小:244K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit 20 MSPS  
a
Monolithic A/D Converter  
AD9022  
FUNCTIO NAL BLO CK D IAGRAM  
FEATURES  
Monolithic  
12-Bit 20 MSPS A/ D Converter  
Low Pow er Dissipation: 1.4 Watts  
On-Chip T/ H and Reference  
High Spurious-Free Dynam ic Range  
TTL Logic  
5-BIT  
ADC  
ANALOG  
INPUT  
T/H  
DIGITAL  
ERROR  
CORRECTION  
12  
AD9022  
TTL  
5-BIT  
ADC  
DAC  
ENCODE  
+5V  
APPLICATIONS  
Radar Receivers  
Digital Com m unications  
Digital Instrum entation  
Electro-Optics  
T/H  
16  
DAC  
–5.2V  
GND  
+2V  
REF  
4-BIT  
ADC  
8
P RO D UCT D ESCRIP TIO N  
With DNL typically less than 0.5 LSB and 20 ns transient re-  
sponse settling time, the AD9022 provides excellent results  
when low-frequency analog inputs must be oversampled (such  
as CCD digitization). T he full scale analog input is ±1 V with a  
300 input impedance. T he analog input can be driven directly  
from the signal source, or can be buffered by the AD96xx series  
of low noise, low distortion buffer amplifiers.  
T he AD9022 is a high speed, high performance, monolithic  
12-bit analog-to-digital converter. All necessary functions, in-  
cluding track-and-hold (T /H ) and reference, are included  
on-chip to provide a complete conversion solution. It is a  
companion unit to the AD9023; the primary difference between  
the two is that all logic for the AD9022 is T T L-compatible,  
while the AD9023 utilizes ECL logic for digital inputs and out-  
puts. Pinouts for the two parts are nearly identical.  
All timing is internal to the AD9022; the clock signal initiates  
the conversion cycle. For best results, the encode command  
should contain as little jitter as possible. High speed layout  
practices must be followed to ensure optimum A/D perfor-  
mance.  
Operating from +5 V and –5.2 V supplies, the AD9022 pro-  
vides excellent dynamic performance. Sampling at 20 MSPS  
with AIN = 1 MHz, the spurious-free dynamic range (SFDR) is  
typically 76 dB; with AIN = 9.6 MHz, SFDR is 74 dB. SNR is  
typically 65 dB.  
T he AD9022 is built on a trench isolated bipolar process and  
utilizes an innovative multipass architecture (see the block  
diagram). T he unit is packaged in 28-lead ceramic DIPs and  
gullwing surface mount packages. T he AD9022 is specified to  
operate over the industrial (–25°C to +85°C) and military  
(–55°C to +125°C) temperature ranges.  
T he onboard T /H has a 110 MHz bandwidth and, more impor-  
tantly, is designed to provide excellent dynamic performance for  
analog input frequencies above Nyquist. T his feature is neces-  
sary in many undersampling signal processing applications, such  
as in direct IF-to-digital conversion.  
T o maintain dynamic performance at higher IFs, monolithic  
RF track-and-holds (such as the AD9100 and AD9101  
Samplifier™) can be used with the AD9022 to process signals  
up to and beyond 70 MHz.  
Samplifier is a trademark of Analog Devices, Inc.  
REV. B  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 781/ 329-4700  
Fax: 781/ 326-8703  
World Wide Web Site: http:/ / w w w .analog.com  
© Analog Devices, Inc., 1998  
AD9022–SPECIFICATIONS  
(+V = +5 V; V = –5.2 V; Encode = 20 MSPS, unless otherwise noted)  
S
S
ELECTRICAL CHARACTERISTICS  
Test  
AD 9022AQ /AZ  
AD 9022BQ /BZ  
AD 9022SQ /SZ  
P ar am eter (Conditions)  
Tem p  
Level  
Min Typ Max Min Typ Max  
Min Typ Max  
Units  
RESOLUT ION  
12 12  
12  
Bits  
DC ACCURACY  
Differential Nonlinearity  
+25°C  
Full  
+25°C  
Full  
Full  
+25°C  
Full  
+25°C  
Full  
+25°C  
I
VI  
I
VI  
VI  
I
VI  
I
0.6  
0.75  
1.0  
2.5  
0.4  
0.5  
1.0  
2.0  
3.0  
0.6  
0.75  
1.0  
2.5  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
1.3  
1.6  
Guaranteed  
1.3  
1.6  
Guaranteed  
1.3  
1.6  
Guaranteed  
3.0  
3.0  
No Missing Codes  
Offset Error  
5
15  
0.5  
0.6  
0.57  
25  
35  
2.5  
3.5  
5
15  
0.5  
0.6  
0.57  
25  
35  
2.5  
3.5  
5
15  
0.5  
0.6  
0.57  
25  
35  
2.5  
3.5  
mV  
mV  
% FS  
% FS  
LSB, rms  
Gain Error  
VI  
V
T hermal Noise  
ANALOG INPUT  
Input Voltage Range  
Input Resistance  
±1.024  
240 300 360  
±1.024  
240 300 360  
±1.024  
240 300 360  
V
pF  
MHz  
Full  
+25°C  
+25°C  
IV  
V
V
Input Capacitance  
Analog Bandwidth  
5
110  
5
110  
5
110  
SWIT CHING PERFORMANCE1  
Minimum Conversion Rate  
Maximum Conversion Rate  
Aperture Delay (tA)  
+25°C  
Full  
+25°C  
+25°C  
Full  
IV  
VI  
IV  
V
4
4
4
MSPS  
MSPS  
ns  
ps, rms  
ns  
20  
20  
20  
0.55 0.71 0.85  
6
0.55 0.71 0.85  
6
0.55 0.71 0.85  
6
Aperture Uncertainty (Jitter)  
Output Delay (tOD  
)
VI  
15  
27.5  
15  
27.5  
15  
27.5  
ENCODE INPUT  
Logic Compatibility  
Logic “1” Voltage  
Logic “0” Voltage  
Logic “1” Current  
Logic “0” Current  
Input Capacitance  
Pulsewidth (High)  
Pulsewidth (Low)  
T T L  
T T L  
T T L  
Full  
Full  
Full  
Full  
+25°C  
+25°C  
+25°C  
VI  
VI  
VI  
VI  
V
IV  
IV  
2.0  
2.0  
2.0  
V
V
0.8  
20  
20  
0.8  
20  
20  
0.8  
20  
20  
8
8
6
8
8
6
8
8
6
µA  
µA  
pF  
ns  
ns  
22.5  
20  
125  
125  
22.5  
20  
125  
125  
22.5  
20  
125  
125  
DYNAMIC PERFORMANCE  
T ransient Response  
Overvoltage Recovery T ime  
Harmonic Distortion  
Analog Input @ 1.2 MHz  
@ 1.2 MHz  
+25°C  
+25°C  
V
V
20  
20  
20  
20  
20  
20  
ns  
ns  
+25°C  
Full  
+25°C  
+25°C  
Full  
I
65  
63  
62  
61  
73  
70  
73  
72  
68  
70  
69  
64  
63  
75  
72  
75  
74  
72  
65  
63  
62  
61  
73  
70  
73  
72  
68  
dBc  
dBc  
dBc  
dBc  
dBc  
V
V
I
@ 4.3 MHz  
@ 9.6 MHz  
@ 9.6 MHz  
V
Signal-to-Noise Ratio2  
Analog Input @ 1.2 MHz  
@ 1.2 MHz  
+25°C  
Full  
+25°C  
+25°C  
Full  
I
64  
63  
64  
63  
62  
66  
65  
66  
65  
63  
64  
63  
64  
63  
62  
dB  
dB  
dB  
dB  
dB  
V
V
I
@ 4.3 MHz  
@ 9.6 MHz  
@ 9.6 MHz  
V
Signal-to-Noise Ratio2  
(Without Harmonics)  
Analog Input @ 1.2 MHz  
@ 1.2 MHz  
+25°C  
Full  
+25°C  
+25°C  
Full  
I
63  
62  
66  
64  
66  
65  
63  
65  
64  
67  
66  
66  
66  
65  
63  
62  
66  
64  
66  
65  
63  
dB  
dB  
dB  
dB  
dB  
V
V
I
@ 4.3 MHz  
@ 9.6 MHz  
@ 9.6 MHz  
V
REV. B  
–2–  
AD9022  
Test  
AD 9022AQ /AZ  
AD 9022BQ /BZ  
AD 9022SQ /SZ  
P ar am eter (Conditions)  
Tem p  
Level  
Min Typ Max Min Typ Max  
Min Typ Max  
Units  
T wo-T one Intermodulation  
Distortion Rejection3  
+25°C  
V
74  
74  
74  
dBc  
DIGIT AL OUT PUT S1  
Logic Compatibility  
Logic “1” Voltage  
Logic “0” Voltage  
Output Coding  
T T L  
T T L  
T T L  
2.4  
Full  
Full  
VI  
VI  
2.4  
2.4  
V
V
0.5  
Offset Binary  
0.5  
Offset Binary  
0.5  
Offset Binary  
POWER SUPPLY  
+VS Supply Voltage  
+VS Supply Current  
–VS Supply Voltage  
–VS Supply Current  
Power Dissipation  
Power Supply  
Full  
Full  
Full  
Full  
Full  
VI  
VI  
VI  
VI  
VI  
4.75 5.0  
100 120  
–5.45 –5.2 –4.95 –5.45 –5.2 –4.95 –5.45 –5.2 –4.95  
180 220 180 220 180 220  
5.25  
4.75 5.0  
5.25  
4.75 5.0  
5.25  
mA  
mA  
mA  
mA  
W
100 120  
100 120  
1.4  
1.9  
1.4  
1.9  
1.4  
1.9  
Rejection Ratio (PSRR)4  
Full  
V
32  
32  
32  
mV/V  
NOT ES  
1AD9022 load is a single LS latch.  
2RMS signal-to-rms noise with analog input signal 1 dB below full scale at specified frequency. T ested at 55% duty cycle.  
3Intermodulation measured with analog input frequencies of 8.9 MHz and 9.8 MHz at 7 dB below full scale.  
4PSRR is sensitivity of offset error to power supply variations within the 5% limits shown.  
Specifications subject to change without notice.  
N
ANALOG  
IN  
ta  
N + 1  
ta = 0.7 TYPICAL  
N + 2  
tOD  
ENCODE  
tOD = 15–27.5 TYPICAL  
N – 2  
DATA  
OUTPUT  
N – 3  
N – 1  
N
AD9022 Tim ing Diagram  
ABSO LUTE MAXIMUM RATINGS 1  
O RD ERING GUID E  
+VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +6 V  
–VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 V  
Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . –1.5 V to +1.5 V  
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +VS to 0 V  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating T emperature Range  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
Model  
AD9022AQ/BQ –25°C to +85°C 28-Lead Ceramic DIP Q-28  
AD9022AZ/BZ –25°C to +85°C 28-Pin Ceramic  
Z-28  
Leaded Chip Carrier  
AD9022AQ/AZ/BQ/BZ . . . . . . . . . . . . . . . –25°C to +85°C  
AD9022SQ/SZ . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
Maximum Junction T emperature2 . . . . . . . . . . . . . . . . +175°C  
Lead T emperature (Soldering, 10 sec) . . . . . . . . . . . . +300°C  
Storage T emperature Range . . . . . . . . . . . . –65°C to +150°C  
AD9022SQ  
AD9022SZ  
–55°C to +125°C 28-Lead Ceramic DIP Q-28  
–55°C to +125°C 28-Pin Ceramic  
Z-28  
Leaded Chip Carrier  
NOT ES  
1Absolute maximum ratings are limiting values to be applied individually, and  
beyond which the serviceability of the circuit may be impaired. Functional  
operability is not necessarily implied. Exposure to absolute maximum rating  
conditions for an extended period of time may affect device reliability.  
2T ypical thermal impedances: “Q” Package (Ceramic DIP): θJC = 10°C/W; θJA  
=
35°C/W. “Z” Package (Gullwing Surface Mount): θJC = 13°C/W; θJA = 45°C/W.  
REV. B  
–3–  
AD9022  
P IN FUNCTIO N D ESCRIP TIO NS  
EXP LANATIO N O F TEST LEVELS  
Test Level  
P in No.  
Nam e  
Function  
I
– 100% production tested.  
1–3  
D3–D1  
Digital output bits of ADC; T T L  
compatible.  
II – 100% production tested at +25°C, and sample tested at  
specified temperatures. AC testing done on sample basis.  
4
D0 (LSB)  
Least significant bit of ADC output;  
T T L compatible.  
III – Sample tested only.  
IV – Parameter is guaranteed by design and characterization  
testing.  
5
6
7
8
NC  
No Connection Internally  
+5 V Power Supply  
Ground  
+VS  
V
– Parameter is a typical value only.  
GND  
ENCODE  
VI – All devices are 100% production tested at +25°C. 100%  
production tested at temperature extremes for extended  
temperature devices; guaranteed by design and character-  
ization testing for industrial devices.  
Encode clock input to ADC. Internal  
T /H is placed in hold mode (ADC is  
encoding) on rising edge of encode  
signal.  
9
GND  
+VS  
Ground  
10  
11  
12  
13  
14  
15  
16  
17  
+5 V Power Supply  
Ground  
D IE LAYO UT AND MECH ANICAL INFO RMATIO N  
Die Dimensions . . . . . . . . . . . . . . . . 205 × 228 × 21 (±1) mils  
Pad Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 × 4 mils  
Metalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aluminum  
Backing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . None  
Substrate Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –VS  
T ransistor Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,080  
Passivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oxynitride  
Bond Wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aluminum  
GND  
AIN  
Noninverting input to T /H amplifier.  
–5.2 V Power Supply  
+5 V Power Supply  
–5.2 V Power Supply  
Ground  
–VS  
+VS  
–VS  
GND  
COMP  
Should be connected to –VS through  
0.1 µF capacitor.  
18  
D11 (MSB) Most significant bit of ADC output;  
T T L compatible.  
19–25  
D10–D4  
Digital output bits of ADC; T T L  
compatible.  
26  
27  
28  
+VS  
–VS  
+5 V Power Supply  
–5.2 V Power Supply  
Ground  
GND  
P IN D ESIGNATIO NS  
D3  
D2  
D1  
GND  
1
2
3
4
5
6
7
8
9
28  
27 –V  
S
S
26  
25  
24  
+V  
D4  
D5  
D0 (LSB)  
NC  
+V  
23 D6  
S
AD9022  
TOP VIEW  
(Not to Scale)  
22  
21  
20  
19  
18  
17  
16  
15  
GND  
ENCODE  
GND  
D7  
D8  
D9  
+V 10  
S
D10  
GND 11  
D11(MSB)  
COMP  
GND  
A
12  
IN  
–V 13  
S
+V 14  
S
–V  
S
NC = NO CONNECT  
COMPENSATION (PIN 17) SHOULD BE  
CONNECTED TO –V THROUGH 0.01F  
S
–4–  
REV. B  
AD9022  
+V  
S
D EFINITIO NS O F SP ECIFICATIO NS  
Analog Bandwidth  
T he analog input frequency at which the spectral power of the  
fundamental frequency (as determined by FFT analysis) is  
reduced by 3 dB.  
+V  
S
Aper tur e D elay  
T he delay between the rising edge of the ENCODE command  
and the instant at which the analog input is sampled.  
180  
120⍀  
ANALOG  
INPUT  
10pF  
Aper tur e Uncer tainty (Jitter )  
T he sample-to-sample variation in aperture delay.  
–V  
S
D iffer ential Nonlinear ity  
T he deviation of any code from an ideal 1 LSB step.  
H ar m onic D istor tion  
Analog Input  
T he rms value of the fundamental divided by the rms value of  
the worst harmonic component.  
+V  
S
100⍀  
Integr al Nonlinear ity  
ENCODE  
T he deviation of the transfer function from a reference line  
measured in fractions of 1 LSB using a “best straight line” de-  
termined by a least square curve fit.  
900⍀  
Minim um Conver sion Rate  
T he encode rate at which the SNR of the lowest analog signal  
frequency tested drops by no more than 3 dB below the guaran-  
teed limit.  
–V  
S
Encode Input  
Maxim um Conver sion Rate  
T he encode rate at which parametric testing is performed.  
COMPENSATION  
O utput P r opagation D elay  
T he delay between the 50% point of the rising edge of the EN-  
CODE command and the time when all output data bits are  
within valid logic levels.  
–V  
S
50⍀  
O ver voltage Recover y Tim e  
T he amount of time required for the converter to recover to  
12-bit accuracy after an analog input signal 150% of full scale is  
reduced to the full-scale range of the converter.  
20pF  
–V  
S
P ower Supply Rejection Ratio (P SRR)  
T he ratio of a change in input offset voltage to a change in  
power supply voltage.  
Com pensation  
+V  
S
Signal-to-Noise Ratio (SNR)  
T he ratio of the rms signal amplitude to the rms value of  
“noise,” which is defined as the sum of all other spectral compo-  
nents, including harmonics but excluding dc, with an analog  
input signal 1 dB below full scale.  
11k⍀  
12k⍀  
DIGITAL  
OUTPUT  
Signal-to-Noise Ratio (Without H ar m onics)  
T he ratio of the rms signal amplitude to the rms value of  
“noise,” which is defined as the sum of all other spectral compo-  
nents, excluding the first five harmonics and dc, with an analog  
input signal 1 dB below full scale.  
–V  
S
Tr ansient Response  
T he time required for the converter to achieve 12-bit accuracy  
when a step function is applied to the analog input.  
Output Stage  
Figure 1. Equivalent Circuits  
Two-Tone Inter m odulation D istor tion (IMD ) Rejection  
T he ratio of the power of either of two input signals to the  
power of the strongest third-order IMD signal.  
–5–  
REV. B  
AD9022Typical Performance Characteristics  
70  
65  
60  
55  
50  
45  
–76  
–75  
+25؇C  
–55؇C  
+25؇C  
ROOM  
–74  
–73  
–72  
–71  
–70  
–69  
–68  
–55؇C  
+125؇C  
+125؇C  
40  
35  
1.24 2.3  
5.3  
7.3  
9.6  
11.3 13.3  
15.3  
17.3  
19.3  
0
1
2
3
4
5
6
7
8
9
10  
ANALOG INPUT FREQUENCY – MHz  
ANALOG INPUT FREQUENCY – MHz  
Figure 2. Harm onic Distortion vs. Analog Input  
Frequency  
Figure 5. Signal-to-Noise Ratio vs. Analog Input  
Frequency  
85  
90  
A
= 1.2MHz  
A
= 1.2MHz  
IN  
ENCODE = 20MHz  
IN  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
75  
70  
65  
SFDR  
WORST HARMONICS  
SNR  
SNR  
60  
55  
5.0  
7.5  
10.0  
12.5  
15.0  
17.5  
20.0  
22.5  
25.0  
–50 –45 –40 –35 –30 –25 –20 –15 –10  
–5  
–1  
ENCODE RATE – MSPS  
INPUT LEVEL – dB  
Figure 3. SNR and Harm onics vs. Encode Rate  
Figure 6. SFDR and SNR vs. Analog Input Level  
2.0  
1.5  
80  
A
F
= 1.2MHz  
IN  
A
= 9.6MHz  
IN  
ENCODE = 20MHz  
70  
SFDR  
= 20MSPS  
S
1.0  
0.5  
60  
50  
SNR  
0
40  
30  
20  
10  
–0.5  
–1.0  
–1.5  
–2.0  
0
1024  
2048  
3072  
4096  
–50 –45 –40 –35 –30 –25 –20 –15 –10  
–5  
–1  
OUTPUT CODE  
INPUT LEVEL – dB  
Figure 4. Differential Nonlinearity vs. Output Code  
Figure 7. SFDR and SNR vs. Analog Input Level  
–6–  
REV. B  
AD9022  
is present when the unit is strobed with an ENCODE com-  
mand. T he conversion process begins on the rising edge of this  
pulse, which should conform to the minimum and maximum  
pulsewidth requirements shown in the specifications. Operation  
below the recommended encode rate (4 MSPS) may result in  
excessive droop in the internal T /H devices–leading to large dc  
and ac errors.  
0
–10  
A
= 1.2MHz  
= –1.0dBFS  
IN  
A
IN  
–20  
–30  
–40  
SNR = 66.7dB  
THD = 77.51dB  
SFDR = 79.49dBFS  
–50  
–60  
T he held analog value of the first track-and-hold is applied to a  
5-bit flash converter and a second T /H. T he 5-bit flash con-  
verter resolves the most significant bits (MSBs) of the held  
analog voltage. T hese five bits are reconstructed via a 5-bit  
DAC and subtracted from the original T /H output signal to  
form a residue signal.  
–70  
–80  
–90  
–100  
0
10  
A second T /H holds the amplified residue signal while it is en-  
coded with a second 5-bit flash ADC. Again the five bits are  
reconstructed and subtracted from the second T /H output to  
form a residue signal. T his residue is amplified and encoded  
with a 4-bit flash ADC to provide the three least significant bits  
(LSBs) of the digital output and one bit of error correction.  
FREQUENCY – MHz  
Figure 8. FFT Plot  
0
A
A
= 9.6MHz  
= –1.0dBFS  
IN  
–10  
IN  
SNR = 66.05dB  
THD = 74.28dB  
SFDR = 75.32dBFS  
Digital Error Correction logic aligns the data from the three  
flash converters and presents the result as a 12-bit parallel digi-  
tal word. T he output stage of the AD9022 is T T L. Output data  
may be strobed on the rising edge of the ENCODE command.  
–20  
–30  
–40  
–50  
–60  
AD 9022 IN RECEIVER AP P LICATIO NS  
Advances in semiconductor processes have resulted in low cost  
digital signal processing (DSP) and analog signal processing  
which can help create cost effective alternative receiver designs.  
T oday, an all-digital receiver allows tuning, demodulation, and  
detection of receiver signals in the digital domain. By digitizing  
IF signals directly, and utilizing digital techniques, it becomes  
possible to make significant improvements in receiver design.  
For high frequency IFs, the ADC is the key to the receiver’s  
performance. Unfortunately, the specifications frequently used  
by receiver designers and analog-to-digital (ADC) manufactur-  
ers are often very different. Noise Figure and Intercept Point are  
common measures of noise and linearity in analog RF system  
design. ADCs are more frequently specified in terms of SNR  
and harmonic distortion.  
–70  
–80  
–90  
–100  
0
10  
FREQUENCY – MHz  
Figure 9. FFT Plot  
0
A
A
A
A
= 8.9MHz  
IN1  
IN2  
IN1  
IN2  
= 9.8MHz  
= 7.0dBFS  
= 7.0dBFS  
20  
SFDR = 80.62dBFS  
40  
60  
Noise  
Noise figure (NF) is a measure of receiver sensitivity and is  
defined as the degradation of signal-to-noise ratio (SNR) as a  
signal passes through a device. In equation form:  
80  
100  
120  
NF = SNR (in) – SNR (out)  
Noise figure is a bandwidth invariant parameter for reasonably  
narrow bandwidths in most devices. T he system noise figure for  
a combination of amplifiers and mixers, for instance, can be  
analyzed without regard to the information bandwidth.  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
FREQUENCY – MHz  
T hermal noise contribution from the ADC behaves in a similar  
fashion; however, the spectral density of quantization noise is a  
function of the sample rate. In addition, the spectral density of  
the quantization noise is flat only in an ADC with perfect linear-  
ity, i.e., perfect 1 LSB step sizes.  
Figure 10. Two-Tone FFT  
TH EO RY O F O P ERATIO N  
Refer to the block diagram.  
T he AD9022 employs a three-pass subranging architecture and  
digital error correction. T his combination of design techniques  
ensures 12-bit accuracy at relatively low power.  
T o analyze the system noise performance, ADC noise figure is  
calculated by normalizing the SNR of the ADC output to a 1 Hz  
bandwidth. T his result is given by:  
Analog input signals are immediately attenuated through a  
resistor divider and applied directly to the sampling bridge of  
the track-and-hold (T /H). T he T /H holds whatever analog value  
SNR (/Hz) = SNR + 10 log10 (FS/2)  
where FS is the sample rate.  
–7–  
REV. B  
AD9022  
T his will be true only for converters in which perfect quantiza-  
tion noise dominates. T here may be an upper sample rate,  
above which the thermal noise of the converter is the dominant  
source of noise. In this case, normalization would be based on  
the noise bandwidth of the ADC. For an AD9022 with a typical  
SNR of 64 dB and a sample rate of 20 MSPS, the normalized  
SNR is equal to 134 dB (64 + 70). Both thermal and quantiza-  
tion noise contribute to this number.  
AD 9022 NO ISE P ERFO RMANCE  
High speed, wide bandwidth ADCs such as the AD9022 are  
optimized for dynamic performance over a wide range of analog  
input frequencies. However, there are many applications (Imag-  
ing, Instrumentation, etc.) where dc precision is also important.  
Due to the wide input bandwidth of the AD9022 for a given  
input voltage, there will be a range of output codes which may  
occur. T his is caused by unavoidable circuit noise within the  
wideband circuits in the ADC. If a dc signal is applied to the  
ADC and several thousand outputs are recorded, a distribution  
of codes such as that shown in the histogram below may result.  
T he SNR of the input is assumed to be limited by the thermal  
noise of the input resistance, or –174 dBm/Hz. T he input signal  
level is +10 dBm (2 V p-p into 50 ). Noise figure of the ADC  
can be calculated by:  
2.0  
NF = SNR (in) – SNR (out) = [+10 – (174)] – 134 = 50 dB  
ONE STANDARD  
DEVIATION = RMS  
NOISE LEVEL  
1.5  
Most ADCs detect input voltage levels, not power. Conse-  
quently, the input SNR can be determined more accurately by  
determining the ratio of the signal voltage to the noise voltage of  
the terminating resistor. However, both the input signal and  
noise voltage delivered to the ADC are also a function of the  
source impedance. T he dependence of NF on sample rate,  
linearity, source and terminating impedances, and the number  
of assumptions required, highlight the weakness of using NF as  
a figure of merit for an ADC. T he rather large number that  
results bolsters this belief by indicating the ADC is often the  
weakest link in the signal processing path.  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
Linear ity  
x–3  
x–2  
x–1  
x
x+1  
x+2  
x+3  
OUTPUT CODE  
T he T hird Order intercept point for a linear device (with some  
nonlinearity) is a good way to predict 3rd order spurious signals  
as a function of input signal level. For an ADC, however, this in  
an invalid concept except with signals near full scale. As the  
input signal is reduced, the performance burden shifts from the  
input track-and-hold (T /H) to the encoder. T his creates a non-  
linear function, as contrasted with the third order intercept  
behavior, which predicts an improvement in dynamic range as  
the signal level is decreased.  
Figure 11. ADC Equivalent Input Noise  
T he correct code appears most of the time, but adjacent codes  
also appear with reduced probability. If a normal probability  
density curve is fitted to this Gaussian distribution of codes, the  
standard deviation will be equal to the equivalent input rms  
noise of the ADC. T he rms noise may also be approximated by  
converting the SNR, as measured by a low frequency FFT , to  
an equivalent input noise. T his method is accurate only if the  
SNR performance is dominated by random thermal noise (the  
low frequency SNR without harmonics is the best measure).  
Sixty-three dB equates to 1 LSB rms for a 2 V p-p (0.707 V  
rms) input signal. T he AD9022 has approximately 0.5 LSB of  
rms noise or a noise limited SNR of 69 dB, indicating that noise  
alone does not limit the SNR performance of the device (quanti-  
zation noise and linearity are also major contributors).  
For signals near full scale, the intercept point is calculated the  
same as any device:  
Intercept Point = [Harmonic Suppression/(N –1)] + Input Power  
where N = the order of the IMD (3 in this case)  
AD9022 Intercept Point = 80/2 + 3 dBm (7 dBm below full scale)  
= 43 dBm  
For signals below this level, the spurious free dynamic range  
(SFDR) curves shown in the data sheet are a more accurate  
predictor of dynamic range. T he SFDR curve is generated by  
measuring the ratio of the signal (either tone in the two-tone  
measurement) to the worst spurious signal, which is observed as  
the analog input signal amplitude is swept.  
T his thermal noise may come from several sources. T he drive  
source impedance should be kept low to minimize resistor  
thermal noise. Some of the internal ADC noise is generated in  
the wideband T /H. Sampling ADCs generally have input band-  
widths which exceed the Nyquist frequency of one-half the  
sampling rate. (T he AD9022 has an input bandwidth of over  
100 MHz, even though the sampling rate is limited to 20 MSPS.)  
T he worst spurious signal is usually the second harmonic or 3rd  
order IMD. Actual results are shown on several plots. T he  
straightline with a slope of one is constructed at the point where  
the worst SFDR touches the line. T his line, extrapolated to full  
scale, gives the SFDR of the ADC. T his value can then be used  
to predict the dynamic range by simply subtracting the input  
level from the SFDR.  
Wide bandwidth is required to minimize gain and phase distor-  
tion and to permit adequate settling times in the internal ampli-  
fiers and T /Hs. But a certain amount of unavoidable noise is  
generated in the T /H and other wideband circuits within the  
ADC; this causes variation in output codes for dc inputs. Good  
layout, grounding and decoupling techniques are essential to  
prevent external noise from coupling into the ADC and further  
corrupting performance.  
It should be noted that all SFDR lines are constructed to be  
valid only below a certain level below full scale. Above these  
points, the linearity of the device is dominated by the nonlinearities  
of the front end and best predicted by the intercept point.  
–8–  
REV. B  
AD9022  
USING TH E AD 9022  
Layout Infor m ation  
Preserving the accuracy and dynamic performance of the  
AD9022 requires that designers pay special attention to the  
layout of the printed circuit board.  
T he duty cycle of the encode clock for the AD9022 is critical for  
obtaining rated performance of the ADC. Internal pulsewidths  
within the track-and-hold are established by the encode com-  
mand pulsewidth; to ensure rated performance, minimum and  
maximum pulsewidth restrictions should be observed. Operation at  
20 MSPS is optimized when the duty cycle is held at 55%.  
Analog paths should be kept as short as possible and be properly  
terminated to avoid reflections. T he analog input connection  
should be kept away from digital signal paths; this reduces the  
amount of digital switching noise, which is capacitively coupled  
into the analog section. Digital signal paths should also be kept  
short, and run lengths should be matched to avoid propagation  
delay mismatch. T he AD9022 digital outputs should be buff-  
ered or latched close to the device (<2 cm). T his prevents load  
transients that may feed back into the device.  
Analog Input  
T he analog input (Pin 12) voltage range is nominally ±1.024  
volts. T he range is set with an internal voltage reference and  
cannot be adjusted by the user. T he input resistance is 300 Ω  
and the analog bandwidth is 110 MHz, making the AD9022  
useful in undersampling applications.  
T he AD9022 should be driven from a low impedance source.  
T he noise and distortion of the amplifier should be considered  
to preserve the dynamic range of the AD9022.  
In high speed circuits, layout of the ground is critical. A single,  
low impedance ground plane on the component side of the  
board is recommended. Power supplies should be capacitively  
coupled to the ground plane with high quality 0.1 µF chip ca-  
pacitors to reduce noise in the circuit. All power pins of the  
AD9022 should be bypassed individually. T he compensation  
pin (COMP Pin 17) should be bypassed directly to the VS  
supply (Pin 15) as close to the part as possible using a 0.1 µF  
chip capacitor.  
P ower Supplies  
T he power supplies of the AD9022 should be isolated from the  
supplies used for noisy devices (digital logic especially) to re-  
duce the amount of noise coupled into the ADC. For optimum  
performance, linear supplies ensure that switching noise from  
the supplies does not introduce distortion products during  
the encoding process. If switching supplies must be used,  
decoupling recommendations above are critically important.  
T he PSRR of the AD9022 is a function of the ripple frequency  
present on the supplies. Clearly, power supplies with the lowest  
possible frequency should be selected.  
Multilayer boards allow designers to lay out signal traces with-  
out interrupting the ground plane, and provide low impedance  
ground planes. In systems with dedicated analog and digital  
grounds, all grounds for the AD9022 should be connected to  
the analog ground plane.  
AD 9022 EVALUATIO N BO ARD  
T he evaluation board for the AD9022 (AD9022/PCB) provides  
an easy and flexible method for evaluating the ADCs perfor-  
mance without (or prior to) developing a user-specific printed  
circuit board. T he two-sided board includes a reconstruction  
DAC and digital output interface, and uses the layout and appli-  
cations suggestions outlined above. It is available at nominal  
cost from Analog Devices, Inc.  
In systems using multilayer boards, dedicated power planes are  
recommended to provide low impedance connections for device  
power. Sockets limit dynamic performance and are not recom-  
mended for use with the AD9022.  
Tim ing  
Conversion by the AD9022 is initiated by the rising edge of the  
ENCODE clock (Pin 8). All required timing is generated inter-  
nal to the ADC. Care should be taken to ensure that the encode  
clock to the AD9022 is free from jitter that can degrade dy-  
namic performance. T he clock driver should be compatible with  
T T L LS logic series devices. Drivers with excessive slew rate or  
overdrive will degrade the dynamic performance of the AD9022.  
Input/O utput/Supply Infor m ation  
Power supply, analog input, clock connections and recon-  
structed output (RC OUT PUT ) are identified by labels on the  
evaluation board.  
Operation of the evaluation board will conform to the following  
characteristics:  
Pulsewidth of the ADC encode clock must be controlled to  
ensure the best possible performance. Dynamic performance is  
guaranteed with a clock pulse HIGH minimum of 25 ns. Opera-  
tion with narrower pulses will degrade SNR and dynamic per-  
formance. From a system perspective, this is generally not a  
problem, because a simple inverter can be used to generate a  
suitable clock if the system clock is less than 25 ns wide.  
P aram eter  
Typical  
Units  
Supply Current  
+5 V  
–5 V  
150  
300  
mA  
mA  
AIN  
T he AD9022 provides latched data outputs. Data outputs are  
available two pipeline delays and one propagation delay after the  
rising edge of the encode clock (refer to the AD9022 T iming  
Diagram). T he length of the output data lines and the loads  
placed on them should be minimized to reduce transients within  
the AD9022; these transients can detract from the converter’s  
dynamic performance.  
Impedance  
Voltage Range  
CLOCK  
Impedance  
Frequency  
RC OUT PUT  
Impedance  
Voltage Range  
51  
±1.024  
V
51  
20  
MSPS  
51  
0 to –1  
V
Operation at encode rates less than 4 MSPS is not recom-  
mended. T he internal track-and-hold saturates, causing errone-  
ous conversions. T his T /H saturation precludes clocking the  
AD9022 in a burst mode.  
–9–  
REV. B  
AD9022  
Analog Input  
signal. T he AD9713B is terminated into 51 to provide a  
Analog input signals can be directly fed into the device under  
test input (AIN). T he AIN input is terminated at the device with  
a 62 resistor to give a parallel equivalent of 51 (62 ʈ300 ).  
1 V p-p signal at the output (RC Output).  
O utput D ata  
T he output data bits are latched with two 74LS574 latches  
which drive a 40-pin connector (AMP p/n 102153-09). T he  
data and clock signals are available at the connector per the pin  
assignments shown on the schematic of the evaluation board.  
Data is latched on the rising edge of the encode clock.  
D AC Reconstr uction  
T he AD9022 evaluation board provides an onboard AD9713B  
reconstruction DAC for observing the digitized analog input  
U3  
74LS574  
U2  
BNC  
J1  
2
3
4
5
6
7
8
9
19  
18  
17  
16  
15  
14  
13  
12  
AD9698R  
5
1D  
2D  
3D  
4D  
5D  
6D  
7D  
8D  
1Q  
2Q  
3Q  
4Q  
5Q  
6Q  
7Q  
8Q  
11  
CLOCK  
R1  
51⍀  
6
CLK  
12  
9
D12  
R8  
U5  
AD9713P  
R9  
E2 E1  
D11  
R10  
R11  
2
3
R4  
D12 (LSB)  
7.5k⍀  
D10  
CK  
OE  
24  
20  
19  
18  
17  
D11  
RSET  
D9  
D8  
4
11  
1
D10 REFOUT  
5
R3  
20⍀  
U2  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
CIN  
6
AD9698R  
4
R12  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
+5V  
U4  
74LS574  
COUT  
U1  
AD9022Q  
14  
7
D7  
D6  
D5  
D4  
D3  
D2  
REFIN  
R2  
5.1k⍀  
8
C5  
0.1F  
25  
24  
23  
22  
21  
20  
19  
18  
17  
3
2
3
4
5
6
7
8
9
19  
18  
17  
16  
15  
14  
13  
12  
D9  
D8  
D7  
9
1D  
2D  
3D  
4D  
5D  
6D  
7D  
8D  
1Q  
2Q  
3Q  
4Q  
5Q  
6Q  
7Q  
8Q  
13  
16  
D10  
–5.2V  
10  
11  
14  
28  
26  
16  
14  
IOUT  
D11  
D6  
C1  
0.1F  
R5  
51⍀  
D12 LSB  
D5  
IOUT  
1
2
D4  
CR1  
D1 (MSB)  
LE  
D3  
9
R21  
100⍀  
AD589H  
BNC  
J4  
8
8
ENCODE  
10  
D2  
12  
RC  
OUT  
AIN  
MSB D1  
COMP  
D1  
BNC  
J2  
U6  
74AS32  
CK  
R6  
51⍀  
OE  
A
11  
IN  
1
R7  
62⍀  
C4  
0.1F  
–5.2V  
H40DMC  
J3  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
U6  
74AS32  
CLK  
1
3
+5V  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
2
C2  
J5  
J6  
J7  
C11  
0.1F  
C22  
0.1F  
C6  
0.1F  
C8  
C9  
C10  
0.1F  
C12  
0.1F 0.1F  
C13  
10F  
C7  
0.1F  
–5.2V  
+5V  
0.1F 0.1F  
U6  
74AS32  
20%  
35V  
4
6
5
GND  
–5.2V  
U6  
74AS32  
12  
13  
C3  
C14  
0.1F  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
10F  
0.1F 0.1F 0.1F 0.1F 0.1F 0.1F 0.1F  
20%  
35V  
11  
D9  
D10  
D11  
D12  
Figure 12. AD9022/PCB Evaluation Board Schem atic  
–10–  
REV. B  
AD9022  
Figure 13. Top of Board, Viewed From Top  
Figure 14. Center of Board, Viewed From Top  
–11–  
REV. B  
AD9022  
Figure 15. Bottom of Board, Viewed from Bottom  
O UTLINE D IMENSIO NS  
Dimensions shown in inches and (mm).  
28-Lead Cer dip  
(Q -28)  
28-P in Cer am ic Leaded Chip Car r ier  
(Z-28)  
0.005 (0.13) MIN  
28  
0.165 (4.191)  
MAX  
0.100 (2.54) MAX  
15  
0.73 (18.544)  
0.71 (18.036)  
0.012 (0.305)  
0.009 (0.229)  
0.610 (15.49)  
0.500 (12.70)  
28  
15  
1
14  
0.025  
(0.635)  
MIN  
0.620 (15.75)  
0.590 (14.99)  
PIN 1  
0.015  
(0.38)  
MIN  
1.490 (37.85) MAX  
0.225  
(5.72)  
MAX  
0.51 (12.954)  
0.49 (12.446)  
0.765 (19.431)  
0.745 (18.923)  
TOP VIEW  
0.150  
(3.81)  
MIN  
0.018 (0.46)  
0.008 (0.20)  
0.200 (5.08)  
0.125 (3.18)  
SEATING  
PLANE  
0.026 (0.66) 0.110 (2.79)  
0.014 (0.36) 0.090 (2.29)  
0.070 (1.78)  
0.030 (0.76)  
0.060 (1.524)  
0.040 (1.016)  
1
14  
0.115 (2.921)  
MAX  
0.050 (1.27)  
TYP  
0.015 (0.381)  
MIN  
–12–  
REV. B  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY