AD9023AZ [ADI]

IC 1-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, CDSO28, CERAMIC, LCC-28, Analog to Digital Converter;
AD9023AZ
型号: AD9023AZ
厂家: ADI    ADI
描述:

IC 1-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, CDSO28, CERAMIC, LCC-28, Analog to Digital Converter

CD 转换器
文件: 总8页 (文件大小:363K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit 20 MSPS  
a
Monolithic A/D Converter  
AD9023  
FEATURES  
Monolithic  
FUNCTIONAL BLOCK DIAGRAM  
12-Bit 20 MSPS A/D Converter  
Low Power Dissipation: 1.5 Watts  
On-Chip T/H and Reference  
High Spurious-Free Dynamic Range  
ECL Logic  
5-BIT  
ADC  
ANALOG  
INPUT  
T/H  
DIGITAL  
ERROR  
CORRECTION  
12  
ECL  
5-BIT  
ADC  
DAC  
APPLICATIONS  
ENCODE  
ENCODE  
Radar Receivers  
Digital Communications  
Digital Instrumentation  
Electro-Optic  
16  
T/H  
DAC  
+5V  
+2V  
REF  
4-BIT  
ADC  
–5.2V  
GND  
8
Medical Imaging  
Digital Filters  
PRODUCT DESCRIPTION  
With DNL typically less than 0.5 LSB and 20 ns transient re-  
sponse settling time, the AD9023 provides excellent results  
when low frequency analog inputs must be over-sampled (such  
as CCD digitization). The full-scale analog input is ±1 V with a  
300 input impedance. The analog input can be driven directly  
from the signal source, or can be buffered by the AD96xx series  
of low noise, low distortion buffer amplifiers.  
The AD9023 is a high speed, high performance, monolithic 12-  
bit analog-to-digital converter. All necessary functions, includ-  
ing track-and-hold (T/H) and reference, are included on chip to  
provide a complete conversion solution. It is a companion unit  
to the AD9022; the primary difference between the two is that  
all logic for the AD9022 is TTL compatible, while the AD9023  
utilizes ECL logic for digital inputs and outputs. Pinouts for the  
two parts are nearly identical.  
All timing is internal to the AD9023; the clock signal initiates  
the conversion cycle. For best results, the encode command  
should contain as little jitter as possible. High speed layout prac-  
tices must be followed to ensure optimum A/D performance.  
Operating from +5 V and –5.2 V supplies, the AD9023 provides  
excellent dynamic performance. Sampling at 20 Msps with  
AIN = 1 MHz, the spurious-free dynamic range (SFDR) is typi-  
cally 74 dB; with AIN = 9.6 MHz, SFDR is 72 dB. SNR is typi-  
cally 65 dB.  
The AD9023 is built on a trench isolated bipolar process and  
utilizes an innovative multipass architecture (see the block dia-  
gram). The unit is packaged in 28-pin ceramic DIPs and  
gullwing surface mount packages. The AD9023 is specified to  
operate over the industrial (–25°C to +85°C) and extended  
(–55°C to +125°C) temperature ranges.  
The on-board T/H has a 110 MHz bandwidth and, more impor-  
tantly, is designed to provide excellent dynamic performance for  
analog input frequencies above Nyquist. This feature is neces-  
sary in many undersampling signal processing applications, such  
as in direct IF-to-digital conversion.  
To maintain dynamic performance at higher IFs, monolithic RF  
track-and-holds (such as the AD9100 and AD9101Samplifier™)  
can be used with the AD9023 to process signals up to and  
beyond 70 MHz.  
Samplifier is a trademark of Analog Devices, Inc.  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood. MA 02062-9106, U.S.A.  
Tel: 617/329-4700  
Fax: 617/326-8703  
AD9023–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (+VS = +5 V; –VS = –5.2 V; Encode = 20 MSPS, unless otherwise noted)  
Test  
AD9023AQ/AZ  
AD9023BQ/BZ  
AD9023SQ/SZ  
Parameter (Conditions)  
Temp  
Level  
Min Typ Max Min Typ Max  
Min Typ Max  
Units  
RESOLUTION  
12 12  
12  
Bits  
DC ACCURACY  
Differential Nonlinearity  
+25°C  
Full  
+25°C  
Full  
Full  
+25°C  
Full  
+25°C  
Full  
+25°C  
I
VI  
I
VI  
VI  
I
VI  
I
0.6 0.75  
1.0  
1.2 2.5  
1.6 3.0  
0.4 0.5  
1.0  
1.2 2.0  
1.6 3.0  
0.6 0.75  
1.0  
1.2 2.5  
1.6 3.0  
Guaranteed  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
No Missing Codes  
Offset Error  
Guaranteed  
25  
35  
Guaranteed  
5
5
15  
25  
35  
5
15  
25  
35  
mV  
mV  
% FS  
% FS  
LSB, rms  
15  
Gain Error  
0.5 2.5  
0.6 3.5  
0.57  
0.5 2.5  
0.6 3.5  
0.57  
0.5 2.5  
0.6 3.5  
0.57  
VI  
V
Thermal Noise  
ANALOG INPUT  
Input Voltage Range  
Input Resistance  
Input Capacitance  
Analog Bandwidth  
±1.024  
240 300 360  
±1.024  
240 300 360  
±1.024  
240 300 360  
V
pF  
MHz  
Full  
+25°C  
+25°C  
IV  
V
V
6
110  
6
110  
6
110  
SWITCHING PERFORMANCE1  
Minimum Conversion Rate  
Maximum Conversion Rate  
Aperture Delay (tA)  
+25°C  
Full  
+25°C  
+25°C  
Full  
IV  
VI  
IV  
V
4
4
4
Msps  
Msps  
ns  
ps, rms  
ns  
20  
20  
20  
0.50 0.78 1.05 0.50 0.78 1.05  
0.50 0.78 1.05  
5
Aperture Uncertainty (Jitter)  
5
5
Output Delay (tOD  
)
VI  
8.5  
19.5 8.5  
19.5  
8.5  
19.5  
ENCODE INPUT  
Logic Compatibility  
Logic “1” Voltage  
Logic “0” Voltage  
Logic “1” Current  
Logic “0” Current  
Input Capacitance  
Pulse Width (High)  
Pulse Width (Low)  
ECL  
ECL  
ECL  
Full  
Full  
Full  
Full  
+25°C  
+25°C  
+25°C  
VI  
VI  
VI  
VI  
V
–1.1  
–1.1  
–1.1  
V
V
–1.5  
20  
20  
–1.5  
20  
20  
–1.5  
20  
20  
5
5
6
5
5
6
5
5
6
µA  
µA  
pF  
ns  
ns  
IV  
IV  
22.5  
20  
125  
125  
22.5  
20  
125  
125  
22.5  
20  
125  
125  
DYNAMIC PERFORMANCE  
Transient Response  
Overvoltage Recovery Time  
Harmonic Distortion2  
Analog Input @ 1.2 MHz  
@ 1.2 MHz  
+25°C  
+25°C  
V
V
20  
20  
20  
20  
20  
20  
ns  
ns  
+25°C  
Full  
+25°C  
+25°C  
Full  
I
65  
63  
62  
61  
72  
72  
72  
69  
68  
70  
69  
64  
63  
74  
74  
74  
71  
71  
65  
63  
62  
61  
72  
72  
72  
69  
68  
dBc  
dBc  
dBc  
dBc  
dBc  
@ 4.3 MHz  
@ 9.6 MHz  
@ 9.6 MHz  
V
I
Signal-to-Noise Ratio2  
Analog Input @ 1.2 MHz  
@ 1.2 MHz  
+25°C  
Full  
+25°C  
+25°C  
Full  
I
63  
62  
63  
62  
62  
65  
64  
65  
64  
64  
63  
62  
63  
62  
62  
dB  
dB  
dB  
dB  
dB  
V
V
I
@ 4.3 MHz  
@ 9.6 MHz  
@ 9.6 MHz  
V
Signal-to-Noise Ratio2  
(Without Harmonics)  
Analog Input @ 1.2 MHz  
@ 1.2 MHz  
+25°C  
Full  
+25°C  
+25°C  
Full  
I
63  
62  
64  
63  
64  
63  
62  
65  
64  
66  
65  
66  
65  
64  
63  
62  
64  
63  
64  
63  
62  
dB  
dB  
dB  
dB  
dB  
V
V
I
@ 4.3 MHz  
@ 9.6 MHz  
@ 9.6 MHz  
V
REV. A  
–2–  
AD9023  
Test  
AD9023AQ/AZ  
AD9023BQ/BZ  
AD9023SQ/SZ  
Parameter (Conditions)  
Temp  
Level  
Min Typ Max Min Typ Max  
Min Typ Max  
Units  
Two-Tone Intermodulation  
Distortion Rejection3  
+25°C  
V
74  
74  
74  
dBc  
DIGITAL OUTPUTS1  
Logic Compatibility  
Logic “1” Voltage  
Logic “0” Voltage  
Output Coding  
ECL  
ECL  
ECL  
–1.1  
Full  
Full  
VI  
VI  
–1.1  
–1.1  
V
V
–1.5  
–1.5  
–1.5  
Offset Binary  
Offset Binary  
Offset Binary  
POWER SUPPLY  
+VS Supply Voltage  
+VS Supply Current  
–VS Supply Voltage  
–VS Supply Current  
Power Dissipation  
Power Supply Rejection  
Ratio (PSRR)4  
Full  
Full  
Full  
Full  
Full  
VI  
VI  
VI  
VI  
VI  
4.75 5.0 5.25  
100 120  
–5.45 –5.2 –4.95 –5.45 –5.2 –4.95 –5.45 –5.2 –4.95 mA  
4.75 5.0 5.25  
100 120  
4.75 5.0 5.25  
100 120  
mA  
mA  
195 240  
1.5 2.0  
195 240  
1.5 2.0  
195 240  
1.5 2.0  
mA  
W
Full  
V
32  
32  
32  
mV/V  
NOTES  
1AD9023 load is 100 to –2.0 V.  
2RMS signal-to-rms noise with analog input signal 1 dB below full scale at specified frequency.  
3Intermodulation measured with analog input frequencies of 8.9 MHz and 9.8 MHz at 7 dB below full scale.  
4PSRR is sensitivity of offset error to power supply variations within the 5% limits shown.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS1  
+VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +6 V  
–VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–6 V  
Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VS to +VS  
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –VS to 0 V  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating Temperature Range  
AD9023AQ/AZ/BQ/BZ . . . . . . . . . . . . . . . –25°C to +85°C  
AD9023SQ/SZ . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
Maximum Junction Temperature2 . . . . . . . . . . . . . . . . . . . . . . . . +175°C  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . . . +300°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
NOTES  
1Absolute maximum ratings are limiting values to be applied individually, and  
beyond which the serviceability of the circuit may be impaired. Functional  
operability is not necessarily implied. Exposure to absolute maximum rating  
conditions for an extended period of time may affect device reliability.  
2Typical thermal impedances: “Q” Package (Ceramic DIP): θJC = 10°C/W; θJA  
=
35°C/W. “Z” Package (Gullwing Surface Mount): θJC = 13°C/W; θJA = 45°C/W.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD9023 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recom-  
mended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–3–  
REV. A  
AD9023  
N
ANALOG  
IN  
ta  
N + 1  
ta = 0.8 TYPICAL  
N + 2  
tOD  
ENCODE  
ENCODE  
tOD = 8.5–19.5ns TYPICAL  
DATA  
OUTPUT  
N – 3  
N – 2  
N – 1  
N
Timing Diagram  
ORDERING GUIDE  
DIE LAYOUT AND MECHANICAL INFORMATION  
Die Dimensions . . . . . . . . . . . . . . . . 205 × 228 × 21 (±1) mils  
Pad Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 × 4 mils  
Metalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aluminum  
Backing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . None  
Substrate Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –VS  
Transistor Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,128  
Passivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oxynitride  
Bond Wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aluminum  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
AD9023AQ/BQ –25°C to +85°C 28-Pin Ceramic DIP Q-28  
AD9023AZ/BZ –25°C to +85°C 28-Pin Ceramic  
Z-28  
Leaded Chip Carrier  
AD9023SQ  
AD9023SZ  
–55°C to +125°C 28-Pin Ceramic DIP Q-28  
–55°C to +125°C 28-Pin Ceramic  
Z-28  
Leaded Chip Carrier  
EXPLANATION OF TEST LEVELS  
Test Level  
GND  
D11 (MSB)  
I
– 100% production tested.  
+V  
S
II – 100% production tested at +25°C, and sample tested at  
D10  
GND  
specified temperatures. AC testing done on sample basis.  
D9  
III – Sample tested only.  
ENCODE  
D8  
IV – Parameter is guaranteed by design and characterization  
testing.  
V – Parameter is a typical value only.  
D7  
VI – All devices are 100% production tested at +25°C; guaranteed  
by design and characterization testing at temperature  
extremes for industrial devices.  
GND  
ENCODE  
D6  
D5  
D4  
D0 (LSB)  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD9023 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recom-  
mended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. A  
AD9023  
PIN DESIGNATIONS  
PIN DESCRIPTION  
Function  
Pin No.  
Name  
D3  
D2  
1
2
3
4
5
6
7
8
9
28 GND  
27 –VS  
26 +VS  
25 D4  
24 D5  
23 D6  
22 D7  
21 D8  
20 D9  
19 D10  
1–3  
D3–D1  
Digital output bits of ADC; ECL  
compatible.  
D1  
4
D0 (LSB)  
Least significant bit of ADC output;  
ECL compatible.  
D0 (LSB)  
ENCODE  
NC  
5
6
7
8
ENCODE  
NC  
Complementary encode input to ADC.  
AD9023  
TOP VIEW  
(Not to Scale)  
GND  
ENCODE  
GND  
No Connect  
Ground  
GND  
ENCODE  
Encode clock input to ADC. Internal  
T/H is placed in hold mode (ADC is  
encoding) on rising edge of encode  
signal.  
+VS 10  
GND 11  
AIN 12  
–VS 13  
+VS 14  
18 D11 (MSB)  
17 COMP  
16 GND  
9
GND  
+VS  
Ground  
15 –VS  
10  
11  
12  
13  
14  
15  
16  
17  
+5 V Power Supply  
Ground  
GND  
AIN  
NC = NO CONNECT  
COMPENSATION (PIN 17) SHOULD BE  
Noninverting input to T/H amplifier.  
–5.2 V Power Supply  
+5 V Power Supply  
–5.2 V Power Supply  
Ground  
CONNECTED TO –VS THROUGH 0.1µF  
–VS  
+VS  
–VS  
GND  
COMP  
Should be connected to –VS through  
0.1 µF capacitor.  
18  
D11 (MSB) Most significant bit of ADC output;  
ECL compatible.  
19–25  
D10–D4  
Digital output bits of ADC; ECL  
compatible.  
26  
27  
28  
+VS  
+5 V Power Supply  
–5.2 V Power Supply  
Ground  
–VS  
GND  
+VS  
COMPENSATION  
+VS  
1200  
3400  
3400  
ENCODE  
ENCODE  
180  
–VS  
ANALOG  
INPUT  
50  
D0 – D11  
10 pF  
120  
20pF  
–VS  
–VS  
–VS  
–VS  
Compensation  
Figure 1. Equivalent Circuits  
Output Stage  
Encode Input  
Analog Input  
REV. A  
–5–  
AD9023  
Typical Characteristics  
85  
80  
+2.0  
+1.5  
+1.0  
+0.5  
0
–73  
A
= 1.2MHz  
IN  
A
F
= 1.2MHz  
IN  
= 20MSPS  
–72  
+25° C  
S
WORST HARMONICS  
–71  
75  
70  
65  
60  
55  
–70  
–55° C  
–69  
SNR  
+125° C  
–68  
–67  
–66  
–65  
–0.5  
–1.0  
–1.5  
–2.0  
17.5 20 22.5 25  
7.5 10 12.5 15  
ENCODE RATE – MSPS  
5
10  
0
1
2
3
4
5
6
7
8
9
1024  
2048  
OUTPUT CODE  
3072  
4096  
ANALOG INPUT FREQUENCY – MHz  
Figure 3. SNR and Harmonics vs. En-  
code Rate  
Figure 2. Harmonic Distortion vs.  
Analog Input Frequency  
Figure 4. Differential Nonlinearity vs.  
Output Code  
90  
70  
80  
A
= 9.6MHz  
A
= 1.2MHz  
IN  
ENCODE = 20MHz  
SFDR  
SNR  
+25° C  
IN  
ENCODE = 20MHz  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
65  
SFDR  
SNR  
–55° C  
60  
+125° C  
55  
50  
45  
40  
35  
1.24  
4.3 6.3 8.3 10.3 12.3 14.3 16.3 18.3 20.3  
ANALOG INPUT FREQUENCY – MHz  
–50 –45 –40 –35 –30 –25 –20 –15 –10 –5 –1  
–50 –45 –40 –35 –30 –25 –20 –15 –10 –5 –1  
INPUT LEVEL – dB  
INPUT LEVEL – dB  
Figure 5. Signal-to-Noise Ratio vs.  
Analog Input Frequency  
Figure 6. SFDR and SNR vs. Input  
Level  
Figure 7. SFDR and SNR vs. Analog  
Input Level  
0
0
0
A
A
A
A
1 = 8.9MHz  
2 = 9.8MHz  
1 = –7.0dBFS  
2 = –7.0dBFS  
A
A
= 9.6MHz  
= –1.0dBFS  
IN  
IN  
IN  
IN  
A
A
= 1.2MHz  
= –1.0dBFS  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
IN  
IN  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
IN  
20  
40  
IN  
SNR = 65.89dB  
THD = 70.16dB  
SFDR = 70.94dBFS  
SNR = 66.12dB  
THD = 73.96dB  
SFDR = 76.99dBFS  
SFDR = 81.10dBFS  
60  
80  
100  
–90  
120  
0.0  
–100  
0.0  
2.0  
4.0  
6.0  
8.0  
2.0  
4.0  
6.0  
8.0  
10.0  
FREQUENCY – MHz  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 9. FFT Plot  
Figure 10. Two Tone FFT  
Figure 8. FFT Plot  
–6–  
REV. A  
AD9023  
THEORY OF OPERATION  
The correct code appears most of the time, but adjacent codes  
also appear with reduced probability. If a normal probability  
density curve is fitted to this Gaussian distribution of codes, the  
standard deviation will be equal to the equivalent input rms  
noise of the ADC. The rms noise may also be approximated by  
converting the SNR, as measured by a low frequency FFT, to  
an equivalent input noise. This method is accurate only if the  
SNR performance is dominated by random thermal noise (the  
low frequency SNR without harmonics is the best measure).  
Sixty-three dB equates to 1 LSB rms for a 2 V p-p (0.707 V rms)  
input signal. The AD9023 has approximately 0.5 LSB of rms  
noise or a noise limited SNR of 69 dB, indicating that noise  
alone does not limit the SNR performance of the device (quanti-  
zation noise and linearity are also major contributors).  
Refer to the block diagram. The AD9023 employs a three pass  
subranging architecture and digital error correction. This com-  
bination of design techniques insures 12-bit accuracy at rela-  
tively low power.  
Analog input signals are immediately attenuated through a resis-  
tor divider and applied directly to the sampling bridge of the  
track-and-hold (T/H). The T/H holds whatever analog value is  
present when the unit is strobed with an ENCODE command.  
The conversion process begins on the rising edge of this pulse,  
which should conform to the minimum and maximum pulse  
width requirements shown in the specifications. Operation be-  
low the recommended encode rate (4 Msps) may result in ex-  
cessive droop in the internal T/H devices–leading to large dc  
and ac errors.  
This thermal noise may come from several sources. The drive  
source impedance should be kept low to minimize resistor ther-  
mal noise. Some of the internal ADC noise is generated in the  
wideband T/H. Sampling ADCs generally have input band-  
widths which exceed the Nyquist frequency of one-half the  
sampling rate. (The AD9023 has an input bandwidth of over  
100 MHz, even though the sampling rate is limited to 20 Msps.)  
The held analog value of the first track-and-hold is applied to a  
5-bit flash converter and a second T/H. The 5-bit flash con-  
verter resolves the most significant bits (MSBs) of the held ana-  
log voltage. These 5 bits are reconstructed via a 5-bit DAC and  
subtracted from the original T/H output signal to form a residue  
signal.  
A second T/H holds the amplified residue signal while it is en-  
coded with a second 5-bit flash ADC. Again the 5 bits are re-  
constructed and subtracted from the second T/H output to form  
a residue signal. This residue is amplified and encoded with a 4-  
bit flash ADC to provide the 3 least significant bits (LSBs) of  
the digital output and one bit of error correction.  
USING THE AD9023  
Layout Information  
Preserving the accuracy and dynamic performance of the  
AD9023 requires that designers pay special attention to the lay-  
out of the printed circuit board.  
Analog paths should be kept as short as possible and be properly  
terminated to avoid reflections. The analog input connection  
should be kept away from digital signals paths; this reduces the  
amount of digital switching noise which is capacitively coupled  
into the analog section. Digital signal paths should also be kept  
short, and run lengths should be matched to avoid propagation  
delay mismatch. The AD9023 digital outputs should be buff-  
ered or latched close to the device (< 2 cm). This prevents load  
transients which may feed back into the device.  
Digital Error Correction logic aligns the data from the three  
flash converters and presents the result as a 12-bit parallel digi-  
tal word. The output stage of the AD9023 is ECL. Output data  
may be strobed on the rising edge of the ENCODE command.  
AD9023 Noise Performance  
High speed, wide bandwidth ADCs such as the AD9023 are op-  
timized for dynamic performance over a wide range of analog  
input frequencies. However, there are many applications (Imag-  
ing, Instrumentation, etc.) where dc precision is also important.  
Due to the wide input bandwidth of the AD9023 for a given in-  
put voltage, there will be a range of output codes which may oc-  
cur. This is caused by unavoidable circuit noise within the  
wideband circuits in the ADC. If a dc signal is applied to the  
ADC and several thousand outputs are recorded, a distribution  
of codes such as that shown in the histogram below may result.  
In high speed circuits, layout of the ground is critical. A single,  
low impedance ground plane on the component side of the  
board is recommended. Power supplies should be capacitively  
coupled to the ground plane with high quality 0.1 µF chip ca-  
pacitors to reduce noise in the circuit. All power pins of the  
AD9023 should be bypassed individually. The compensation  
pin (COMP Pin 17) should be bypassed directly to the –VS sup-  
ply (Pin 15) as close to the part as possible using a 0.1 µF chip  
capacitor.  
ONE STANDARD  
DEVIATION = RMS  
NOISE LEVEL  
Multilayer boards allow designers to lay out signal traces with-  
out interrupting the ground plane, and provide low impedance  
ground planes. In systems with dedicated analog and digital  
grounds, all grounds for the AD9023 should be connected to  
the analog ground plane.  
In systems using multilayer boards, dedicated power planes are  
recommended to provide low impedance connections for device  
power. Sockets limit dynamic performance and are not recom-  
mended for use with the AD9023.  
Timing  
Conversion by the AD9023 is initiated by the rising edge of the  
ENCODE clock (Pin 8). All required timing is generated inter-  
nal to the ADC. Care should be taken to ensure that the encode  
clock to the AD9023 is free from jitter that can degrade dy-  
namic performance.  
X–3  
x–2  
x–1  
x
x+1  
x+2  
x+3  
OUTPUT CODE  
Figure 11. Equivalent Input Noise  
REV. A  
–7–  
AD9023  
Pulse width of the ADC encode clock must be controlled to en-  
sure the best possible performance. Dynamic performance is  
guaranteed with a clock pulse HIGH minimum of 25 ns. Opera-  
tion with narrower pulses will degrade SNR and dynamic per-  
formance. From a system perspective, this is generally not a  
problem because a simple inverter can be used to generate a  
suitable clock if the system clock is less than 25 ns wide.  
Power Supplies  
The power supplies of the AD9023 should be isolated from the  
supplies used for noisy devices (digital logic especially) to re-  
duce the amount of noise coupled into the ADC. For optimum  
performance, linear supplies ensure that switching noise from  
the supplies does not introduce distortion products during the  
encoding process. If switching supplies must be used, decoupling  
recommendations above are critically important. The PSRR of  
the AD9023 is a function of the ripple frequency present on the  
supplies. Clearly, power supplies with the lowest possible fre-  
quency should be selected.  
The AD9023 provides latched data outputs. Data outputs are  
available two pipeline delays and one propagation delay after the  
rising edge of the encode clock (refer to the AD9023 Timing  
Diagram). The length of the output data lines and the loads  
placed on them should be minimized to reduce transients within  
the AD9023; these transients can detract from the converter’s  
dynamic performance. Operation at encode rates less than  
4 Msps is not recommended. The internal track-and-hold satu-  
rates, causing erroneous conversions. This T/H saturation pre-  
cludes clocking the AD9023 in a burst mode.  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
Q-28 (Ceramic DIP)  
The duty cycle of the encode clock for the AD9023 is critical for  
obtaining rated performance of the ADC. Internal pulse widths  
within the track-and-hold are established by the encode com-  
mand pulse width; to ensure rated performance, minimum and  
maximum pulse width restrictions should be observed. Opera-  
tion at 20 Msps is optimized when the duty cycle is held at 55%.  
15  
28  
1
0.610 (15.49)  
0.500 (12.70)  
14  
0.015  
(0.38)  
MIN  
0.620 (15.75)  
0.590 (14.99)  
1.490 (37.85) MAX  
0.225  
(5.72)  
MAX  
Analog Input  
The analog input (Pin 12) voltage range is nominally ±1.024  
volts. The range is set with an internal voltage reference and  
cannot be adjusted by the user. The input resistance is 300 Ω  
and the analog bandwidth is 110 MHz, making the AD9023  
useful in undersampling applications.  
0.150  
(3.81)  
MIN  
0.018 (0.457)  
0.008 (0.203)  
0.110 (2.79)  
0.090 (2.29)  
0.07 (1.78)  
0.03 (0.76)  
0.026 (0.660)  
0.014 (0.356)  
Z-28 (Ceramic Leaded Chip Carrier)  
The AD9023 should be driven from a low impedance source.  
The noise and distortion of the amplifier should be considered  
to preserve the dynamic range of the AD9023.  
0.115  
0.73 (18.544)  
(2.921)  
MAX  
0.012 (0.305)  
0.009 (0.229)  
0.71 (18.036)  
28  
15  
10176  
AD9023  
0.025  
(0.635)  
MIN  
0.51 (12.954)  
0.49 (12.446)  
TOP VIEW  
A
12  
IN  
0.765 (19.431)  
0.745 (18.923)  
62Ω  
(510ON EACH  
DATA BIT)  
–5.2V  
1
14  
0.060 (1.524)  
0.040 (1.016)  
0.165  
(4.191)  
MAX  
10176  
0.050  
(1.27)  
TYP  
0.015  
(0.381)  
MIN  
5
8
ENCODE  
ENCODE  
(510ON EACH  
17  
DATA BIT)  
0.1µF  
–5.2V  
–5.2V  
Figure 12. AD9023 Evaluation Board  
–8–  
REV. A  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY