AD9048TQ-883B [ADI]

Monolithic 8-Bit Video A/D Converter; 单片8位视频A / D转换器
AD9048TQ-883B
型号: AD9048TQ-883B
厂家: ADI    ADI
描述:

Monolithic 8-Bit Video A/D Converter
单片8位视频A / D转换器

转换器
文件: 总8页 (文件大小:263K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Monolithic 8-Bit  
Video A/D Converter  
a
AD9048  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
35 MSPS Encode Rate  
12  
28  
23  
18  
NLINV  
NMINV  
16 pF Input Capacitance  
550 mW Power Dissipation  
Industry-Standard Pinouts  
MIL-STD-883 Compliant Versions Available  
AD9048  
V
IN  
1
2
R
T
R
R
1
2
D1 (MSB)  
APPLICATIONS  
E
N
C
O
D
I
D2  
D3  
D3  
D5  
Professional Video Systems  
Special Effects Generators  
Electro-Optics  
Digital Radio  
Electronic Warfare (ECM, ECCM, ESM)  
3
127  
128  
L
A
T
C
H
4
R/2  
R/2  
N
G
27  
R
13  
M
L
O
G
I
14 D6  
15  
16  
D7  
R
R
C
D8 (LSB)  
254  
255  
GENERAL DESCRIPTION  
26  
17  
R
B
The AD9048 is an 8-bit, 35 MSPS flash converter, made on  
a high speed bipolar process, which is an alternate source for  
the TDC1048 unit, and offers enhancements over its  
predecessor. Lower power dissipation makes the AD9048  
attractive for a variety of system designs.  
CONVERT  
5
11  
19 25  
6
10  
7
8
9
V
V
EE  
DGND AGND  
CC  
Because of its wide bandwidth, it is an ideal choice for real-time  
conversion of video signals. Input bandwidth is flat with no  
missing codes.  
Clocked latching comparators, encoding logic, and output  
buffer registers operating at minimum rates of 35 MSPS pre-  
clude a need for a sample-and-hold (S/H) or track-and-hold  
(T/H) in most system designs using the AD9048. All digital  
control inputs and outputs are TTL compatible.  
Commercial versions are packaged in 28-lead DIPs; extended  
temperature versions are available in ceramic DIP and ceramic  
LCC packages. Both commercial units and MIL-STD-883 units  
are standard products.  
Devices operating over two ambient temperature ranges and  
with two grades of linearity are available. Linearities of either  
0.5 LSB or 0.75 LSB can be ordered for a commercial range of  
0°C to 70°C or extended case temperatures of –55°C to +125°C.  
The AD9048 A/D converter is available in versions compliant  
with MIL-STD-883. Refer to the Analog Devices Military Prod-  
ucts Databook or current AD9048/883B data sheet for detailed  
specifications.  
REV. F  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
(typical with nominal supplies, unless otherwise noted.)  
AD9048–SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS1  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . . 1.0 sec5  
Operating Temperature Range (Ambient)  
VCC to DGND . . . . . . . . . . . . . . . . . –0.5 V DC to +7.0 V DC  
AGND to DGND . . . . . . . . . . . . . . –0.5 V DC to +0.5 V DC  
VEE to AGND . . . . . . . . . . . . . . . . . +0.5 V DC to –7.0 V DC  
VIN, VRT, or VRB to AGND . . . . . . . . . . . . . . . . . 0.5 V to VEE  
VRT to VRB . . . . . . . . . . . . . . . . . . . . –2.2 V DC to +2.2 V DC  
CONV, NMINV or NLINV to DGND–0.5 V DC to +5.5 V DC  
Applied Output Voltage to DGND –0.5 V DC to +5.5 V DC2  
Applied Output Current, Externally Forced  
AD9048JJ/KJ/JQ/KQ . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
AD9048SE/SQ/TE/TQ . . . . . . . . . . . . . . –55°C to +125°C  
Maximum Junction Temperature (Plastic) . . . . . . . . . 150°C6  
Maximum Junction Temperature (Hermetic) . . . . . . . 150°C6  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . . 300°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . –1.0 mA to +6.0 mA3, 4  
(V = +5.0 V; V = –5.2 V; Differential Reference Voltage = 2.0 V, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
CC  
EE  
Test  
AD9048JJ/JQ  
AD9048KJ/KQ  
Min Typ Max  
AD9048SE/SQ  
Min Typ Max  
AD9048TE/TQ  
Min Typ Max  
Parameter (Conditions)  
Temp  
Level Min Typ Max  
Unit  
RESOLUTION  
8
8
8
8
Bits  
DC ACCURACY  
Differential Nonlinearity  
25°C  
Full  
25°C  
Full  
I
VI  
I
VI  
VI  
0.4  
0.6  
0.75  
1.0  
0.75  
1.0  
0.3 0.5  
0.75  
0.4 0.5  
0.75  
0.4  
0.6  
0.75  
1.0  
0.75  
1.0  
0.3 0.5  
0.75  
0.4 0.5  
0.75  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
No Missing Codes  
Full  
Guaranteed  
Guaranteed  
Guaranteed  
Guaranteed  
INITIAL OFFSET ERROR  
Top of Reference Ladder  
25°C  
Full  
25°C  
Full  
I
VI  
I
VI  
V
5
12  
12  
8
5
12  
12  
8
5
12  
12  
8
5
12  
12  
8
mV  
mV  
mV  
mV  
Bottom of Reference Ladder  
Offset Drift Coefficient  
4
4
4
4
8
8
8
8
Full  
20  
20  
20  
20  
µV/°C  
ANALOG INPUT  
Input Voltage Range  
Full  
V
–2.1;  
+0.1  
36  
–2.1;  
+0.1  
36  
–2.1;  
+0.1  
36  
–2.1;  
+0.1  
36  
V
Input Bias Current7  
Input Resistance  
25°C  
Full  
25°C  
Full  
25°C  
25°C  
I
VI  
I
VI  
IV  
IV  
60  
100  
60  
100  
60  
100  
60  
100  
µA  
µA  
kΩ  
kΩ  
pF  
MHz  
200  
40  
300  
200 300  
200  
40  
300  
200 300  
40  
16  
40  
Input Capacitance  
16  
15  
20  
16  
15  
20  
16  
15  
20  
20  
Full Power Bandwidth8  
10  
10  
10  
10  
15  
REFERENCE INPUT  
Positive Reference Voltage9  
Negative Reference Voltage9  
Differential Reference Voltage  
Reference Ladder Resistance  
Ladder Temperature Coefficient  
Reference Ladder Current  
Reference Input Bandwidth  
Full  
Full  
Full  
Full  
Full  
Full  
25°C  
V
V
V
VI  
V
VI  
V
0.0  
–2.0  
2.0  
60  
0.22  
23  
0.0  
–2.0  
2.0  
60  
0.22  
23  
0.0  
–2.0  
2.0  
60  
0.22  
23  
0.0  
–2.0  
2.0  
60  
0.22  
23  
V
V
V
/°C  
mA  
MHz  
30  
125  
40  
30  
125  
40  
30  
125  
40  
30  
125  
40  
10  
10  
10  
10  
DYNAMIC PERFORMANCE10  
Conversion Rate  
Aperture Delay  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
I
35  
5
38  
2.4  
25  
13  
8
6
8
35  
5
38  
2.4  
25  
9
8
6
35  
5
38  
2.4  
25  
9
8
6
35  
5
38  
2.4  
25  
9
8
6
MHz  
ns  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
IV  
IV  
I
5
50  
15  
5
50  
15  
5
50  
15  
5
50  
15  
Aperture Uncertainty (Jitter)  
Output Delay (tPD  
)
11  
Output Hold Time (tOH  
)
I
Transient Response12  
IV  
V
I
I
I
20  
20  
20  
20  
Overvoltage Recovery Time13  
Rise Time  
8
8
8
9
14  
7
9
14  
7
9
14  
7
9
14  
7
Fall Time  
Output Time Skew14  
4.5  
4.5  
4.5  
4.5  
ns  
NMINV and NLINV INPUTS  
0.4 V Input Current  
2.4 V Input Current  
Full  
Full  
Full  
VI  
VI  
VI  
200  
150  
150  
200  
150  
150  
200  
150  
150  
200  
150  
150  
µA  
µA  
µA  
5.5 V Input Current  
CONVERT INPUT  
Logic “1” Voltage  
Logic “0” Voltage  
Logic “1” Current  
Logic “0” Current  
Input Capacitance  
Convert Pulsewidth (LOW)  
Convert Pulsewidth (HIGH)  
Full  
Full  
Full  
Full  
25°C  
25°C  
25°C  
VI  
VI  
VI  
VI  
IV  
I
2.0  
2.0  
2.0  
2.0  
V
V
µA  
µA  
pF  
ns  
ns  
0.8  
150  
500  
6
0.8  
150  
500  
6
0.8  
150  
500  
6
0.8  
150  
500  
6
4
4
4
4
18  
10  
18  
10  
18  
10  
18  
10  
I
–2–  
REV. F  
AD9048  
Test  
AD9048JJ/JQ  
AD9048KJ/KQ  
AD9048SE/SQ  
Min Typ Max  
AD9048TE/TQ  
Min Typ Max  
Parameter (Conditions)  
Temp  
Level Min Typ Max Min Typ Max  
Unit  
AC LINEARITY  
In-Band Harmonics  
DC to 2.438 MHz15  
25°C  
25°C  
I
V
47  
50  
48  
49  
55  
48  
47  
50  
48  
49  
55  
48  
dBc  
dBc  
DC to 9.35 MHz16  
Signal-to-Noise Ratio (SNR)15  
1.248 MHz Input Frequency17  
2.438 MHz Input Frequency17  
1.248 MHz Input Frequency18  
2.438 MHz Input Frequency18  
Signal-to-Noise Ratio (SNR)16  
1.248 MHz Input Frequency17  
9.35 MHz Input Frequency17  
Noise Power Ratio (NPR)19  
Differential Phase 20  
25°C  
25°C  
25°C  
25°C  
I
I
I
I
43.5 44  
43 44  
52.5 53  
52 53  
45  
44  
54  
53  
46  
46  
55  
55  
43.5 44  
43 44  
52.5 53  
52 53  
45  
44  
54  
53  
46  
46  
55  
55  
dB  
dB  
dB  
dB  
25°C  
25°C  
25°C  
25°C  
25°C  
I
V
IV  
IV  
IV  
43.5 44  
40.5  
36.5 39  
45  
46  
40.5  
43.5 44  
40.5  
36.5 39  
45  
46  
40.5  
dB  
dB  
dB  
Degree  
%
36.5 39  
36.5 39  
1
2
1
2
1
2
1
2
Differential Gain 20  
DIGITAL OUTPUTS  
Logic “1” Voltage  
Full  
Full  
Full  
VI  
VI  
VI  
2.4  
2.4  
2.4  
2.4  
V
V
mA  
Logic “0” Voltage  
0.5  
30  
0.5  
30  
0.5  
30  
0.5  
30  
Short Circuit Current5  
POWER SUPPLY  
Positive Supply Current  
25°C  
Full  
25°C  
Full  
25°C  
25°C  
I
VI  
I
VI  
V
V
34  
90  
56  
58  
110  
120  
34  
90  
56  
58  
110  
120  
34  
90  
56  
58  
110  
120  
34  
90  
56  
58  
110  
120  
mA  
mA  
mA  
mA  
mW  
mW  
Negative Supply Current  
Nominal Power Dissipation  
Reference Ladder Dissipation  
550  
45  
550  
45  
550  
45  
550  
45  
NOTES  
1Maximum ratings are limiting values to be applied individually, and beyond which  
the serviceability of the device may be impaired. Functional operation under any of  
these conditions is not necessarily implied. Exposure to absolute maximum rating  
conditions for extended periods of time may affect device reliability.  
2Applied voltage must be current-limited to specified range.  
3Forcing voltage must be limited to specified range.  
10Outputs terminated with 40 pF and eight 10 pull-up resistors.  
11Interval from 50% point of leading edge CONVERT pulse to change in  
output data.  
12For full-scale step input, 8-bit accuracy attained in specified time.  
13Recovers to 8-bit accuracy in specified time after –3 V input overvoltage.  
14Output time skew includes high-to-low and low-to-high transitions as well as  
bit-to-bit time skew differences.  
4Current is specified as negative when flowing into the device.  
5Output High; one pin to ground; 1s duration.  
15Measured at 20 MHz encode rate with analog input 1 dB below full scale.  
16Measured at 35 MHz encode rate with analog input 1 dB below full scale.  
17RMS signal to rms noise.  
6Typical thermal impedances (no air flow) are as follows:  
Ceramic DIP: θJA = 49°C/W, θJC = 15°C/W; LCC: θJA = 69°C/W, θJC = 21°C/W;  
18Peak signal to rms noise.  
JLCC: θJA = 59°C/W; θJC = 19°C/W.  
19DC to 8 MHz noise bandwidth with 1.248 MHz slot; four sigma loading;  
20 MHz encode.  
To calculate junction temperature (TJ), use power dissipation (PD) and thermal  
impedance: TJ = PD (θJA) + TAMBIENT = PD (θJC) = + TCASE  
.
7Measured with VIN = 0 V and CONVERT low (sampling mode).  
8Determined by beat frequency testing for no missing codes.  
9VRT VRB under all circumstances.  
20Clock frequency = 4 × NTSC = 14.32 MHz. Measured with 40-IRE  
modulated ramp.  
Specifications subject to change without notice.  
EXPLANATION OF TEST LEVELS  
Test Level I – 100% production tested.  
Test Level II – 100% production tested at 25°C and  
sample tested at specific temperatures.  
Test Level III – Sample tested only.  
Test Level IV – Parameter is guaranteed by design and  
characterization testing.  
Test Level V – Parameter is a typical value only.  
Test Level VI – All devices are 100% production tested at  
25°C. 100% production tested at temperature  
extremes for military temperature devices;  
sample tested at temperature extremes for  
commercial/industrial devices.  
REV. F  
–3–  
AD9048  
ORDERING GUIDE  
PIN CONFIGURATIONS  
DIP (D Package)  
Package  
Option1  
Model  
Linearity Temperature  
1
2
(MSB) D1  
D2  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
NMINV  
AD9048JJ  
0.75 LSB 0°C to 70°C  
J-28A  
J-28A  
D-28  
D-28  
R
M
3
D3  
AD9048KJ  
AD9048JQ  
AD9048KQ  
0.5 LSB  
0.75 LSB 0°C to 70°C  
0.5 LSB 0°C to 70°C  
0°C to 70°C  
R
B
4
D4  
AGND  
NC  
5
DGND  
AD9048  
AD9048SE/833B2 0.75 LSB –55°C to +125°C E-28A  
V
6
V
CC  
IN  
TOP VIEW  
AD9048TE/833B2 0.5 LSB  
–55°C to +125°C E-28A  
NC  
(Not to Scale)  
7
V
EE  
AD9048SQ/833B2 0.75 LSB –55°C to +125°C D-28  
NC  
8
V
EE  
AD9048TQ/833B2 0.5 LSB  
–55°C to +125°C D-28  
NC  
9
V
EE  
10  
11  
12  
13  
14  
V
AGND  
CC  
NOTES  
1E = Leadless Ceramic Chip Carrier; J = J-Leaded Ceramic; D = Cerdip.  
2MIL-STD-883 and Standard Military Drawing available.  
DGND  
NLINV  
D5  
R
T
CONVERT  
D8 (LSB)  
D7  
D6  
NC = NO CONNECT  
MECHANICAL INFORMATION  
Die Dimensions . . . . . 140 mils × 137 mils × 21 mils ( 2) mils  
Pad Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 4 mils × 4 mils  
Metallization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gold  
Backing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . None  
Substrate Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VEE  
Passivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nitride  
Die Attach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gold Eutectic  
Bond Wire . . . . . . . . . . . . . . . 1 mils Gold; Gold Ball Bonding  
LCC (E Package)  
4
3
1
28 27 26  
2
25 AGND  
24 NC  
5
6
DGND  
V
CC  
23  
22  
V
IN  
V
7
EE  
AD9048  
TOP VIEW  
(Not to Scale)  
V
8
NC  
EE  
21 NC  
20  
V
9
EE  
V
NC  
19 AGND  
10  
11  
CC  
DGND  
AGND  
AIN  
AGND  
12 13 14 15 16 17 18  
RLOW  
RMID  
RTOP  
NC = NO CONNECT  
NMINV  
CONV  
D8  
MSB  
D2  
J-Leaded Ceramic (J Package)  
D7  
D6  
D3  
25 24 23 22 21 20 19  
D4  
D5  
26  
27  
28  
1
18  
17  
16  
15  
14  
13  
12  
R
R
T
B
NLINV  
DGND  
CONVERT  
D8 (LSB)  
D7  
R
M
DGND  
NMINV  
(MSB) D1  
D2  
AD9048  
TOP VIEW  
(Not to Scale)  
2
V
V
V
V
DGND  
CC CC  
D6  
V
V
V
CC CC  
EE EE EE  
3
D5  
D3  
Figure 1. Bonding Diagram  
4
NLINV  
D4  
5
6
7
8
9
10 11  
NC = NO CONNECT  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD9048 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. F  
AD9048  
PIN FUNCTION DESCRIPTIONS  
Mnemonic  
Description  
Mnemonic  
Description  
RB  
Most Negative Reference Voltage for Internal  
Reference Ladder  
D1–D8  
Eight Digital Outputs. D1 (MSB) is the most  
significant bit of the digital output word;  
D8 (LSB) is the least significant bit.  
RM  
RT  
Midpoint Tap on Internal Reference Ladder  
AGND  
DGND  
One of Two Analog Ground Returns. Both  
grounds should be connected together and to  
low impedance ground plane near the AD9048.  
Most Positive Reference Voltage for Internal  
Reference Ladder  
VIN  
Analog Input Signal Pin  
One of Two Digital Ground Returns. Both  
grounds should be connected together and to  
low impedance ground plane near the AD9048.  
NMINV  
“Not Most Significant Bit Invert.” In normal  
operation, this pin floats high; logic LOW at  
NMINV inverts most significant bit of digital  
output word [D1 (MSB)].  
VCC  
VEE  
Positive Supply Terminals; Nominally 5.0 V  
Negative Supply Terminals; Nominally –5.2 V  
NLINV  
“Not Least Significant Bit Invert.” In normal  
operation, this pin floats high; logic LOW at  
NLINV inverts the seven least significant bits  
of the digital output word.  
CONVERT Input for Conversion Signal. Sample of analog  
input signal taken on rising edge of this pulse.  
–5.2V  
+5.0V  
0.1F  
0.1F  
V
V
CC  
EE  
100ꢀ  
510ꢀ  
(MSB) D1  
AD1  
AD2  
V
IN  
D2  
D3  
D4  
CONVERT  
AD9048  
D5  
D6  
–2.0V  
R
B
D7  
(LSB) D8  
R
T
1kꢀ  
LOAD  
RESISTORS  
DIGITAL  
GROUND  
ANALOG  
GROUND  
ALL RESISTORS 5%  
OPTION #1 (STATIC): AD1 = –2.0V; AD2 = +2.4V  
OPTION #2 (DYNAMIC): SEEWAVEFORMS  
ALL CAPACITORS 20%  
ALL SUPPLYVOLTAGES 5%  
0V  
AD1  
–2.0V  
640s  
V
IH  
AD2  
V
IL  
5s  
Figure 2. Burn-In Diagram  
REV. F  
–5–  
AD9048  
THEORY OF OPERATION  
System timing, which provides details on delays through the  
AD9048 as well as the relationships of various timing events, is  
shown in Figure 4.  
Refer to the Functional Block Diagram of the AD9048. The  
AD9048 comprises three functional sections: a comparator  
array, encoding logic, and output latches.  
N+1  
Within the array, the analog input signal to be digitized is  
compared with 255 reference voltages. The outputs of all com-  
parators whose references are below the input signal level will be  
high; outputs whose references are above that level will be low.  
ANALOG  
INPUT  
N
N+2  
APERTURE  
DELAY  
The n-of-255 code that results from this comparison is applied  
to the encoding logic where it is converted into binary coding.  
When it is inverted with dc signals applied to the NLINV and/or  
NMINV pins, it becomes twos complement.  
CONVERT  
tOH  
OUTPUT  
DATA  
N
N–1  
N+1  
tPD  
DATA  
DATA  
After encoding, the signal is applied to the output latch circuits  
where it is held constant between updates controlled by the  
application of CONVERT pulses.  
CHANGING  
CHANGING  
Figure 4. Timing Diagram  
The AD9048 uses strobed latching comparators in which com-  
parator outputs are either high or low, as dictated by the analog  
input level. Data appearing at the output pins have a pipeline  
delay of one encode cycle.  
Dynamic performance of the AD9048, i.e., typical signal-to-  
noise ratio, is illustrated in Figures 5 and 6.  
50  
48  
46  
Input signal levels between the references applied to RT (Pin 18)  
and RB (Pin 26) will appear at the output as binary numbers  
between 0 and 255, inclusive. Signals outside that range will  
show up as either full-scale positive or full-scale negative out-  
puts. No damage will occur to the AD9048 as long as the input  
is within the voltage range of VEE to 0.5 V.  
44  
The significantly reduced input capacitance of the AD9048  
lowers the drive requirements of the input buffer/amplifier and  
also induces much smaller phase shift in the analog input signal.  
42  
40  
38  
Applications that depend on controlled phase shift at the con-  
verter input can benefit from using the AD9048 because of its  
inherently lower phase shift.  
100kHz  
1MHz  
10MHz  
ANALOG INPUT FREQUENCY – 1dB BELOW FULL-SCALE  
The CONVERT, analog input, and digital output circuits are  
shown in Figure 3.  
Figure 5. Dynamic Performance (20 MHz Encode Rate)  
5.0V  
5.0V  
50  
48  
46  
13kꢀ  
DIGITAL  
OUTPUTS  
CONVERT  
44  
R
T
R
42  
40  
38  
R/2  
R/2  
R
M
100kHz  
1MHz  
10MHz  
–5.2V  
–5.2V  
ANALOG INPUT FREQUENCY – 1dB BELOW FULL-SCALE  
ANALOG  
INPUT  
Figure 6. Dynamic Performance (35 MHz Encode Rate)  
R
R
B
–5.2V  
COMPARATOR CELLS  
–5.2V  
Figure 3. Input/Output Circuits  
–6–  
REV. F  
AD9048  
LAYOUT SUGGESTIONS  
0.1F  
AD589  
10kꢀ  
–5.2V  
Designs that use the AD9048 or any other high speed device  
must follow some basic layout rules to ensure optimum  
performance.  
2kꢀ  
27ꢀ  
The first requirement is to have a large, low impedance ground  
plane under and around the converter. If the system uses separate  
analog and digital grounds, both should be solidly connected  
together, and to the ground plane, as closely to the AD9048 as  
practical to avoid ground loop currents.  
100ꢀ  
2N3906  
0.1F  
AD741  
5ꢀ  
1kꢀ  
1kꢀ  
0.1F  
Ceramic 0.1 µF decoupling capacitors should be placed as closely  
as possible to the supply pins of the AD9048. For decoupling  
low frequency signals, use 10 µF tantalum capacitors also con-  
nected as closely as practical to voltage supply pins.  
R
R
B
R
T
ANALOG  
INPUT  
(0VTO 2V)  
R
43ꢀ  
D1 (MSB)  
V
IN  
50ꢀ  
AD9617/AD9618,  
AD9620/AD9630,  
AD847  
AD9048  
Within the AD9048, reference currents may vary because of  
coupling between the clock and input signals. As a result, it is  
important that the ends of the reference ladder, RT (Pin 18) and  
RB (Pin 26), be connected to low impedances (as measured  
from ground).  
TTL  
CONVERT  
SIGNAL  
CONVERT  
D8 (LSB)  
V
V
EE  
CC  
0.1F  
0.1F  
If the AD9048 is being used in a circuit in which the reference  
is not varied, a bypass capacitor to ground is strongly recom-  
mended. In applications that use varying references, they must  
be driven from a low impedance source.  
+5.0V  
–5.2V  
Figure 7. Typical Connections  
Table I. Truth Table  
Binary  
Offset Twos  
Complement  
Step  
Range  
True  
Inverted  
True  
Inverted  
–2.000 V FS  
–2.0480 V FS  
NMINV = 1  
0
0
1
7.8431 mV Step 8.000 mV Step  
NLINV = 1  
00000000  
00000001  
0
1
0
000  
001  
0.0000 V  
–0.0078 V  
0.0000 V  
–0.0080 V  
11111111  
11111110  
10000000  
10000001  
01111111  
01111110  
127  
128  
129  
–0.9961 V  
–1.0039 V  
–1.0118 V  
–1.0160 V  
–1.0240 V  
–1.0320 V  
01111111  
10000000  
10000001  
10000000  
01111111  
01111110  
11111111  
00000000  
00000001  
00000000  
11111111  
11111110  
254  
255  
–1.9921 V  
–2.0000 V  
–2.0320 V  
–2.0400 V  
11111110  
11111111  
00000001  
00000000  
01111110  
01111111  
10000001  
10000000  
REV. F  
–7–  
AD9048  
OUTLINE DIMENSIONS  
28-Terminal Ceramic Leadless Chip Carrier [LCC]  
28-Lead Side-Brazed Ceramic Dual In-Line Package  
(E-28A)  
[SBDIP]  
(D-28)  
Dimensions shown in inches and (millimeters)  
Dimensions shown in inches and (millimeters)  
0.300 (7.62)  
REF  
0.100 (2.54)  
0.064 (1.63)  
0.075  
(1.91)  
REF  
0.020 (0.51)  
MIN  
0.100 (2.54)  
0.005 (0.13)  
MAX  
MIN  
19  
25  
0.028 (0.71)  
0.022 (0.56)  
28  
15  
14  
18  
26  
28  
0.05 (1.27)  
0.610 (15.49)  
0.580 (12.73)  
0.458  
0.458 (11.63)  
0.442 (11.23)  
(11.63)  
MAX  
SQ  
BOTTOM  
VIEW  
1
SQ  
0.15 (3.81)  
REF  
PIN 1  
1
0.075 (1.91)  
0.620 (15.75)  
0.590 (14.99)  
REF  
12  
4
1.490 (37.85) MAX  
0.085 (2.16)  
0.060 (1.52)  
0.015 (0.38)  
11  
5
MAX  
0.095 (2.41)  
0.075 (1.90)  
0.055 (1.40)  
0.045 (1.14)  
0.088 (2.24)  
0.054 (1.37)  
0.150  
(3.81)  
MIN  
0.018 (0.46)  
0.008 (0.20)  
0.200 (5.08)  
0.125 (3.18)  
SEATING  
PLANE  
0.026 (0.66)  
0.014 (0.36)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
0.070 (1.78)  
0.030 (0.76)  
0.100 (2.54)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
28-Lead Ceramic Chip Carrier - J-Formed Leads [JLCC]  
(J-28A)  
Dimensions shown in inches and (millimeters)  
0.040 (1.02)  
0.020 (0.51)  
REF  
x 45  
0.125 (3.18)  
MAX  
REF  
x 45  
0.460 (11.68)  
0.440 (11.18)  
SQ  
3 PLACES  
4
26  
26  
4
5
25  
25  
5
0.035 (0.89)  
0.025 (0.64)  
PIN 1 INDEX  
0.055 (1.40)  
PIN 1  
0.450 (11.43)  
0.410 (10.41)  
0.050  
(1.27)  
0.310 (7.87)  
0.290 (7.37)  
TOP VIEW  
BOTTOM VIEW  
0.022 (0.56)  
0.012 (0.30)  
11  
19  
19  
11  
12  
18  
18  
12  
0.500 (12.70)  
0.480 (12.19)  
SQ  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Revision History  
Location  
Page  
5/03—Data Sheet changed from REV. E to REV. F.  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Changes to OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
09/01—Data Sheet changed from REV. D to REV. E.  
Change in ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
05/01—Data Sheet changed from REV. C to REV. D.  
Change in ORDERING GUIDE and PIN DESIGNATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Edits to 28-Lead Ceramic Side-Brazed DIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
–8–  
REV. F  

相关型号:

AD9048TQ/833B

IC 1-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP28, CERAMIC, SIDE BRAZED, DIP-28, Analog to Digital Converter
ADI

AD9048TQ/883B

IC 1-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP28, CERDIP-28, Analog to Digital Converter
ADI

AD9049

9-Bit, 30 MSPS ADC
ADI

AD9049BR

9-Bit, 30 MSPS ADC
ADI

AD9049BRS

9-Bit, 30 MSPS ADC
ADI

AD9049BRS-REEL

IC 1-CH 9-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, SSOP-28, Analog to Digital Converter
ADI

AD9050

10-Bit, 40 MSPS/60 MSPS A/D Converter
ADI

AD9050BR

10-Bit, 40 MSPS/60 MSPS A/D Converter
ADI

AD9050BR-REEL

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, SOIC-28, Analog to Digital Converter
ADI

AD9050BRS

10-Bit, 40 MSPS/60 MSPS A/D Converter
ADI

AD9050BRS-60

10-Bit, 40 MSPS/60 MSPS A/D Converter
ADI

AD9050BRZ-REEL

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, SOIC-28, Analog to Digital Converter
ADI