AD9049 [ADI]

9-Bit, 30 MSPS ADC; 9位, 30 MSPS ADC
AD9049
型号: AD9049
厂家: ADI    ADI
描述:

9-Bit, 30 MSPS ADC
9位, 30 MSPS ADC

文件: 总12页 (文件大小:299K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a
9-Bit, 30 MSPS ADC  
AD9049  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Low Power: 300 mW  
On-Chip T/H, Reference  
Single +5 V Power Supply Operation  
Selectable 5 V or 3 V Logic I/O  
Wide Dynamic Performance  
GND  
+5V  
+5V  
AD9049  
REFERENCE CKTS  
ADC  
AINB  
AIN  
T/H  
APPLICATIONS  
Digital Communications  
Professional Video  
Medical Imaging  
Instrumentation  
9
DECODE  
LOGIC  
SUM  
AMP  
DAC  
ADC  
TIMING  
ENCODE  
+5V  
PRODUCT DESCRIPTION  
The AD9049 is a complete 9-bit monolithic sampling analog-  
to-digital converter (ADC) with an onboard track-and-hold and  
reference. The unit is designed for low cost, high performance  
applications and requires only +5 V and an encode clock to  
achieve 30 MSPS sample rates with 9-bit resolution.  
2, 8, 11,  
20, 22  
4
3
AIN  
10  
(+3.3V ± 0.512V)  
0.1µF  
+5V  
5
6
9
9 BITS  
(2)  
74AC574  
AD9049  
0.1µF  
The encode clock is TTL compatible and the digital outputs  
are CMOS; both can operate with 5 V/3 V logic, selected by the  
user. The two-step architecture used in the AD9049 is opti-  
mized to provide the best dynamic performance available while  
maintaining low power consumption.  
0.1µF  
1, 7, 12,  
21, 23  
13  
ENCODE  
A 2.5 V reference is included onboard, or the user can provide  
an external reference voltage for gain control or matching of  
multiple devices. Fabricated on an advanced BiCMOS process,  
the AD9049 is packaged in space saving surface mount pack-  
ages (SOIC, SSOP) and is specified over the industrial  
(–40°C to +85°C) temperature range.  
Figure 1. Typical Connections  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 617/329-4700  
Fax: 617/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1996  
AD9049–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (VD, VDD = +5 V; internal reference; ENCODE = 30 MSPS unless otherwise noted)  
Test  
Level  
AD9049BR/BRS  
Typ  
Parameter  
Temp  
Min  
Max  
Units  
RESOLUTION  
9
Bits  
DC ACCURACY  
Differential Nonlinearity  
+25°C  
Full  
+25°C  
Full  
Full  
+25°C  
Full  
I
V
I
V
IV  
I
0.5  
0.5  
0.5  
0.5  
1.0  
1.0  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
No Missing Codes  
Gain Error  
GUARANTEED  
±1.0  
±7.5  
% FS  
ppm/°C  
Gain Tempco1  
V
±100  
ANALOG INPUT  
Input Voltage Range  
Input Offset Voltage  
+25°C  
+25°C  
Full  
+25°C  
+25°C  
+25°C  
V
I
IV  
I
V
V
1.024  
+7  
V p-p  
mV  
mV  
kΩ  
pF  
–10  
–32  
3.5  
+25  
+51  
6.5  
Input Resistance  
Input Capacitance  
Analog Bandwidth  
5.0  
5
100  
MHz  
BANDGAP REFERENCE  
Output Voltage  
+25°C  
Full  
I
V
2.4  
30  
2.5  
±50  
2.6  
V
Temperature Coefficient1  
ppm/°C  
SWITCHING PERFORMANCE  
Maximum Conversion Rate  
Minimum Conversion Rate  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter)  
Output Propagation Delay (tPD  
+25°C  
+25°C  
+25°C  
+25°C  
Full  
I
IV  
V
V
IV  
MSPS  
MSPS  
ns  
ps, rms  
ns  
1.5  
2.7  
5
3
2
)
5
15  
DYNAMIC PERFORMANCE  
Transient Response  
Overvoltage Recovery Time  
ENOBS  
+25°C  
+25°C  
V
V
10  
10  
ns  
ns  
f
f
IN = 2.3 MHz  
IN = 10.3 MHz  
+25°C  
+25°C  
V
I
8.56  
8.51  
ENOBs  
ENOBs  
8.01  
50  
Signal-to-Noise Ratio (SINAD)3  
fIN = 2.3 MHz  
+25°C  
+25°C  
V
I
53.3  
53  
dB  
dB  
f
IN = 10.3 MHz  
Signal-to-Noise Ratio  
(Without Harmonics)  
f
f
IN = 2.3 MHz  
IN = 10.3 MHz  
+25°C  
+25°C  
V
I
53.5  
53.3  
dB  
dB  
51  
2nd Harmonic Distortion  
f
f
IN = 2.3 MHz  
IN = 10.3 MHz  
+25°C  
+25°C  
V
I
–69  
–67  
dBc  
dBc  
–60  
–58  
3rd Harmonic Distortion  
f
f
IN = 2.3 MHz  
IN = 10.3 MHz  
+25°C  
+25°C  
V
I
–75  
–66  
dBc  
dBc  
Two-Tone Intermodulation  
Distortion (IMD)4  
Differential Phase  
+25°C  
+25°C  
+25°C  
V
V
V
65  
0.15  
0.35  
dBc  
Degrees  
%
Differential Gain  
–2–  
REV. A  
AD9049  
Test  
Level  
AD9049BR/BRS  
Typ  
Parameter  
Temp  
Min  
Max  
Units  
ENCODE INPUT  
Logic “1” Voltage  
Logic “0” Voltage  
Logic “1” Current  
Logic “0” Current  
Input Capacitance  
Encode Pulse Width High (tEH  
Full  
Full  
Full  
Full  
+25°C  
+25°C  
+25°C  
IV  
IV  
IV  
IV  
V
2.0  
V
V
0.8  
1
1
µA  
µA  
pF  
ns  
ns  
10  
)
)
IV  
IV  
10  
10  
166  
166  
Encode Pulse Width Low (tEL  
DIGITAL OUTPUTS  
Logic “1” Voltage  
Logic “0” Voltage  
Logic “1” Voltage (3.0 VDD  
Logic “0” Voltage (3.0 VDD  
Output Coding  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
4.95  
2.95  
V
V
V
V
0.05  
)
)
0.05  
Code  
Offset  
40  
Binary  
POWER SUPPLY  
VD, VDD Supply Current5  
Full  
Full  
IV  
IV  
60  
300  
80  
400  
mA  
mW  
Power Dissipation5  
Power Supply Rejection Ratio  
(PSRR)6  
+25°C  
I
±10  
mV/V  
NOTES  
1“Gain Tempco” is for converter only; “Temperature Coefficient” is for bandgap reference only.  
2Output propagation delay (tPD) is measured from the 50% point of the rising edge of the encode command to the midpoint of the digital outputs with 10 pF  
maximum loads.  
3RMS signal to rms noise with analog input signal 0.5 dB below full scale at specified frequency.  
4Intermodulation measured relative to either tone with analog input frequencies of 9.5 MHz and 9.9 MHz at 7 dB below full scale.  
5Power dissipation is measured at 30 MSPS with AIN of 10.3 MHz and digital outputs loaded with 10 pF maximum. See Figure 4 for power dissipation at other  
conditions.  
6Measured as the ratio of the change in offset voltage for 5% change in +VD  
Specifications subject to change without notice.  
.
EXPLANATION OF TEST LEVELS  
Test Level  
ABSOLUTE MAXIMUM RATINGS*  
VD, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+7 V  
ANALOG IN . . . . . . . . . . . . . . . . . . . . . . –1.0 V to VD + 1.0 V  
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VD  
VREF Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VD  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating Temperature  
I
100% Production Tested.  
IV  
Parameter is guaranteed by design and characteriza-  
tion testing.  
V
Parameter is a typical value only.  
AD9049BR/BRS . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
*Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in the  
operational sections of this specification is not implied. Exposure to absolute  
maximum ratings for extended periods may effect device reliability.  
ORDERING GUIDE  
Temperature Range Package Option*  
Model  
AD9049BR  
AD9049BRS  
40°C to +85°C  
40°C to +85°C  
R-28  
RS-28  
*R = Small Outline (SO); RS = Shrink Small Outline (SSOP).  
REV. A  
–3–  
AD9049  
Table I. AD9049 Digital Coding (Single Ended Input AIN, AINB Bypassed to GND)  
Digital Output  
Analog Input  
Voltage Level  
MSB . . . LSB Digital Output  
3.810  
3.300  
2.790  
Positive Full Scale  
Midscale  
Negative Full Scale  
111111111  
011111111  
000000000  
PIN DESCRIPTIONS  
Pin No  
Name  
Function  
1, 7, 12, 21, 23  
GND  
Ground.  
2, 8, 11  
VD  
Analog +5 V ± 5% power supply.  
3
4
5
6
9
10  
13  
VREFOUT  
VREFIN  
COMP  
REFBP  
AINB  
Internal bandgap voltage reference (nominally +2.5 V).  
Input to reference amplifier. Voltage reference for ADC is connected here.  
Internal compensation pin, 0.1 µF bypass connected here to VD (+5 V).  
External connection for (0.1 µF) reference bypass capacitor.  
Complementary analog input pin (Analog input bar).  
Analog input pin.  
AIN  
ENCODE  
Encode clock input to ADC. Internal T/H is placed in hold mode (ADC is encoding)  
on rising edge of encode signal.  
14  
NC  
Not internally connected.  
15  
D8 (MSB)  
D7–D4  
VDD  
D3–D1  
D0 (LSB)  
NC  
Most significant bit of ADC output.  
Digital output bits of ADC.  
Digital output power supply (only used by digital outputs).  
Digital output bits of ADC.  
Least significant bit of ADC output.  
16–19  
20, 22  
24–26  
27  
28  
Not internally connected.  
PIN CONNECTIONS  
NC  
GND  
1
2
28  
27  
V
D
D0 (LSB)  
VREF  
OUT  
3
26 D1  
VREF  
D2  
4
25  
24  
23  
22  
IN  
COMP  
D3  
5
6
GND  
REF  
BP  
AD9049  
TOP VIEW  
(Not to Scale)  
GND  
7
V
DD  
8
V
D
21 GND  
9
AINB  
AIN  
20  
V
DD  
19 D4  
18 D5  
17 D6  
16 D7  
10  
11  
12  
13  
14  
V
D
GND  
ENCODE  
NC  
D8 (MSB)  
15  
NC = NO CONNECT  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD9049 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. A  
AD9049  
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
AIN  
MIN  
TYP  
MAX  
tA  
APERTURE DELAY  
PULSE WIDTH HIGH  
PULSE WIDTH LOW  
OUTPUT PROP DELAY  
2.7ns  
tA  
tEH tEL  
tEH  
tEL  
tPD  
10ns  
10ns  
5.0ns  
166ns  
166ns  
15.0ns  
ENCODE  
8.2ns  
tPD  
DIGITAL  
OUTPUTS  
N – 5  
N – 4  
N – 3  
N – 2  
N – 1  
N
Figure 2. Timing Diagram  
V
(Pins 20, 22)  
V
DD  
+3V to +5V  
D
V
D
INPUT  
BUFFER  
8k  
8k  
AINB (Pin 9)  
AIN (Pin 10)  
ENCODE  
(Pin 13)  
D0–D8  
16k 16k  
Analog Input  
Encode Input  
Output Stage  
V
D
V
D
A
V
VREF  
OUT  
VREF  
IN  
(Pin 4)  
(Pin 3)  
VREF  
BF  
(Pin 6)  
V
REF Output  
Reference Circuit  
Figure 3. Equivalent Circuits  
REV. A  
–5–  
AD9049–Typical Performance Curves  
361  
58  
57  
56  
55  
54  
342  
AIN = 10.3 MHz  
ENCODE = 30 MSPS  
IN = 10.3 MHz  
323  
A
304  
OUTPUTS @ 5V  
285  
266  
53  
52  
51  
50  
49  
48  
247  
OUTPUTS @ 3V  
228  
209  
190  
171  
0
0
20  
40  
60  
80  
90  
10  
20  
30  
– 20  
–40  
CLOCK RATE – MSPS  
TEMPERATURE – °C  
Figure 4. Power Dissipation vs. Clock Rate  
Figure 7. SNR vs. Temperature  
80  
0
ENCODE = 30 MSPS  
ENCODE = 30 MSPS  
f1 IN = 9.5 MHz @ –7 dBFS  
f2 IN = 9.9 MHz @ –7 dBFS  
2f1–f2 = –65.4 dBc  
–10  
74  
–20  
–30  
HARMONIC DISTORTION  
2f2–f1 = –65.0 dBc  
68  
62  
–40  
–50  
–60  
SIGNAL-TO-NOISE  
56  
–70  
–80  
50  
44  
38  
–90  
–100  
–110  
–120  
0
2.5  
5
7.5  
10  
12.5  
15  
1
10  
100  
FREQUENCY – MHz  
ANALOG INPUT FREQUENCY – MHz  
Figure 5. SNR/Distortion vs. Frequency  
Figure 8. Two-Tone IMD  
60  
0.50  
0.25  
0.00  
58  
AIN = 10.3 MHz  
56  
54  
–0.25  
–0.50  
1
2
3
4
5
6
52  
50  
0.50  
0.25  
0.00  
48  
46  
–0.25  
–0.50  
0
5
10  
15  
20  
25  
30  
1
2
3
4
5
6
CLOCK RATE – MSPS  
Figure 9. Differential Gain/Differential Phase  
Figure 6. SNR vs. Clock Rate  
–6–  
REV. A  
AD9049  
55.0  
54.5  
54.0  
0
ENCODE = 30 MSPS  
ANALOG IN = 2.3 MHz  
SNR = 53.0 dB  
SNR (W/O HAR) = 53.3 dB  
2ND HARMONIC = 69.3 dB  
3RD HARMONIC = 72.9 dB  
–10  
ENCODE = 30 MSPS  
IN = 2.3 MHz  
A
–20  
–30  
–40  
53.5  
53.0  
–50  
–60  
–70  
–80  
52.5  
52.0  
–90  
–100  
–110  
51.5  
51.0  
–120  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
0
2.5  
5
7.5  
10  
12.5  
15  
15  
15  
FREQUENCY – MHz  
DUTY CYCLE – %  
Figure 10. FFT Plot 30 MSPS, 2.3 MHz  
Figure 13. SNR vs. Clock Pulse Width  
0
1.0  
0.5  
0.0  
ENCODE = 30 MSPS  
ANALOG IN = 4.3 MHz  
SNR = 53.0 dB  
SNR (W/O HAR) = 53.3 dB  
2ND HARMONIC = 69.0 dB  
3RD HARMONIC = 72.6 dB  
–10  
ENCODE = 30 MSPS  
–20  
–30  
–40  
–0.5  
–1.0  
–50  
–60  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–70  
–80  
–90  
–100  
–110  
–120  
1
10  
ANALOG INPUT FREQUENCY – MHz  
100  
1000  
0
2.5  
5
7.5  
10  
12.5  
FREQUENCY – MHz  
Figure 11. FFT Plot 30 MSPS, 4.3 MHz  
Figure 14. ADC Gain vs. AIN Frequency  
15.0  
0
ENCODE = 30 MSPS  
ANALOG IN = 10.3 MHz  
SNR = 52.7 dB  
SNR (W/O HAR) = 53.1 dB  
2ND HARMONIC = 66.4 dB  
3RD HARMONIC = 70.5 dB  
[1] - 5V DATA RISING EDGE  
[2] - 5V DATA FALLING EDGE  
[3] - 3V DATA RISING EDGE  
[4] - 3V DATA FALLING EDGE  
–10  
14.0  
13.0  
12.0  
11.0  
10.0  
9.0  
–20  
–30  
–40  
[3]  
[1]  
[4]  
–50  
–60  
[2]  
–70  
–80  
8.0  
–90  
–100  
–110  
7.0  
6.0  
5.0  
– 40  
–120  
0
20  
40  
60  
80  
100  
–20  
0
2.5  
5
7.5  
10  
12.5  
FREQUENCY – MHz  
TEMPERATURE – °C  
Figure 12. FFT Plot 30 MSPS, 10.3 MHz  
Figure 15. tPD vs. Temperature 3 V/5 V  
REV. A  
–7–  
AD9049  
THEORY OF OPERATION  
1kΩ  
Refer to the block diagram on the front page.  
+5V  
+5V  
1kΩ  
The AD9049 employs a subranging architecture with digital  
error correction. This combination of design techniques ensures  
true 9-bit accuracy at the digital outputs of the converter.  
V
IN  
–0.5V to +0.5V  
10  
9
AD9049  
AD8041  
At the input, the analog signal is buffered by a high speed differ-  
ential buffer and applied to a track-and-hold (T/H) that holds  
the analog value which is present when the unit is strobed with  
an ENCODE command. The conversion process begins on the  
rising edge of this pulse. The two stage architecture completes a  
coarse and then a fine conversion of the T/H output signal.  
0.1µF  
+5V  
AD820  
1kΩ  
1kΩ  
0.1µF  
Figure 16. Single Supply, Single Ended, DC Coupled  
AD9049  
Error correction and decode logic correct and align data from  
the two conversions and present the result as a 9-bit parallel  
digital word. Output data are strobed on the rising edge of the  
ENCODE command. The subranging architecture results in  
five pipeline delays for the output data. Refer to the AD9049  
Timing Diagram.  
1kΩ  
+5V  
+5V  
1kΩ  
0.1µF  
0.1µF  
V
IN  
–0.5V to +0.5V  
10  
9
AD9049  
AD8011  
USING THE AD9049  
3 V System  
–5V  
The digital input and outputs of the AD9049 can easily be  
configured to directly interface to 3 V logic systems. The encode  
input (Pin 13) is TTL compatible with a logic threshold of 1.5  
V. This input is actually a CMOS stage (refer to Equivalent En-  
code Input Stage) with a TTL threshold, allowing operation  
with TTL, CMOS and 3 V CMOS logic families. Using 3 V  
CMOS logic allows the user to drive the encode directly without  
the need to translate to +5 V. This saves the user power and  
board space. As with all high speed data converters, the clock  
signal must be clean and jitter free to prevent the degradation of  
dynamic performance.  
Figure 17. Single Ended, Capacitively Coupled AD9049  
1kΩ  
+5V  
+5V  
1kΩ  
V
0.1µF  
AD8011  
IN  
–0.5V to +0.5V  
T1-1T  
10  
9
AD9049  
50Ω  
–5V  
The AD9049 outputs can also directly interface to 3 V logic  
systems. The digital outputs are standard CMOS stages (refer to  
AD9049 Output Stage) with isolated supply pins (Pins 20, 22  
Figure 18. Differentially Driven AD9049 Using Trans-  
former Coupling.  
V
DD). By varying the voltage on the VDD pins, the digital output  
The AD830 provides a unique method of providing dc level shift  
for the analog input. Using the AD830 allows a great deal of  
flexibility for adjusting offset and gain. Figure 19 shows the  
AD830 configured to drive the AD9049. The offset is provided  
by the internal biasing of the AD9049 differential input (Pin 9).  
For more information regarding the AD830, see the AD830  
data sheet.  
levels vary respectively. By connecting Pins 20 and 22 to the  
3 V logic supply, the AD9049 will supply 3 V output levels.  
Care should be taken to filter and isolate the output supply of  
the AD9049 as noise could be coupled into the ADC, limiting  
performance.  
Analog Input  
The analog input of the AD9049 is a differential input buffer  
(refer to AD9049 Equivalent Analog Input). The differential in-  
puts are internally biased at +3.3 V, obviating the need for  
external biasing. Excellent performance is achieved whether the  
analog inputs are driven single-ended or differential. (For best  
dynamic performance, impedances at AIN and AINB should  
match.)  
V
IN  
+5V  
+15V  
AD830  
–5V  
–0.5V to +0.5V  
1
2
3
4
7
10  
9
AD9049  
0.1µF  
Figure 16 shows typical connections for the analog inputs when  
using the AD9049 in a dc coupled system with single ended  
signals. All components are powered from a single +5 V supply.  
The AD820 is used to offset the ground referenced input signal  
to the level required by the AD9049.  
Figure 19. Level Shifting with the AD830  
AC coupling of the analog inputs to the AD9049 is easily accom-  
plished. Figure 17 shows capacitive coupling of a single ended  
signal while Figure 18 shows transformer coupling differentially  
into the AD9049.  
–8–  
REV. A  
AD9049  
Overdrive of the Analog Input  
Power Dissipation  
Special care was taken in the design of the analog input section  
of the AD9049 to prevent damage and corruption of data when  
the input is overdriven. The nominal input range is +2.788 V to  
3.812 V (1.024 V p-p centered at 3.3 V). Out-of-range com-  
parators detect when the analog input signal is out of this range  
and shut the T/H off. The digital outputs are locked at their  
maximum or minimum value (i.e., all “0” or all “1”). This pre-  
cludes the digital outputs from changing to an invalid value  
when the analog input is out of range.  
The power dissipation specification in the parameter table is  
measured under the following conditions: encode is 30 MSPS,  
analog input is –1 dBFS at 10.3 MHz, the digital outputs are  
loaded with approximately 7 pF (10 pF maximum), and VDD is  
5 V. These conditions intend to reflect actual usage of the device.  
As shown in Figure 4, the actual power dissipation varies based  
on these conditions. For instance, reducing the clock rate will  
reduce power as expected for CMOS type devices. Also the  
loading determines the power dissipated in the output stages.  
From an ac standpoint, the capacitive loading will be the key  
(refer to Equivalent Output Stage).  
When the analog input signal returns to the nominal range, the  
out-of-range comparators switch the T/H back to the active  
mode and the device recovers in approximately 10 ns.  
The analog input frequency and amplitude in conjunction with  
the clock rate determine the switching rate of the output data  
bits. Power dissipation increases as more data bits switch at  
faster rates. For instance, if the input is a dc signal that is out of  
range, no output bits will switch. This minimizes power in the  
output stages but is not realistic from a usage standpoint.  
The input is protected to one volt outside the power supply  
rails. For nominal power (+5 V and ground), the analog input  
will not be damaged with signals from +6.0 V to –1.0 V.  
Timing  
The performance of the AD9049 is very insensitive to the duty  
cycle of the clock. Pulse width variations of as much as ±10%  
will cause no degradation in performance (see Figure 13, SNR  
vs. Clock Pulse Width).  
The dissipation in the output stages can be minimized by inter-  
facing the outputs to 3 V logic (refer to USING THE AD9049,  
3 V System). The lower output swings minimize consumption.  
Refer to Figure 4 for performance characteristics.  
The AD9049 provides latched data outputs, with five pipeline  
delays. Data outputs are available one propagation delay (tPD  
after the rising edge of the encode command (refer to the  
AD9049 Timing Diagram). The length of the output data lines  
and loads placed on them should be minimized to reduce tran-  
sients within the AD9049; these transients can detract from the  
converter’s dynamic performance.  
)
Voltage Reference  
A stable and accurate +2.5 V voltage reference is built into the  
AD9049 (Pin 3, VREF Output). In normal operation the internal  
reference is used by strapping Pins 3 and 4 of the AD9049 to-  
gether. The internal reference has 500 µA of extra drive current  
that can be used for other circuits.  
The minimum guaranteed conversion rate of the AD9049 is  
3 MSPS. Below a nominal of 1.5 MSPS the internal T/H  
switches to a track function only. This precludes the T/H from  
drooping to the rail during the conversion process and mini-  
mizes saturation issues. At clock rates below 3 MSPS dynamic  
performance degrades. The AD9049 will operate in burst mode  
operation, but the user must flush the internal pipeline each  
time the clock stops. This requires 5 clock pulses each time the  
clock is restarted for the first valid data output (refer to Fig-  
ure 2 Timing Diagram).  
Some applications may require greater accuracy, improved tem-  
perature performance or adjustment of the gain of the AD9049,  
which cannot be obtained by using the internal reference. For  
these applications, an external +2.5 V reference can be used to  
connect to Pin 4 of the AD9049. The VREFIN requires 5 µA of  
drive current.  
The input range can be adjusted by varying the reference volt-  
age applied to the AD9049. No appreciable degradation in per-  
formance occurs when the reference is adjusted ±5%. The  
full-scale range of the ADC tracks reference voltage changes  
linearly.  
REV. A  
–9–  
AD9049  
Figure 20. Evaluation Board Top Layer  
Figure 22. Evaluation Board Bottom Layer  
Figure 21. Evaluation Board Ground Layer  
–10–  
REV. A  
AD9049  
U3  
74AC574R  
9
8
7
6
5
4
3
2
12  
13  
14  
15  
16  
17  
18  
19  
8D  
8Q  
7Q  
6Q  
5Q  
4Q  
3Q  
2Q  
1Q  
U1  
AD9049R  
7D  
6D  
5D  
4D  
3D  
2D  
1D  
15  
16  
17  
18  
19  
24  
25  
26  
27  
R5  
1k  
D8/MSB  
3
4
5
6
9
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
J3  
HDR20  
VREFOUT  
VREFIN  
COMP  
REFBP  
AINB  
TP3  
U2  
AD9631Q  
R4  
1k  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
C9  
0.1µF  
2
3
J2  
CK  
IN  
IN  
6
10  
13  
OE  
OUT  
AIN  
ENC  
R3  
50  
11  
1
NC  
+5V  
+5V  
20  
22  
U6:B  
74AC00R  
C1  
0.1µF  
4
5
6
C2  
0.1µF  
U4  
74AC574R  
TP2  
+5V  
J7  
C3  
0.1µF  
9
8
7
6
5
4
3
2
12  
13  
14  
15  
16  
17  
18  
19  
8D  
8Q  
7Q  
6Q  
5Q  
4Q  
3Q  
2Q  
1Q  
E1  
7D  
6D  
5D  
4D  
3D  
2D  
1D  
+5V  
R1  
50  
3
OUT  
4
2
GND  
VCC  
11  
Y1  
+5V  
SW41  
CK  
+5V  
OE  
U6:A  
1
11  
74AC00R  
12  
13  
1
2
3
U6:D  
74AC00R  
R2  
2k  
9
8
10  
+5V  
J6  
U6:C  
74AC00R  
J1  
+5V  
+5V  
+
C7  
0.1µF  
C5  
10µF  
C10  
0.1µF  
C12  
0.1µF  
C13  
0.1µF  
C14  
0.1µF  
C15  
0.1µF  
C16  
0.1µF  
C17  
0.1µF  
C22  
0.1µF  
C23  
0.1µF  
C24  
0.1µF  
J5  
–5.2V  
–5.2V  
C6  
10µF  
C8  
0.1µF  
C20  
0.1µF  
+
Figure 23. Evaluation Board Schematic  
REV. A  
–11–  
AD9049  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
28-Lead SOIC  
(R-28)  
0.7125 (18.10)  
0.6969 (17.70)  
29  
15  
1
14  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
x 45°  
0.0500 (1.27)  
0.0157 (0.40)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
28-Lead SSOP  
(RS-28)  
0.407 (10.34)  
0.397 (10.08)  
28  
15  
14  
1
0.07 (1.79)  
0.078 (1.98)  
0.068 (1.73)  
PIN 1  
0.066 (1.67)  
0.03 (0.762)  
8°  
0°  
0.0256  
(0.65)  
BSC  
0.015 (0.38)  
0.010 (0.25)  
0.022 (0.558)  
0.008 (0.203)  
0.002 (0.050)  
SEATING  
PLANE  
0.009 (0.229)  
0.005 (0.127)  
–12–  
REV. A  

相关型号:

AD9049BR

9-Bit, 30 MSPS ADC
ADI

AD9049BRS

9-Bit, 30 MSPS ADC
ADI

AD9049BRS-REEL

IC 1-CH 9-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, SSOP-28, Analog to Digital Converter
ADI

AD9050

10-Bit, 40 MSPS/60 MSPS A/D Converter
ADI

AD9050BR

10-Bit, 40 MSPS/60 MSPS A/D Converter
ADI

AD9050BR-REEL

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, SOIC-28, Analog to Digital Converter
ADI

AD9050BRS

10-Bit, 40 MSPS/60 MSPS A/D Converter
ADI

AD9050BRS-60

10-Bit, 40 MSPS/60 MSPS A/D Converter
ADI

AD9050BRZ-REEL

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, SOIC-28, Analog to Digital Converter
ADI

AD9050JJ

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, CQCC28, CERAMIC, LCC-28, Analog to Digital Converter
ADI

AD9050JR

Analog-to-Digital Converter, 10-Bit
ETC

AD9050JRS

Analog-to-Digital Converter, 10-Bit
ETC