AD9050JJ [ADI]

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, CQCC28, CERAMIC, LCC-28, Analog to Digital Converter;
AD9050JJ
型号: AD9050JJ
厂家: ADI    ADI
描述:

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, CQCC28, CERAMIC, LCC-28, Analog to Digital Converter

信息通信管理 转换器
文件: 总12页 (文件大小:150K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-Bit, 40 MSPS/60 MSPS  
A/D Converter  
a
AD9050  
FUNCTIO NAL BLO CK D IAGRAM  
FEATURES  
Low Pow er: 315 m W @ 40 MSPS, 345 m W @ 60 MSPS  
On-Chip T/ H, Reference  
GND  
+5V  
Single +5 V Pow er Supply Operation  
Selectable 5 V or 3 V Logic I/ O  
SNR: 53 dB Minim um at 10 MHz w / 40 MSPS  
+5V  
AD9050  
REFERENCE CKTS  
ADC  
AINB  
AIN  
T/H  
APPLICATIONS  
Medical Im aging  
Instrum entation  
Digital Com m unications  
Professional Video  
10  
DECODE  
LOGIC  
SUM  
AMP  
DAC  
ADC  
TIMING  
ENCODE  
P RO D UCT D ESCRIP TIO N  
+5V  
T he AD9050 is a complete 10-bit monolithic sampling analog-  
to-digital converter (ADC) with an onboard track-and-hold and  
reference. T he unit is designed for low cost, high performance  
applications and requires only +5 V and an encode clock to  
achieve 40 MSPS or 60 MSPS sample rates with 10-bit resolution.  
2, 8, 11,  
20, 22  
4
3
AIN  
10  
(+3.3V ± 0.512V)  
0.1µF  
+5V  
5
6
9
10 BITS  
(2)  
74AC574  
AD9050  
0.1µF  
T he encode clock is T T L compatible and the digital outputs  
are CMOS; both can operate with 5 V/3 V logic, selected by the  
user. T he two-step architecture used in the AD9050 is opti-  
mized to provide the best dynamic performance available while  
maintaining low power consumption.  
0.1µF  
1, 7, 12,  
21, 23  
13  
ENCODE  
A 2.5 V reference is included onboard, or the user can provide  
an external reference voltage for gain control or matching of  
multiple devices. Fabricated on an advanced BiCMOS pro-  
cess, the AD9050 is packaged in space saving surface mount  
packages (SOIC, SSOP) and is specified over the industrial  
(–40°C to +85°C) temperature range. T he 60 MSPS version  
(AD9050BRS-60) is only available in the SSOP package.  
Figure 1. Typical Connections  
REV. B  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
World Wide Web Site: http:/ / w w w .analog.com  
© Analog Devices, Inc., 1997  
AD9050–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (V , V = +5 V; internal reference; ENCODE = 40 MSPS for BR/BRS, 60 MSPS for BRS-60  
unless otherwise noted)  
D
DD  
Test  
Level  
AD 9050BR/BRS  
AD 9050BRS-60  
P aram eter  
Tem p  
Min  
Typ  
Max  
Min  
Typ  
Max  
Units  
RESOLUT ION  
10  
10  
Bits  
DC ACCURACY  
Differential Nonlinearity  
+25°C  
Full  
+25°C  
Full  
Full  
+25°C  
Full  
I
V
I
V
IV  
I
0.75  
1.0  
1.0  
1.25  
GUARANT EED  
1.75  
1.75  
0.85  
1.1  
1.25  
1.50  
GUARANT EED  
±1.0  
1.85  
2.0  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
No Missing Codes  
Gain Error  
±1.0  
±100  
7.5  
8.5  
% FS  
ppm/°C  
Gain T empco1  
V
±100  
ANALOG INPUT  
Input Voltage Range  
Input Offset Voltage  
+25°C  
+25°C  
Full  
+25°C  
+25°C  
+25°C  
V
I
IV  
I
V
V
1.024  
+7  
1.024  
+7  
V p-p  
mV  
mV  
kΩ  
pF  
MHz  
–10  
–32  
3.5  
+25  
+51  
6.5  
–10  
–32  
3.5  
+25  
+51  
6.5  
Input Resistance  
Input Capacitance  
Analog Bandwidth  
5.0  
5
100  
5.0  
5
100  
BANDGAP REFERENCE  
Output Voltage  
+25°C  
Full  
I
V
2.4  
40  
2.5  
±50  
2.6  
2.4  
60  
2.5  
±50  
2.6  
V
T emperature Coefficient1  
ppm/°C  
SWIT CHING PERFORMANCE  
Maximum Conversion Rate  
Minimum Conversion Rate  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter)  
Output Propagation Delay (tPD  
+25°C  
+25°C  
+25°C  
+25°C  
Full  
I
IV  
V
V
IV  
MSPS  
MSPS  
ns  
ps, rms  
ns  
1.5  
2.7  
5
3
1.5  
2.7  
5
3
2
)
5
15  
5
15  
DYNAMIC PERFORMANCE  
T ransient Response  
Overvoltage Recovery T ime  
ENOBS  
+25°C  
+25°C  
V
V
10  
10  
10  
10  
ns  
ns  
fIN = 2.3 MHz  
+25°C  
+25°C  
V
I
8.93  
8.85  
8.93  
8.51  
ENOBs  
ENOBs  
fIN = 10.3 MHz  
8.51  
53  
8.15  
51  
Signal-to-Noise Ratio (SINAD)3  
fIN = 2.3 MHz  
+25°C  
+25°C  
V
I
55.5  
55  
55.5  
53  
dB  
dB  
fIN = 10.3 MHz  
Signal-to-Noise Ratio  
(Without Harmonics)  
fIN = 2.3 MHz  
+25°C  
+25°C  
V
I
56  
55.5  
56  
54.0  
dB  
dB  
fIN = 10.3 MHz  
53.5  
51.5  
2nd Harmonic Distortion  
f
IN = 2.3 MHz  
+25°C  
+25°C  
V
I
–69  
–67  
–69  
–64  
dBc  
dBc  
fIN = 10.3 MHz  
3rd Harmonic Distortion  
fIN = 2.3 MHz  
–60  
–58  
–58.5  
–57.5  
+25°C  
+25°C  
V
I
–75  
–70  
–75  
–62  
dBc  
dBc  
fIN = 10.3 MHz  
T wo-T one Intermodulation  
Distortion (IMD)4  
Differential Phase  
Differential Gain  
+25°C  
+25°C  
+25°C  
V
V
V
65  
0.15  
0.25  
65  
0.15  
0.25  
dBc  
Degrees  
%
–2–  
REV. B  
AD9050  
Test  
AD 9050BR/BRS  
AD 9050BRS-60  
P aram eter  
Tem p  
Level  
Min  
Typ  
Max  
Min  
Typ  
Max  
Units  
ENCODE INPUT  
Logic “1” Voltage  
Logic “0” Voltage  
Logic “1” Current  
Logic “0” Current  
Input Capacitance  
Encode Pulse Width High (tEH  
Full  
Full  
Full  
Full  
+25°C  
+25°C  
+25°C  
IV  
IV  
IV  
IV  
V
2.0  
2.0  
V
V
0.8  
1
1
0.8  
1
1
µA  
µA  
pF  
ns  
ns  
10  
10  
)
IV  
IV  
10  
10  
166  
166  
6.7  
6.7  
166  
166  
Encode Pulse Width Low (tEL  
)
DIGIT AL OUT PUT S  
Logic “1” Voltage  
Logic “0” Voltage  
Logic “1” Voltage (3.0 VDD  
Logic “0” Voltage (3.0 VDD  
Output Coding  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
4.95  
2.95  
4.95  
2.95  
V
V
V
V
0.05  
0.05  
0.05  
0.05  
)
)
Offset Binary Code  
Offset Binary Code  
POWER SUPPLY  
VD, VDD Supply Current5  
Full  
Full  
IV  
IV  
40  
63  
315  
80  
400  
40  
69  
345  
87.2  
486  
mA  
mW  
Power Dissipation5  
Power Supply Rejection Ratio  
(PSRR)6  
+25°C  
I
±10  
±10  
mV/V  
NOT ES  
1“Gain T empco” is for converter only; “T emperature Coefficient” is for bandgap reference only.  
2Output propagation delay (tPD) is measured from the 50% point of the rising edge of the encode command to the midpoint of the digital outputs with 10 pF maximum  
loads.  
3RMS signal to rms noise with analog input signal 0.5 dB below full scale at specified frequency for BR/BRS, 1.0 dB below full scale for BRS-60.  
4Intermodulation measured relative to either tone with analog input frequencies of 9.5 MHz and 9.9 MHz at 7 dB below full scale.  
5Power dissipation is measured at full update rate with AIN of 10.3 MHz and digital outputs loaded with 10 pF maximum. See Figure 4 for power dissipation at other  
conditions.  
6Measured as the ratio of the change in offset voltage for 5% change in +VD  
Specifications subject to change without notice.  
.
EXP LANATIO N O F TEST LEVELS  
Test Level  
ABSO LUTE MAXIMUM RATINGS*  
VD, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+7 V  
ANALOG IN . . . . . . . . . . . . . . . . . . . . . . –1.0 V to VD + 1.0 V  
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VD  
VREF Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VD  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating T emperature  
I
100% Production T ested.  
IV  
Parameter is guaranteed by design and characteriza-  
tion testing.  
V
Parameter is a typical value only.  
AD9050BR/BRS/BRS-60 . . . . . . . . . . . . . . . –40°C to +85°C  
Storage T emperature . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. T his is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum ratings  
for extended periods may effect device reliability.  
O RD ERING GUID E  
Tem perature Range P ackage O ption*  
Model  
AD9050BR  
AD9050BRS  
AD9050BRS-60  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
R-28  
RS-28  
RS-28  
*R = Small Outline (SO); RS = Shrink Small Outline (SSOP).  
REV. B  
–3–  
AD9050  
Table I. AD 9050 D igital Coding (Single Ended Input AIN, AINB Bypassed to GND )  
O R  
D igital O utput  
MSB . . . LSB  
Analog Input  
Voltage Level  
(O ut of Range)  
3.813  
3.300  
2.787  
Positive Full Scale + 1 LSB  
Midscale  
Negative Full Scale – 1 LSB  
1
0
1
1111111111  
0111111111  
0000000000  
P IN FUNCTIO N D ESCRIP TIO NS  
P in No  
Nam e  
Function  
1, 7, 12, 21, 23  
GND  
Ground.  
2, 8, 11  
VD  
Analog +5 V ± 5% power supply.  
3
4
5
6
9
10  
13  
VREFOUT  
VREFIN  
COMP  
REFBP  
AINB  
Internal bandgap voltage reference (nominally +2.5 V).  
Input to reference amplifier. Voltage reference for ADC is connected here.  
Internal compensation pin, 0.1 µF bypass connected here to VD (+5 V).  
External connection for (0.1 µF) reference bypass capacitor.  
Complementary analog input pin (Analog input bar).  
Analog input pin.  
AIN  
ENCODE  
Encode clock input to ADC. Internal T /H is placed in hold mode (ADC is encoding)  
on rising edge of encode signal.  
14  
OR  
Out of range signal. Logic “0” when analog input is in nominal range. Logic “1” when  
analog input is out of nominal range.  
15  
D9 (MSB)  
D8–D5  
VDD  
D4–D1  
D0 (LSB)  
Most significant bit of ADC output.  
Digital output bits of ADC.  
Digital output power supply (only used by digital outputs).  
Digital output bits of ADC.  
Least significant bit of ADC output.  
16–19  
20, 22  
24–27  
28  
P IN CO NFIGURATIO N  
D0 (LSB)  
D1  
GND  
1
2
28  
27  
V
D
VREF  
3
26 D2  
OUT  
VREF  
D3  
4
25  
24  
23  
22  
IN  
COMP  
D4  
5
6
GND  
REF  
BP  
AD9050  
TOP VIEW  
(Not to Scale)  
GND  
7
V
DD  
8
V
D
21 GND  
9
AINB  
AIN  
20  
V
DD  
19 D5  
18 D6  
17 D7  
16 D8  
10  
11  
12  
13  
14  
V
D
GND  
ENCODE  
OR  
D9 (MSB)  
15  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD9050 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. B  
AD9050  
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
AIN  
MIN  
TYP  
MAX  
tA  
APERTURE DELAY  
PULSE WIDTH HIGH  
PULSE WIDTH LOW  
OUTPUT PROP DELAY  
2.7ns  
tA  
tEH tEL  
tEH  
tEL  
tPD  
10ns*  
10ns*  
5.0ns  
166ns  
166ns  
15.0ns  
ENCODE  
8.2ns  
tPD  
*FOR BR/BRS, SEE SPECIFICATION TABLE  
DIGITAL  
OUTPUTS  
N – 5  
N – 4  
N – 3  
N – 2  
N – 1  
N
Figure 2. Tim ing Diagram  
V
(Pins 20, 22)  
V
DD  
+3V to +5V  
D
V
D
INPUT  
BUFFER  
8k  
8k  
AINB (Pin 9)  
AIN (Pin 10)  
ENCODE  
(Pin 13)  
D0–D9, OR  
16k 16k  
Analog Input  
Encode Input  
Output Stage  
V
D
V
D
A
V
VREF  
OUT  
VREF  
IN  
(Pin 4)  
(Pin 3)  
VREF  
BF  
(Pin 6)  
VREF Output  
Reference Circuit  
Figure 3. Equivalent Circuits  
REV. B  
–5–  
AD9050–Typical Performance Curves  
350  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
340  
ENCODE = 40 MSPS  
IN = 10.3 MHz  
330  
A
5V  
320  
310  
300  
290  
3V  
280  
270  
260  
250  
10  
20  
30  
40  
50  
60  
0
0
20  
40  
60  
80  
– 20  
–40  
CLOCK RATE – MSPS  
TEMPERATURE – °C  
Figure 4. Power Dissipation vs. Clock Rate  
Figure 7. SNR vs. Tem perature  
80  
0
–10  
ENCODE = 40 MSPS  
f1 IN = 9.5 MHz @ –7 dBFS  
f2 IN = 9.9 MHz @ –7 dBFS  
2f1–f2 = –65.4 dBc  
74  
–20  
–30  
HD 40  
68  
2f2–f1 = –65.0 dBc  
–40  
HD 60  
–50  
62  
–60  
SNR 40  
56  
–70  
–80  
SNR 60  
50  
44  
38  
–90  
–100  
–110  
–120  
0
2.5  
5
7.5  
10  
12.5  
15  
17.5  
20  
1
10  
ANALOG INPUT FREQUENCY – MHz  
100  
FREQUENCY – MHz  
Figure 5. SNR/Distortion vs. Frequency  
Figure 8. Two-Tone IMD  
58  
56  
54  
52  
0.50  
0.25  
0.00  
SNR  
–0.25  
–0.50  
1
2
3
4
5
6
0.50  
0.25  
0.00  
50  
48  
46  
–0.25  
–0.50  
40  
CLOCK RATE – MSPS  
50  
60  
10  
0
20  
30  
1
2
3
4
5
6
Figure 6. SNR vs. Clock Rate  
Figure 9. Differential Gain/Differential Phase  
–6–  
REV. B  
AD9050  
60  
54  
48  
0
SINAD_40  
SINAD_60  
AIN = 10.3 MHz  
ENCODE = 40 MSPS  
ANALOG IN = 2.3 MHz  
SNR = 55.1 dB  
SNR (W/O HAR) = 55.5 dB  
2ND HARMONIC = 69.3 dB  
3RD HARMONIC = 72.9 dB  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
42  
36  
30  
–80  
–90  
–100  
–110  
–120  
0
2.5  
5
7.5  
10  
12.5  
15  
17.5  
20  
25  
40  
45  
50  
DUTY CYCLE – %  
55  
60  
65  
FREQUENCY – MHz  
Figure 10. FFT Plot 40 MSPS, 2.3 MHz  
Figure 13. SNR vs. Clock Pulse Width  
1.0  
0
–10  
–20  
ENCODE = 60 MSPS  
ANALOG IN = 10.3 MHz  
SNR = 55.8 dB  
SNR (W/O HAR) = 56.2 dB  
2ND HARMONIC = 67.2 dB  
3RD HARMONIC = 73.2 dB  
0.5  
0.0  
–0.5  
–1.0  
–30  
–40  
–50  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–60  
–70  
–80  
–90  
–100  
1
25  
30  
10  
ANALOG INPUT FREQUENCY – MHz  
0
5
10  
15  
20  
100  
1000  
FREQUENCY – MHz  
Figure 14. ADC Gain vs. AIN Frequency  
Figure 11. FFT Plot 60 MSPS, 10.3 MHz  
15.0  
0
[1] - 5V DATA RISING EDGE  
[2] - 5V DATA FALLING EDGE  
[3] - 3V DATA RISING EDGE  
[4] - 3V DATA FALLING EDGE  
–10  
ENCODE = 40 MSPS  
ANALOG IN = 10.3 MHz  
SNR = 54.6 dB  
SNR (W/O HAR) = 55.2 dB  
2ND HARMONIC = 66.4 dB  
3RD HARMONIC = 70.5 dB  
14.0  
13.0  
12.0  
11.0  
10.0  
9.0  
–20  
–30  
[3]  
[1]  
[4]  
–40  
–50  
–60  
[2]  
–70  
–80  
8.0  
–90  
7.0  
–100  
–110  
–120  
6.0  
5.0  
–40  
– 20  
0
20  
40  
60  
80  
100  
0
2.5  
5
7.5  
10  
12.5  
15  
17.5  
20  
FREQUENCY – MHz  
TEMPERATURE – °C  
Figure 15. tPD vs. Tem perature 3 V/5 V  
Figure 12. FFT Plot 40 MSPS, 10.3 MHz  
REV. B  
–7–  
AD9050  
1kΩ  
TH EO RY O F O P ERATIO N  
Refer to the block diagram on the front page.  
+5V  
+5V  
1kΩ  
T he AD9050 employs a subranging architecture with digital  
error correction. T his combination of design techniques en-  
sures true 10-bit accuracy at the digital outputs of the converter.  
V
IN  
–0.5V to +0.5V  
10  
9
AD9050  
AD8041  
At the input, the analog signal is buffered by a high speed differ-  
ential buffer and applied to a track-and-hold (T /H) that holds  
the analog value present when the unit is strobed with an  
ENCODE command. T he conversion process begins on the  
rising edge of this pulse. T he two stage architecture completes a  
coarse and then a fine conversion of the T /H output signal.  
0.1µF  
+5V  
AD820  
1kΩ  
1kΩ  
0.1µF  
Figure 16. Single Supply, Single Ended, DC Coupled  
AD9050  
Error correction and decode logic correct and align data from  
the two conversions and present the result as a 10-bit parallel  
digital word. Output data are strobed on the rising edge of the  
ENCODE command. T he subranging architecture results in  
five pipeline delays for the output data. Refer to the AD9050  
T iming Diagram.  
1kΩ  
+5V  
+5V  
1kΩ  
0.1µF  
V
IN  
–0.5V to +0.5V  
10  
9
AD9050  
AD8011  
USING TH E AD 9050  
3 V System  
–5V  
0.1µF  
The digital input and outputs of the AD9050 can be easily  
configured to directly interface to 3 V logic systems. T he en-  
code input (Pin 13) is T T L compatible with a logic threshold of  
1.5 V. T his input is actually a CMOS stage (refer to Equivalent  
Encode Input Stage) with a T T L threshold, allowing operation  
with T T L, CMOS and 3 V CMOS logic families. Using 3 V  
CMOS logic allows the user to drive the encode directly without  
the need to translate to +5 V. T his saves the user power and  
board space. As with all high speed data converters, the clock  
signal must be clean and jitter free to prevent the degradation of  
dynamic performance.  
Figure 17. Single Ended, Capacitively Coupled AD9050  
1kΩ  
+5V  
+5V  
1kΩ  
V
0.1µF  
AD8011  
IN  
–0.5V to +0.5V  
T1-1T  
10  
9
AD9050  
50Ω  
–5V  
T he AD9050 outputs can also directly interface to 3 V logic  
systems. T he digital outputs are standard CMOS stages (refer  
to AD9050 Output Stage) with isolated supply pins (Pins 20, 22  
Figure 18. Differentially Driven AD9050 Using Trans-  
form er Coupling  
V
DD). By varying the voltage on the VDD pins, the digital output  
T he AD830 provides a unique method of providing dc level shift  
for the analog input. Using the AD830 allows a great deal of  
flexibility for adjusting offset and gain. Figure 19 shows the  
AD830 configured to drive the AD9050. T he offset is provided  
by the internal biasing of the AD9050 differential input (Pin 9).  
For more information regarding the AD830, see the AD830  
data sheet.  
levels vary respectively. By connecting Pins 20 and 22 to the  
3 V logic supply, the AD9050 will supply 3 V output levels.  
Care should be taken to filter and isolate the output supply of  
the AD9050 as noise could be coupled into the ADC, limiting  
performance.  
Analog Input  
T he analog input of the AD9050 is a differential input buffer  
(refer to AD9050 Equivalent Analog Input). T he differential  
inputs are internally biased at +3.3 V, obviating the need for  
external biasing. Excellent performance is achieved whether the  
analog inputs are driven single-ended or differential (for best  
dynamic performance, impedances at AIN and AINB should  
match).  
V
IN  
+5V  
+15V  
AD830  
–5V  
–0.5V to +0.5V  
1
2
3
4
7
10  
9
AD9050  
0.1µF  
Figure 16 shows typical connections for the analog inputs when  
using the AD9050 in a dc coupled system with single ended  
signals. All components are powered from a single +5 V supply.  
T he AD820 is used to offset the ground referenced input signal  
to the level required by the AD9050.  
Figure 19. Level Shifting with the AD830  
AC coupling of the analog inputs of the AD9050 is easily ac-  
complished. Figure 17 shows capacitive coupling of a single  
ended signal while Figure 18 shows transformer coupling differ-  
entially into the AD9050.  
–8–  
REV. B  
AD9050  
O ver dr ive of the Analog Input  
P ower D issipation  
Special care was taken in the design of the analog input section  
of the AD9050 to prevent damage and corruption of data when  
the input is overdriven. T he nominal input range is +2.788 V to  
3.812 V (1.024 V p-p centered at 3.3 V). Out-of-range com-  
parators detect when the analog input signal is out of this range  
and shut the T /H off. T he digital outputs are locked at their  
maximum or minimum value (i.e., all “0” or all “1”). T his pre-  
cludes the digital outputs from changing to an invalid value  
when the analog input is out of range.  
T he power dissipation specification in the parameter table is  
measured under the following conditions: encode is 40 MSPS  
or 60 MSPS, analog input is –0.5 dBFS at 10.3 MHz, the digi-  
tal outputs are loaded with approximately 7 pF (10 pF maxi-  
mum) and VDD is 5 V. These conditions intend to reflect actual  
usage of the device.  
As shown in Figure 4, the actual power dissipation varies based  
on these conditions. For instance, reducing the clock rate will  
reduce power as expected for CMOS-type devices. Also the  
loading determines the power dissipated in the output stages.  
From an ac standpoint, the capacitive loading will be the key  
(refer to Equivalent Output Stage).  
When the analog input signal returns to the nominal range, the  
out-of-range comparators switch the T /H back to the active  
mode and the device recovers in approximately 10 ns.  
T he input is protected to one volt outside the power supply  
rails. For nominal power (+5 V and ground), the analog input  
will not be damaged with signals from +6.0 V to –1.0 V.  
T he analog input frequency and amplitude in conjunction with  
the clock rate determine the switching rate of the output data  
bits. Power dissipation increases as more data bits switch at  
faster rates. For instance, if the input is a dc signal that is out of  
range, no output bits will switch. T his minimizes power in the  
output stages, but is not realistic from a usage standpoint.  
Tim ing  
T he performance of the AD9050 is very insensitive to the duty  
cycle of the clock. Pulse width variations of as much as ±10%  
will cause no degradation in performance. (see Figure 13, SNR  
vs. Clock Pulse Width).  
T he dissipation in the output stages can be minimized by inter-  
facing the outputs to 3 V logic (refer to USING T HE AD9050,  
3 V System). T he lower output swings minimize consumption.  
Refer to Figure 4 for performance characteristics.  
T he AD9050 provides latched data outputs, with five pipeline  
delays. Data outputs are available one propagation delay (tPD  
after the rising edge of the encode command (refer to the  
)
Voltage Refer ence  
AD9050 T iming Diagram). T he length of the output data lines  
and loads placed on them should be minimized to reduce tran-  
sients within the AD9050; these transients can detract from the  
converter’s dynamic performance.  
A stable and accurate +2.5 V voltage reference is built into the  
AD9050 (Pin 3, VREF Output). In normal operation the internal  
reference is used by strapping Pins 3 and 4 of the AD9050 to-  
gether. T he internal reference has 500 µA of extra drive current  
that can be used for other circuits.  
T he minimum guaranteed conversion rate of the AD9050 is  
3 MSPS. Below a nominal of 1.5 MSPS the internal T /H  
switches to a track function only. T his precludes the T /H from  
drooping to the rail during the conversion process and mini-  
mizes saturation issues. At clock rates below 3 MSPS dynamic  
performance degrades. T he AD9050 will operate in burst mode  
operation, but the user must flush the internal pipeline each  
time the clock stops. T his requires five clock pulses each time  
the clock is restarted for the first valid data output (refer to Fig-  
ure 2 T iming Diagram).  
Some applications may require greater accuracy, improved tem-  
perature performance, or adjustment of the gain of the AD9050,  
which cannot be obtained by using the internal reference. For  
these applications, an external +2.5 V reference can be used to  
connect to Pin 4 of the AD9050. T he VREFIN requires 5 µA of  
drive current.  
T he input range can be adjusted by varying the reference volt-  
age applied to the AD9050. No appreciable degradation in per-  
formance occurs when the reference is adjusted ±5%. T he  
full-scale range of the ADC tracks reference voltage changes  
linearly.  
REV. B  
–9–  
AD9050  
Figure 22. Evaluation Board Bottom Layer  
Figure 20. Evaluation Board Top Layer  
Figure 23. Silkscreen  
Figure 21. Evaluation Board Ground Layer  
–10–  
REV. B  
AD9050  
U3  
74AC574R  
9
8
7
6
5
4
3
2
12  
13  
14  
15  
16  
17  
18  
19  
8D  
8Q  
7Q  
6Q  
5Q  
4Q  
3Q  
2Q  
1Q  
U1  
AD9050R  
7D  
6D  
5D  
4D  
3D  
2D  
1D  
R5  
1k  
15  
16  
17  
18  
19  
24  
25  
26  
27  
28  
20  
22  
D9/MSB  
3
4
5
6
9
10  
13  
14  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
VREF  
VREF  
J3  
OUT  
IN  
HDR20  
TP3  
U2  
AD9631Q  
COMP  
REF  
R4  
1k  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
C9  
BP  
2
3
0.1µF  
J2  
AINB  
AIN  
ENC  
OR  
6
IN  
IN  
CK  
11  
OUT  
OE  
R3  
50  
1
+5V  
+5V  
TP1  
U6:B  
74AC00R  
C1  
0.1µF  
4
5
6
C2  
0.1µF  
U4  
74AC574R  
TP2  
+5V  
J7  
C3  
0.1µF  
9
12  
13  
14  
15  
16  
17  
18  
19  
8D  
8Q  
7Q  
6Q  
5Q  
4Q  
3Q  
2Q  
1Q  
8
7
6
5
4
3
2
E1  
7D  
6D  
5D  
4D  
3D  
2D  
1D  
+5V  
R1  
50  
3
OUT  
4
2
GND  
VCC  
11  
Y1  
+5V  
SW41  
CK  
+5V  
OE  
11  
U6:A  
1
74AC00R  
3
12  
13  
1
2
U6:D  
74AC00R  
R2  
2k  
9
8
10  
+5V  
J6  
U6:C  
74AC00R  
J1  
+5V  
+5V  
+
C7  
0.1µF  
C5  
10µF  
C10  
0.1µF  
C12  
0.1µF  
C13  
0.1µF  
C14  
0.1µF  
C15  
0.1µF  
C16  
0.1µF  
C17  
0.1µF  
C22  
0.1µF  
C23  
0.1µF  
C24  
0.1µF  
J5  
–5.2V  
C6  
10µF  
C8  
0.1µF  
–5.2V  
+
C20  
0.1µF  
Figure 24. Evaluation Board Schem atic  
REV. B  
–11–  
AD9050  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
28-Lead SO IC  
(R-28)  
0.7125 (18.10)  
0.6969 (17.70)  
28  
15  
1
14  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
x 45°  
0.0500 (1.27)  
0.0157 (0.40)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
28-Lead SSO P  
(RS-28)  
0.407 (10.34)  
0.397 (10.08)  
28  
15  
14  
1
0.07 (1.79)  
0.078 (1.98)  
0.068 (1.73)  
PIN 1  
0.066 (1.67)  
0.03 (0.762)  
8°  
0°  
0.0256  
(0.65)  
BSC  
0.015 (0.38)  
0.010 (0.25)  
0.022 (0.558)  
0.008 (0.203)  
0.002 (0.050)  
SEATING  
PLANE  
0.009 (0.229)  
0.005 (0.127)  
–12–  
REV. B  

相关型号:

AD9050JR

Analog-to-Digital Converter, 10-Bit
ETC

AD9050JRS

Analog-to-Digital Converter, 10-Bit
ETC

AD9051

10-Bit, 60 MSPS A/D Converter
ADI

AD9051-2V

10-Bit, 60 MSPS A/D Converter
ADI

AD9051-2V/PCB

10-Bit, 60 MSPS A/D Converter
ADI

AD9051-2VPCB

10-Bit, 60 MSPS A/D Converter
ADI

AD9051/PCB

10-Bit, 60 MSPS A/D Converter
ADI

AD9051BRS

10-Bit, 60 MSPS A/D Converter
ADI

AD9051BRS-2V

10-Bit, 60 MSPS A/D Converter
ADI

AD9051BRSRL

10-Bit, 60 MSPS A-D Converter
ADI

AD9051BRSRL-2V

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, MO-150AH, SSOP-28, Analog to Digital Converter
ADI

AD9051BRSZ

10-Bit, 60 MSPS A/D Converter
ADI