AD9051 [ADI]

10-Bit, 60 MSPS A/D Converter; 10位, 60 MSPS A / D转换器
AD9051
型号: AD9051
厂家: ADI    ADI
描述:

10-Bit, 60 MSPS A/D Converter
10位, 60 MSPS A / D转换器

转换器
文件: 总12页 (文件大小:145K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-Bit, 60 MSPS  
A/D Converter  
a
AD9051  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
60 MSPS Sampling Rate  
9.3 Effective Number of Bits at fIN = 10.3 MHz  
250 mW Total Power at 60 MSPS  
Selectable Input Bandwidth of 50 MHz or 130 MHz  
On-Chip T/H and Voltage Reference  
Single +5 V Supply Voltage  
BWSEL  
+5V  
GND  
IN  
OUT  
+5V  
REFERENCE  
CIRCUITS  
AD9051  
AINB  
AIN  
T/H  
ADC  
+5 V or +3 V Logic I/O Compatible  
Input Range and Output Coding Options Available  
10  
DECODE  
LOGIC  
DAC  
ADC  
SUM  
AMP  
APPLICATIONS  
Medical Imaging  
Digital Communications  
Professional Video  
Instrumentation  
Set-Top Box  
ENCODE  
TIMING  
A +2.5 V reference is included onboard, or the user can provide  
an external reference voltage for gain control or matching of  
multiple devices. Fabricated on a state-of-the-art BiCMOS  
process, the AD9051 is packaged in a space saving surface  
mount package (SSOP) and is specified over the industrial tem-  
perature range (–40°C to +85°C).  
GENERAL DESCRIPTION  
The AD9051 is a complete 10-bit monolithic sampling analog-  
to-digital converter (ADC) with an onboard track-and-hold and  
reference. The unit is designed for low cost, high performance  
applications and requires only +5 V and an encode clock to  
achieve 60 MSPS sample rates with 10-bit resolution.  
The encode clock is TTL compatible and the digital outputs are  
CMOS; both can operate with +5 V/+3 V logic. The two-step  
architecture used in the AD9051 is optimized to provide the  
best dynamic performance available while maintaining low  
power consumption.  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1998  
(VD = +5 V, VDD = +3 V; external reference = 2.50 V; ENCODE = 60 MSPS  
unless otherwise noted)  
AD9051–SPECIFICATIONS  
Test  
Level Min  
AD9051BRS  
Typ  
AD9051BRS-2V  
Parameter  
Temp  
Max  
Min  
Typ  
Max  
Units  
RESOLUTION  
10  
10  
Bits  
DC ACCURACY  
Differential Nonlinearity  
+25°C  
Full  
+25°C  
Full  
I
V
I
0.75  
0.90  
0.75  
0.90  
1.50  
1.50  
0.75  
0.90  
0.75  
0.90  
1.50  
1.50  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
V
No Missing Codes  
Gain Error1  
+25°C  
+25°C  
Full  
I
I
VI  
V
GUARANTEED  
GUARANTEED  
±0.3  
±2.5  
±0.3  
±3.0  
% FS  
% FS  
ppm/°C  
±5.0  
±5.5  
Gain Tempco1  
Full  
±10  
±10  
ANALOG INPUT  
Input Voltage Range2  
Input Offset Voltage  
Input Resistance  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
V
I
I
V
V
1.25  
5.0  
6.0  
2.0  
5.0  
6.0  
5
V p-p  
LSB  
kΩ  
pF  
MHz  
–14  
4.0  
26  
–14  
4.0  
26  
Input Capacitance  
5
Analog Bandwidth (BW SEL +VD/NC)3  
50/130  
50/130  
BANDGAP REFERENCE  
Output Voltage (IO @ 200 µA)  
Temperature Coefficient  
Power Supply Sensitivity  
Reference Input Current (VIN = 2.50 V)  
Full  
Full  
Full  
Full  
VI  
V
V
2.4  
2.5  
±33  
6.2  
2.0  
2.6  
25  
2.4  
2.5  
±33  
6.2  
2.0  
2.6  
25  
V
ppm/°C  
mV/V  
µA  
VI  
SWITCHING PERFORMANCE  
Maximum Conversion Rate  
Minimum Conversion Rate4  
Aperture Delay (tA)  
Full  
Full  
+25°C  
+25°C  
Full  
VI  
IV  
V
V
VI  
VI  
60  
60  
MSPS  
MSPS  
ns  
ps, rms  
ns  
2.0  
2.5  
5
5.0  
10  
2.0  
2.5  
5
5.0  
10  
Aperture Uncertainty (Jitter)  
Output Valid Time (tV)5  
4.0  
4.0  
5
Output Propagation Delay (tPD  
)
Full  
5.5  
5.5  
ns  
DYNAMIC PERFORMANCE6  
Transient Response  
Overvoltage Recovery Time  
ENOBS  
+25°C  
+25°C  
V
V
10  
10  
10  
10  
ns  
ns  
fIN = 1.20 MHz  
+25°C  
+25°C  
+25°C  
V
I
V
9.6  
9.3  
9.1  
9.6  
9.3  
9.1  
ENOB  
ENOB  
ENOB  
f
IN = 10.3 MHz  
8.93  
55  
8.93  
54  
fIN = 29.0 MHz  
Signal-to-Noise Ratio (SINAD)  
fIN = 1.20 MHz  
fIN = 10.3 MHz  
fIN = 29.0 MHz  
+25°C  
+25°C  
+25°C  
V
I
V
58.5  
57  
55  
57.5  
56  
54  
dB  
dB  
dB  
Signal-to-Noise Ratio (Without Harmonics)  
fIN = 1.20 MHz  
fIN = 10.3 MHz  
+25°C  
+25°C  
+25°C  
V
I
V
59  
58  
56.5  
59  
58  
56.5  
dB  
dB  
dB  
56  
56  
f
IN = 29.0 MHz  
2nd Harmonic Distortion  
fIN = 1.20 MHz  
+25°C  
+25°C  
+25°C  
V
I
V
–74  
–73  
–67  
–68  
–64  
–60  
dBc  
dBc  
dBc  
f
IN = 10.3 MHz  
–60  
–60  
–58  
–60  
fIN = 29.0 MHz  
3rd Harmonic Distortion  
fIN = 1.20 MHz  
fIN = 10.3 MHz  
fIN = 29.0 MHz  
+25°C  
+25°C  
+25°C  
V
I
V
–74  
–70  
–65  
–69  
–65  
–60  
dBc  
dBc  
dBc  
Two-Tone Intermodulation  
Distortion (IMD)  
Differential Phase  
Differential Gain  
+25°C  
+25°C  
+25°C  
V
V
V
–65  
0.1  
0.5  
–65  
0.1  
0.5  
dBc  
Degrees  
%
–2–  
REV. A  
AD9051  
Test  
Level Min  
AD9051BRS  
Typ  
AD9051BRS-2V  
Parameter  
Temp  
Max  
Min  
Typ  
Max  
Units  
ENCODE INPUT  
Logic “1” Voltage  
Logic “0” Voltage  
Logic “1” Current  
Logic “0” Current  
Input Capacitance  
Encode Pulsewidth High (tEH  
Full  
Full  
Full  
Full  
+25°C  
+25°C  
+25°C  
VI  
VI  
VI  
VI  
V
2.0  
2.0  
V
V
0.8  
1
1
0.8  
1
1
µA  
µA  
pF  
ns  
ns  
7.5  
7.5  
)
)
IV  
IV  
7.5  
7.5  
7.5  
7.5  
Encode Pulsewidth Low (tEL  
DIGITAL OUTPUTS  
Logic “1” Voltage (5.0 VDD  
Logic “0” Voltage (5.0 VDD  
Logic “1” Voltage (3.0 VDD  
Logic “0” Voltage (3.0 VDD  
Output Coding7  
)
)
)
)
Full  
Full  
Full  
Full  
VI  
VI  
VI  
VI  
4.95  
2.95  
4.95  
2.95  
V
V
V
V
0.05  
0.05  
0.05  
0.05  
Offset Binary  
Offset Binary  
POWER SUPPLY  
VD, VDD Supply Current  
Full  
Full  
VI  
VI  
50  
250  
63  
315  
50  
250  
63  
315  
mA  
mW  
Power Dissipation8  
Power Supply Rejection Ratio  
(PSRR)9  
+25°C  
I
±2  
±10  
±7  
±15  
mV/V  
NOTES  
1Gain error and gain temperature coefficient are based on the ADC only (with a fixed +2.5 V external reference).  
2Contact factory or authorized sales agent for information concerning the availability of expanded input voltage range devices.  
33 dB bandwidth with full-power input signal.  
4Minimum conversion rate at which all data sheet specifications remain stable.  
5tV and tPD are measured from the threshold crossing of the ENCODE input to valid TTL levels 0.5 V and 2.4 V of the digital outputs with V DD = 3.0 V. The output  
ac load during test is 5 pF.  
6SNR/harmonics tested with an analog input voltage of –0.5 dBfs. All tests performed at 60 MSPS.  
7Contact factory or authorized sales agent for information concerning the availability of alternative output coding and input range devices.  
8Power dissipation is measured under the following conditions: analog input = –FS at 60 MSPS ENCODE.  
9A change in input offset voltage with respect to a change in VD.  
Specifications subject to change without notice.  
REV. A  
–3–  
AD9051  
ABSOLUTE MAXIMUM RATINGS*  
EXPLANATION OF TEST LEVELS  
Test Level  
I. 100% production tested.  
VD, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +7 V  
Analog Inputs . . . . . . . . . . . . . . . . . . . . –0.5 V to VD + 0.5 V  
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VD  
VREF Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VD  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating Temperature . . . . . . . . . . . . . . . . –55°C to +125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . .+175°C  
Maximum Case Temperature . . . . . . . . . . . . . . . . . . .+150°C  
II. 100% production tested at +25°C and sample tested at  
specified temperatures.  
III. Sample tested only.  
IV. Parameter is guaranteed by design and characterization  
testing.  
V. Parameter is a typical value only.  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum ratings  
for extended periods may effect device reliability.  
VI. 100% production tested at +25°C; guaranteed by design  
and characterization testing for industrial temperature range.  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Options  
AD9051BRS  
AD9051BRS-2V  
AD9051/PCB  
–40°C to +85°C  
–40°C to +85°C  
+25°C  
28-Lead Shrink Small Outline Package (SSOP)  
28-Lead Shrink Small Outline Package (SSOP)  
RS-28  
RS-28  
Evaluation Board  
AD9051-2V/PCB  
+25°C  
Evaluation Board  
Table I. Digital Coding (Single-Ended Input with AIN, AINB Bypassed to GND)  
OR  
Digital Output  
MSB . . . LSB  
Analog Input  
Voltage Level  
(Out of Range)  
3.126 (3.50)*  
2.5  
1.874 (1.50)*  
Positive Full Scale + 1 LSB  
Midscale  
Negative Full Scale – 1 LSB  
1
0
1
1111111111  
0111111111  
0000000000  
*(BRS-2V Version)  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD9051 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. A  
AD9051  
PIN FUNCTION DESCRIPTIONS  
Function  
Pin No.  
Name  
1, 6, 7, 12, 21, 23  
GND  
Ground.  
2, 8, 11  
VD  
Analog +5 V power supply.  
3
4
5
9
10  
13  
VREFOUT  
VREFIN  
BWSEL  
AINB  
AIN  
ENCODE  
Internal bandgap voltage reference (nominally +2.5 V).  
Input to reference amplifier. Voltage reference for ADC is connected here.  
Bandwidth Select. NC = 130 MHz nominal. +VD = 50 MHz nominal.  
Complementary analog input pin (Analog input bar).  
Analog input pin.  
Encode clock input to ADC. Internal T/H is placed in hold mode (ADC is encoding)  
on rising edge of encode signal.  
14  
OR  
Out of range signal. Logic “0” when analog input is in nominal range. Logic “1” when  
analog input is out of nominal range.  
15  
D9 (MSB)  
D8–D5  
VDD  
D4–D1  
D0 (LSB)  
Most significant bit of ADC output.  
Digital output bits of ADC.  
Digital output power supply (only used by digital outputs).  
Digital output bits of ADC.  
Least significant bit of ADC output.  
16–19  
20, 22  
24–27  
28  
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
PIN CONFIGURATION  
AIN  
1
2
3
4
5
6
7
D0 (LSB)  
28  
27  
26  
25  
24  
GND  
tA  
D1  
D2  
D3  
D4  
V
D
VREFOUT  
VREFIN  
BWSEL  
GND  
ENCODE  
tEH tEL  
tPD  
DIGITAL  
OUTPUTS  
N – 5  
N – 4  
N – 3  
N – 2  
N – 1  
N
V
23 GND  
V
AD9051  
TOP VIEW  
(Not to Scale)  
GND  
22  
21  
20  
19  
18  
17  
DD  
8
9
V
D
GND  
Figure 1. Timing Diagram  
AINB  
AIN  
V
DD  
10  
11  
D5  
D6  
V
D
D
V
D
GND 12  
D7  
12k  
12k⍀  
INPUT  
BUFFER  
13  
14  
16  
15  
ENCODE  
OR  
D8  
ENCODE  
(PIN 13)  
AINB (PIN 9)  
AIN (PIN 10)  
D9 (MSB)  
12k12k⍀  
Analog Input  
Encode  
V
(PINS 20, 22)  
+3V TO +5V  
DD  
V
D
D0–D9, OR  
VREF  
OUT  
(PIN 3)  
Output Stage  
Figure 2. Equivalent Circuits  
VREF  
REV. A  
–5–  
AD9051–Typical Performance Characteristics  
255  
250  
245  
240  
235  
230  
225  
220  
215  
210  
0
–1  
–2  
–3  
–4  
–5  
–6  
BWSEL DISABLED  
BWSEL ENABLED  
1
5
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
1
40  
52  
80  
118  
141  
201  
CLOCK RATE – MSPS  
ANALOG INPUT FREQUENCY – MHz  
Figure 6. ADC Gain vs. AIN Frequency  
Figure 3. Power Dissipation vs. Clock Rate  
59  
60  
AIN = 10.3MHz  
59  
58.5  
58  
SNR @ 40MSPS  
ENCODE = 40MSPS  
58  
57  
SINAD @ 40MSPS  
57.5  
57  
56  
ENCODE = 60MSPS  
55  
SINAD @ 60MSPS  
54  
56.5  
56  
SNR @ 60MSPS  
53  
52  
51  
55.5  
55  
–40  
50  
0
–20  
0
25  
45  
65  
85  
10  
20  
30  
40  
50  
60  
70  
80  
90  
TEMPERATURE – ؇C  
FREQUENCY – MHz  
Figure 7. SNR vs. Temperature  
Figure 4. SNR/SINAD vs. AIN Frequency  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
–50  
AIN = 10.3MHz  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
2ND @ 60MSPS  
3RD @ 40MSPS  
2ND @ 40MSPS  
3RD @ 60MSPS  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
5
10  
20  
30  
40  
50  
60  
70  
ENCODE – MSPS  
FREQUENCY – MHz  
Figure 5. Harmonics vs. AIN Frequency  
Figure 8. SNR vs. Clock Rate  
–6–  
REV. A  
AD9051  
0
0
AIN = 15.2MHz  
ENCODE = 60 MSPS  
SNR = 58.29dB  
–10  
AIN = 10.3MHz  
ENCODE = 40 MSPS  
SNR = 58.6dB  
–10  
–20  
–30  
–40  
–50  
–60  
–20  
–30  
–40  
SINAD = 57.23dB  
SINAD = 57.69dB  
–50  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–100  
0
3.8  
7.5  
11.3  
15.0  
18.8  
22.5  
26.3  
30  
30  
30  
0
2.5  
5.0  
7.5  
10  
12.5  
15  
17.5  
20  
20  
30  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 9. FFT Plot 40 MSPS, 10.3 MHz  
Figure 12. FFT Plot 60 MSPS, 15.2 MHz  
0
0
AIN = 21.7MHz  
ENCODE = 60 MSPS  
SNR = 57.76dB  
–10  
AIN = 15.2MHz  
ENCODE = 40 MSPS  
SNR = 58.47dB  
–10  
–20  
–30  
–40  
–50  
–60  
–20  
–30  
–40  
SINAD = 56.27dB  
SINAD = 57.04dB  
–50  
–60  
–70  
–80  
–70  
–80  
–90  
–90  
–100  
–100  
0
2.5  
5.0  
7.5  
10  
12.5  
15  
17.5  
0
3.8  
7.5  
11.3  
15.0  
18.8  
22.5  
26.3  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 13. FFT Plot 60 MSPS, 21.7 MHz  
Figure 10. FFT Plot 40 MSPS, 15.2 MHz  
0
0
AIN = 10.3MHz  
ENCODE = 60 MSPS  
SNR = 58.15dB  
AIN1 = 9.5MHz, –7dBFS  
AIN2 = 9.9MHz, –7dBFS  
IMD = –65dBc  
–10  
–20  
–30  
–40  
–50  
–60  
–10  
–20  
–30  
SINAD = 57.25dB  
ENCODE = 60 MSPS  
–40  
–50  
–60  
–70  
–80  
–70  
–80  
–90  
–90  
–100  
–100  
0
3.8  
7.5  
11.3  
15.0  
18.8  
22.5  
26.3  
0
3.8  
7.5  
11.3  
15.0  
18.8  
22.5  
26.3  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 11. FFT Plot 60 MSPS, 10.3 MHz  
Figure 14. Two-Tone IMD  
REV. A  
–7–  
AD9051  
1.2  
6.5  
6
3V RISING  
1.0  
0.8  
0.6  
0.4  
0.2  
5.5  
5
5V FALLING  
3V FALLING  
5V RISING  
4.5  
0
0
4
–40  
10  
20  
30  
40  
50  
60  
–20  
0
25  
45  
65  
85  
ENCODE – MSPS  
TEMPERATURE – ؇C  
Figure 15. Gain vs. Clock Rate  
Figure 18. tPD vs. Temperature +3 V/+5 V  
16  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
2.45  
2.44  
2.43  
2.42  
14  
12  
10  
8
V
OUT  
6
4
2
0
0
10  
20  
30  
40  
50  
60  
0.1  
0.55 0.7 0.85  
1
1.15 1.3 1.45 1.6 1.75 1.9 2.0  
0.25 0.4  
ENCODE – MSPS  
SOURCE CURRENT – mA  
Figure 16. Offset vs. Clock Rate  
Figure 19. Reference Load Regulation  
60  
58  
56  
54  
80  
70  
60  
50  
40  
30  
20  
10  
0
SNR @ 40MSPS  
SNR @ 60MSPS  
52  
50  
48  
46  
44  
42  
40  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
512  
513  
514  
515  
516  
517  
518  
CODE  
DUTY CYCLE – %  
Figure 17. SNR vs. Duty Cycle  
Figure 20. Midscale Histogram (Inputs Tied)  
–8–  
REV. A  
AD9051  
THEORY OF OPERATION  
140  
Refer to the block diagram on the front page.  
+5V  
+5V  
140⍀  
The AD9051 employs a subranging architecture with digital  
error correction. This combination of design techniques ensures  
true 10-bit accuracy at the digital outputs of the converter.  
V
IN  
10  
9
–0.625V  
TO  
+0.625V  
AD9631  
AD9051  
At the input, the analog signal is buffered by a high speed differ-  
ential buffer and applied to a track-and-hold (T/H) that holds  
the analog value present when the unit is strobed with an  
ENCODE command. The conversion process begins on the  
rising edge of this pulse. The two stage architecture completes a  
coarse and then a fine conversion of the T/H output signal.  
0.1F  
1k⍀  
+5V  
AD820  
1k⍀  
0.1F  
Error correction and decode logic correct and align data from  
the two conversions and present the result as a 10-bit parallel  
digital word. Output data are strobed on the rising edge of the  
ENCODE command. The subranging architecture results in five  
pipeline delays for the output data. Refer to the AD9051 Timing  
Diagram.  
Figure 21. Single Supply, Single-Ended, DC-Coupled  
AD9051  
140  
+5V  
+5V  
140⍀  
0.1F  
V
IN  
10  
9
–0.625V  
TO  
+0.625V  
USING THE AD9051  
3 V System  
AD9051  
AD9631  
–5V  
0.1F  
The digital input and outputs of the AD9051 can be easily  
configured to directly interface to 3 V logic systems. The encode  
input (Pin 13) is TTL compatible with a logic threshold of  
1.5 V. This input is actually a CMOS stage (refer to Equivalent  
Encode Input Stage) with a TTL threshold, allowing operation  
with TTL, CMOS and 3 V CMOS logic families. Using 3 V  
CMOS logic allows the user to drive the encode directly without  
the need to translate to +5 V. This saves the user power and  
board space. As with all high speed data converters, the clock  
signal must be clean and jitter free to prevent the degradation of  
dynamic performance.  
Figure 22. Single-Ended, Capacitively-Coupled AD9051  
140⍀  
+5V  
+5V  
140⍀  
0.1F  
V
IN  
T1-1T  
10  
9
–0.625V  
TO  
+0.625V  
AD9051  
AD9631  
50⍀  
–5V  
The AD9051 outputs can also directly interface to 3 V logic  
systems. The digital outputs are standard CMOS stages (refer to  
AD9051 Output Stage) with isolated supply pins (Pins 20, 22  
VDD). By varying the voltage on the VDD pins, the digital output  
levels vary respectively. By connecting Pins 20 and 22 to the  
3 V logic supply, the AD9051 will supply 3 V output levels.  
Care should be taken to filter and isolate the output supply of  
the AD9051 as noise could be coupled into the ADC, limiting  
performance.  
Figure 23. Differentially Driven AD9051 Using Trans-  
former Coupling  
The AD830 provides a unique method of providing dc level  
shift for the analog input. Using the AD830 allows a great deal  
of flexibility for adjusting offset and gain. Figure 24 shows the  
AD830 configured to drive the AD9051. The offset is provided  
by the internal biasing of the AD9051 differential input (Pin 9).  
For more information regarding the AD830, see the AD830  
data sheet.  
Analog Input  
The analog input of the AD9051 is a differential input buffer  
(refer to AD9051 Equivalent Analog Input). The differential  
inputs are internally biased at +2.5 V, obviating the need for  
external biasing. Excellent performance is achieved whether the  
analog inputs are driven single-endedly or differentially (for best  
dynamic performance, impedances at AIN and AINB should  
match).  
+5V  
+15V  
AD830  
–5V  
1
V
IN  
2
3
4
7
10  
–0.625V  
TO  
+0.625V  
AD9051  
9
0.1F  
Figure 21 shows typical connections for the analog inputs when  
using the AD9051 in a dc coupled system with single-ended  
signals. All components are powered from a single +5 V supply.  
The AD820 is used to offset the ground referenced input signal  
to the level required by the AD9051.  
Figure 24. Level-Shifting with the AD830  
AC coupling of the analog inputs of the AD9051 is easily accom-  
plished. Figure 22 shows capacitive coupling of a single-ended  
signal while Figure 23 shows transformer coupling differentially  
into the AD9051.  
REV. A  
–9–  
AD9051  
Overdrive of the Analog Input  
The input range can be adjusted by varying the reference volt-  
age applied to the AD9051. No appreciable degradation in  
performance occurs when the reference is adjusted ±5%. The  
full-scale range of the ADC tracks reference voltage changes  
linearly.  
Special care was taken in the design of the analog input section  
of the AD9051 to prevent damage and corruption of data when  
the input is overdriven. The nominal input range is +1.875 V  
to 3.125 V (1.25 V p-p centered at 2.5 V). Out-of-range com-  
parators detect when the analog input signal is out of this range  
and the input buffer is clamped. The digital outputs are locked  
at their maximum or minimum value (i.e., all “0” or all “1”).  
This precludes the digital outputs changing to an invalid value  
when the analog input is out of range.  
EVALUATION BOARD  
The AD9051 evaluation board is a convenient and easy way to  
evaluate the performance of the AD9051.  
Analog Input  
The input is protected to one volt outside the power supply  
rails. For nominal power (+5 V and ground), the analog input  
will not be damaged with signals from +5.5 V to –0.5 V.  
The evaluation board requires a 1.25 V p-p input. The signal is  
buffered by an AD9631 op amp in the unity gain configuration.  
The signal is then ac coupled before entering the AD9051  
where a dc offset is internally generated. Leave E3 unconnected  
to E4 for usage with the AD9631. To evaluate performance  
without this buffer, remove the AD9631 and connect E3 to E4.  
Keep E1 connected to E2 for use in the low bandwidth mode  
(50 MHz). Removing this connector will enable high band-  
width mode (130 MHz). Low bandwidth is the recommended  
mode of operation in order to minimize any high frequency  
noise coupling into the input of the AD9051.  
Timing  
The performance of the AD9051 is very insensitive to the duty  
cycle of the clock. Pulsewidth variations of as much as ±15%  
for encode rates of 40 MSPS and ±10% for encode rates of  
60 MSPS will cause no degradation in performance. (See Fig-  
ure 17, SNR vs. Duty Cycle.)  
The AD9051 provides latched data outputs, with five pipeline  
delays. Data outputs are available one propagation delay (tPD  
after the rising edge of the encode command (refer to Fig-  
ure 1, Timing Diagram). The length of the output data lines  
)
Encode  
The evaluation board is driven with a TTL or CMOS clock  
into a clock buffer of ac type CMOS logic. This buffer will  
drive the encode to the AD9051, the data latches, and a “data  
ready.”  
and loads placed on them should be minimized to reduce tran-  
sients within the AD9051; these transients can detract from the  
converter’s dynamic performance.  
Data Out  
Power Dissipation  
The digital data is captured by a pair 74ACQ574 latches. Any  
unused connector pins should be grounded to the device that is  
capturing data from the evaluation board. This minimizes any  
grounding loops that may degrade performance. A separate  
power plane is provided for supplying the latches, clock buffer,  
and digital outputs of the AD9051. This supply can be 3 V or  
5 V.  
The power dissipation specification in the parameter table is  
measured under the following conditions: encode is 60 MSPS,  
analog input is –FS.  
As shown in Figure 3, the actual power dissipation varies based  
on these conditions. For instance, reducing the clock rate will  
reduce power as expected for CMOS-type devices. The loading  
determines the power dissipated in the output stages.  
Layout  
The analog input frequency and amplitude in conjunction with  
the clock rate determine the switching rate of the output data  
bits. Power dissipation increases as more data bits switch at  
faster rates. For instance, if the input is a dc signal that is out of  
range, no output bits will switch. This minimizes power in the  
output stages, but is not realistic from a usage standpoint.  
The AD9051 is not layout sensitive if some important guide-  
lines are met. The evaluation board layout provides an ex-  
ample where these guidelines have been followed to optimize  
performance.  
• Provide a solid ground plane connecting both analog and  
digital sections. Cuts in this plane near the AD9051 should  
be kept to a minimum.  
The dissipation in the output stages can be minimized by inter-  
facing the outputs to 3 V logic (refer to Using the AD9051, 3 V  
System). The lower output swings minimize power consump-  
• Excellent bypassing is essential. All capacitors should be  
placed as close as possible to the AD9051. No vias should  
be used to connect capacitors to the AD9051 as this may  
create a parasitic inductance that can reduce bypassing  
effectiveness.  
2
tion as follows: (1/2 CLOAD × VDD × Update Rate).  
Voltage Reference  
A stable and accurate +2.5 V voltage reference is built into the  
AD9051 (Pin 3, VREFOUT). In normal operation the internal  
reference is used by strapping together Pins 3 and 4 of the  
AD9051. The internal reference has 500 µA of extra drive cur-  
rent that can be used for other circuits.  
The AD9051 evaluation board is provided as a design example  
for customers of Analog Devices. ADI makes no warranties  
express, statutory, or implied regarding merchantability of  
fitness for a particular purpose.  
Some applications may require greater accuracy, improved  
temperature performance, or adjustment of the gain of the  
AD9051, which cannot be obtained by using the internal refer-  
ence. For these applications, an external +2.5 V reference can  
be used to connect to Pin 4 of the AD9051. The VREFIN  
requires 2 µA of drive current.  
–10–  
REV. A  
AD9051  
Figure 25. Evaluation Board Top Layer  
Figure 27. Evaluation Board Bottom Layer  
Figure 28. Silkscreen  
Figure 26. Evaluation Board Ground Layer  
REV. A  
–11–  
AD9051  
GND  
V
+5VA  
–5V  
DD  
C17  
0.1F  
V
C12  
1F  
C10  
0.1F  
C11  
0.1F  
C14  
1F  
C13  
0.1F  
C15  
1F  
DD  
74ACQ574  
AD9051  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
GND  
OUT_EN VCC  
28  
27  
26  
1
2
GND1 (LSB) D0  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
GND  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
GND  
C1  
0.1F  
3
4
P6  
D1  
D2  
+5VA1  
+5VA  
GND  
P1  
1
2
3
4
5
5
C2  
0.1F  
1
2
3
4
5
+5VA  
GND  
–5V  
3
VREFOUT  
VREFIN  
BWSEL  
6
1
2
3
4
5
6
7
8
9
U4  
7
D3  
4
25  
24  
23  
22  
21  
20  
19  
18  
8
GND  
E2 E1  
9
+5VA  
5
D4  
V
DD  
10  
U1  
CLOCK  
GND  
6
GND2  
GND  
GND  
+5VA  
GND5  
C8  
0.1F  
7
GND3  
+5A2  
AINB  
AIN  
V
V
DD  
DD1  
C3  
0.1F  
GND  
C16  
0.1F  
8
GND6  
GND  
C5  
E3 E4  
R3  
R1  
25⍀  
C9  
0.1F  
0.1F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
V
DD  
9
V
V
DD2  
DD  
140⍀  
74ACQ574  
10  
11  
12  
D5  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
R2  
25⍀  
C6  
0.1F  
R4  
140⍀  
GND  
OUT_EN VCC  
+5VA  
GND  
+5A3  
D6  
D7  
2
3
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
GND  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
C7  
0.1F  
J1  
6
3
U2  
R5  
50⍀  
GND4  
17  
16  
15  
4
5
AD9631  
13 ENCODE  
14  
D8  
1
6
3
U5  
U3  
2
7
OR  
(MSB) D9  
74AC00  
8
J1  
9
4
R6  
50⍀  
6
GND  
GND  
5
U3  
10  
CLOCK  
74AC00  
9
8
10 U3  
V
DD  
74AC00  
12  
11  
U3  
13  
74AC00  
Figure 29. Evaluation Board Schematic  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
28-Lead SSOP  
(RS-28)  
0.407 (10.34)  
0.397 (10.08)  
28  
15  
1
14  
0.07 (1.79)  
0.078 (1.98)  
0.068 (1.73)  
PIN 1  
0.066 (1.67)  
0.03 (0.762)  
8°  
0°  
0.0256  
(0.65)  
BSC  
0.015 (0.38)  
0.010 (0.25)  
0.022 (0.558)  
0.008 (0.203)  
0.002 (0.050)  
SEATING  
PLANE  
0.009 (0.229)  
0.005 (0.127)  
REV. A  
–12–  

相关型号:

AD9051-2V

10-Bit, 60 MSPS A/D Converter
ADI

AD9051-2V/PCB

10-Bit, 60 MSPS A/D Converter
ADI

AD9051-2VPCB

10-Bit, 60 MSPS A/D Converter
ADI

AD9051/PCB

10-Bit, 60 MSPS A/D Converter
ADI

AD9051BRS

10-Bit, 60 MSPS A/D Converter
ADI

AD9051BRS-2V

10-Bit, 60 MSPS A/D Converter
ADI

AD9051BRSRL

10-Bit, 60 MSPS A-D Converter
ADI

AD9051BRSRL-2V

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, MO-150AH, SSOP-28, Analog to Digital Converter
ADI

AD9051BRSZ

10-Bit, 60 MSPS A/D Converter
ADI

AD9051BRSZ-2V

10-Bit, 60 MSPS A-D Converter
ADI

AD9051BRSZRL

10-Bit, 60 MSPS A-D Converter
ADI

AD9051BRSZRL-2V

10-Bit, 60 MSPS A/D Converter
ADI