AD9051BRSZRL [ADI]

10-Bit, 60 MSPS A-D Converter;
AD9051BRSZRL
型号: AD9051BRSZRL
厂家: ADI    ADI
描述:

10-Bit, 60 MSPS A-D Converter

文件: 总11页 (文件大小:644K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-Bit, 60 MSPS  
A/D Converter  
a
AD9051  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
60 MSPS Sampling Rate  
9.3 Effective Number of Bits at fIN = 10.3 MHz  
250 mW Total Power at 60 MSPS  
Selectable Input Bandwidth of 50 MHz or 130 MHz  
On-Chip T/H and Voltage Reference  
Single 5 V Supply Voltage  
BWSEL  
5V  
GND  
IN  
OUT  
5V  
REFERENCE  
CIRCUITS  
AD9051  
AINB  
AIN  
T/H  
ADC  
5 V or 3 V Logic I/O Compatible  
Input Range and Output Coding Options Available  
10  
DECODE  
LOGIC  
DAC  
ADC  
SUM  
AMP  
APPLICATIONS  
Medical Imaging  
Digital Communications  
Professional Video  
Instrumentation  
Set-Top Box  
ENCODE  
TIMING  
GENERAL DESCRIPTION  
A 2.5 V reference is included onboard, or the user can provide  
an external reference voltage for gain control or matching of  
multiple devices. Fabricated on a state-of-the-art BiCMOS  
process, the AD9051 is packaged in a space saving surface  
mount package (SSOP) and is specified over the industrial tem-  
perature range (–40°C to +85°C).  
The AD9051 is a complete 10-bit monolithic sampling analog-  
to-digital converter (ADC) with an onboard track-and-hold and  
reference. The unit is designed for low cost, high performance  
applications and requires only 5 V and an encode clock to  
achieve 60 MSPS sample rates with 10-bit resolution.  
The encode clock is TTL compatible and the digital outputs are  
CMOS; both can operate with 5 V/3 V logic. The two-step  
architecture used in the AD9051 is optimized to provide the  
best dynamic performance available while maintaining low  
power consumption.  
C
REV.  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
www.analog.com  
2010  
© Analog Devices, Inc.,  
781/461-3113  
Fax:  
AD9051BRS/  
AD9051BRSZ  
AD9051BRS-2V/  
AD9051BRSZ-2V  
9.3  
9.1  
8.76  
8.59  
9.0  
8.8  
8.8  
8.6  
56.5  
56  
54  
56.5  
55  
53  
53.5  
54.5  
52.5  
53.5  
55.5  
56.5  
55  
56.5  
55.5  
54  
REV. C  
AD9051BRS/  
AD9051BRSZ  
AD9051BRS-2V/  
AD9051BRSZ-2V  
REV. C  
AD9051  
EXPLANATION OF TEST LEVELS  
Test Level  
I. 100% production tested.  
ABSOLUTE MAXIMUM RATINGS*  
VD, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
Analog Inputs . . . . . . . . . . . . . . . . . . . . –0.5 V to VD + 0.5 V  
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VD  
VREF Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VD  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating Temperature . . . . . . . . . . . . . . . . –55°C to +125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . 150°C  
Maximum Case Temperature . . . . . . . . . . . . . . . . . . . . 150°C  
II. 100% production tested at 25°C and sample tested at  
specified temperatures.  
III. Sample tested only.  
IV. Parameter is guaranteed by design and characterization  
testing.  
V. Parameter is a typical value only.  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum ratings  
for extended periods may effect device reliability.  
VI. 100% production tested at 25°C; guaranteed by design and  
characterization testing for industrial temperature range.  
Table I. Digital Coding (Single-Ended Input with AIN, AINB Bypassed to GND)  
OR  
Digital Output  
MSB . . . LSB  
Analog Input  
Voltage Level  
(Out of Range)  
3.126 (3.50)*  
2.5  
1.874 (1.50)*  
Positive Full Scale + 1 LSB  
Midscale  
Negative Full Scale – 1 LSB  
1
0
1
1111111111  
0111111111  
0000000000  
*(BRS-2V Version)  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD9051 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
C
–4–  
REV.  
AD9051  
PIN FUNCTION DESCRIPTIONS  
Description  
Pin No.  
Mnemonic  
1, 6, 7, 12, 21, 23  
GND  
Ground  
2, 8, 11  
3
4
5
9
10  
13  
VD  
Analog 5 V Power Supply  
Internal Bandgap Voltage Reference (Nominally 2.5 V)  
Input to Reference Amplifier. Voltage reference for ADC is connected here.  
Bandwidth Select. NC = 130 MHz nominal. +VD = 50 MHz nominal.  
Complementary Analog Input Pin (Analog Input Bar)  
Analog Input Pin  
VREFOUT  
VREFIN  
BWSEL  
AINB  
AIN  
ENCODE  
Encode Clock Input to ADC. Internal T/H is placed in hold mode (ADC is encoding)  
on rising edge of encode signal.  
14  
OR  
Out of Range Signal. Logic “0” when analog input is in nominal range. Logic “1” when  
analog input is out of nominal range.  
15  
D9 (MSB)  
D8–D5  
VDD  
D4–D1  
D0 (LSB)  
Most Significant Bit of ADC Output  
Digital Output Bits of ADC  
Digital Output Power Supply (Only Used by Digital Outputs)  
Digital Output Bits of ADC  
Least Significant Bit of ADC Output  
16–19  
20, 22  
24–27  
28  
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
PIN CONFIGURATION  
AIN  
1
2
3
4
5
6
7
D0 (LSB)  
28  
27  
26  
25  
24  
GND  
tA  
D1  
D2  
D3  
D4  
V
D
VREFOUT  
VREFIN  
BWSEL  
GND  
ENCODE  
tEH tEL  
tPD  
DIGITAL  
OUTPUTS  
23 GND  
V
N – 5  
N – 4  
N – 3  
N – 2  
N – 1  
N
AD9051  
TOP VIEW  
(Not to Scale)  
GND  
22  
21  
20  
19  
18  
17  
DD  
8
9
V
D
GND  
Figure 1. Timing Diagram  
AINB  
AIN  
V
DD  
10  
11  
D5  
D6  
V
D
V
D
V
D
GND 12  
D7  
12k  
12k⍀  
INPUT  
BUFFER  
13  
14  
16  
15  
ENCODE  
OR  
D8  
ENCODE  
(PIN 13)  
AINB (PIN 9)  
AIN (PIN 10)  
D9 (MSB)  
12k12k⍀  
Analog Input  
Encode  
V
(PINS 20, 22)  
+3V TO +5V  
DD  
V
D
D0D9, OR  
VREF  
OUT  
(PIN 3)  
Output Stage  
Figure 2. Equivalent Circuits  
VREF  
C
–5–  
REV.  
AD9051  
0
1  
2  
3  
4  
5  
6  
255  
250  
245  
240  
235  
230  
225  
220  
215  
BWSEL DISABLED  
BWSEL ENABLED  
210  
1
5
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
1
40  
52  
80  
118  
141  
201  
CLOCK RATE MSPS  
ANALOG INPUT FREQUENCY MHz  
TPC 1. Power Dissipation vs. Clock Rate  
TPC 4. ADC Gain vs. AIN Frequency  
60  
59  
AIN = 10.3MHz  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
58.5  
58  
SNR @ 40MSPS  
ENCODE = 40MSPS  
SINAD @ 40MSPS  
57.5  
57  
ENCODE = 60MSPS  
SINAD @ 60MSPS  
56.5  
56  
SNR @ 60MSPS  
55.5  
55  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
40  
20  
0
25  
45  
65  
85  
FREQUENCY MHz  
TEMPERATURE ؇C  
TPC 2. SNR/SINAD vs. AIN Frequency  
TPC 5. SNR vs. Temperature  
60  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
AIN = 10.3MHz  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
2ND @ 60MSPS  
3RD @ 40MSPS  
2ND @ 40MSPS  
3RD @ 60MSPS  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
5
10  
20  
30  
40  
50  
60  
70  
ENCODE MSPS  
FREQUENCY MHz  
TPC 3. Harmonics vs. AIN Frequency  
TPC 6. SNR vs. Clock Rate  
C
–6–  
REV.  
AD9051  
0
0
AIN = 15.2MHz  
ENCODE = 60MSPS  
SNR = 58.29dB  
10  
AIN = 10.3MHz  
ENCODE = 40MSPS  
SNR = 58.6dB  
10  
20  
30  
40  
50  
60  
20  
30  
40  
SINAD = 57.23dB  
SINAD = 57.69dB  
50  
60  
70  
70  
80  
80  
90  
90  
100  
100  
0
0
0
3.8  
7.5  
11.3  
15.0  
18.8  
22.5  
26.3  
30  
30  
30  
0
0
0
2.5  
5.0  
7.5  
10  
12.5  
15  
17.5  
20  
20  
30  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 7. FFT Plot 40 MSPS, 10.3 MHz  
TPC 10. FFT Plot 60 MSPS, 15.2 MHz  
0
0
AIN = 21.7MHz  
ENCODE = 60MSPS  
SNR = 57.76dB  
10  
AIN = 15.2MHz  
ENCODE = 40MSPS  
SNR = 58.47dB  
10  
20  
30  
40  
50  
60  
20  
30  
40  
SINAD = 56.27dB  
SINAD = 57.04dB  
50  
60  
70  
80  
70  
80  
90  
90  
100  
100  
3.8  
7.5  
11.3  
15.0  
18.8  
22.5  
26.3  
2.5  
5.0  
7.5  
10  
12.5  
15  
17.5  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 11. FFT Plot 60 MSPS, 21.7 MHz  
TPC 8. FFT Plot 40 MSPS, 15.2 MHz  
0
0
AIN = 10.3MHz  
ENCODE = 60MSPS  
SNR = 58.15dB  
AIN1 = 9.5MHz, 7dBFS  
AIN2 = 9.9MHz, 7dBFS  
IMD = 65dBc  
10  
20  
30  
40  
50  
60  
10  
20  
30  
SINAD = 57.25dB  
ENCODE = 60MSPS  
40  
50  
60  
70  
80  
70  
80  
90  
90  
100  
100  
3.8  
7.5  
11.3  
15.0  
18.8  
22.5  
26.3  
3.8  
7.5  
11.3  
15.0  
18.8  
22.5  
26.3  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 12. Two-Tone IMD  
TPC 9. FFT Plot 60 MSPS, 10.3 MHz  
C
REV.  
–7–  
AD9051  
1.2  
6.5  
6
3V RISING  
1.0  
0.8  
0.6  
0.4  
5.5  
5
5V FALLING  
3V FALLING  
5V RISING  
4.5  
0.2  
0
4
40  
0
10  
20  
30  
40  
50  
60  
20  
0
25  
45  
65  
85  
ENCODE MSPS  
TEMPERATURE ؇C  
TPC 13. Gain vs. Clock Rate  
TPC 16. tPD vs. Temperature 3 V/5 V  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
2.45  
2.44  
2.43  
2.42  
16  
14  
12  
10  
8
V
OUT  
6
4
2
0
0.1  
0.55 0.7 0.85  
1
1.15 1.3 1.45 1.6 1.75 1.9 2.0  
0
0.25 0.4  
10  
20  
30  
40  
50  
60  
SOURCE CURRENT mA  
ENCODE MSPS  
TPC 14. Offset vs. Clock Rate  
TPC 17. Reference Load Regulation  
60  
58  
56  
54  
80  
70  
60  
50  
40  
30  
20  
10  
0
SNR @ 40MSPS  
SNR @ 60MSPS  
52  
50  
48  
46  
44  
42  
40  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
512  
513  
514  
515  
516  
517  
518  
CODE  
DUTY CYCLE %  
TPC 15. SNR vs. Duty Cycle  
TPC 18. Midscale Histogram (Inputs Tied)  
C
–8–  
REV.  
AD9051  
THEORY OF OPERATION  
140  
Refer to the block diagram on the front page.  
5V  
5V  
140⍀  
The AD9051 employs a subranging architecture with digital  
error correction. This combination of design techniques ensures  
true 10-bit accuracy at the digital outputs of the converter.  
V
IN  
10  
9
0.625V  
TO  
+0.625V  
AD9631  
AD9051  
At the input, the analog signal is buffered by a high speed  
differential buffer and applied to a track-and-hold (T/H) that  
holds the analog value present when the unit is strobed with  
an ENCODE command. The conversion process begins on the  
rising edge of this pulse. The two stage architecture completes a  
coarse and then a fine conversion of the T/H output signal.  
0.1F  
1k⍀  
5V  
AD820  
1k⍀  
0.1F  
Figure 3. Single Supply, Single-Ended, DC-Coupled  
AD9051  
Error correction and decode logic correct and align data from  
the two conversions and present the result as a 10-bit parallel  
digital word. Output data are strobed on the rising edge of the  
ENCODE command. The subranging architecture results in  
five pipeline delays for the output data. Refer to the AD9051  
Timing Diagram.  
140  
+5V  
5V  
140⍀  
0.1F  
V
IN  
10  
9
0.625V  
TO  
+0.625V  
USING THE AD9051  
3 V System  
AD9051  
AD9631  
5V  
0.1F  
The digital input and outputs of the AD9051 can be easily  
configured to directly interface to 3 V logic systems. The encode  
input (Pin 13) is TTL compatible with a logic threshold of  
1.5 V. This input is actually a CMOS stage (refer to Equivalent  
Encode Input Stage) with a TTL threshold, allowing operation  
with TTL, CMOS and 3 V CMOS logic families. Using 3 V  
CMOS logic allows the user to drive the encode directly without  
the need to translate to 5 V. This saves the user power and  
board space. As with all high speed data converters, the clock  
signal must be clean and jitter free to prevent the degradation of  
dynamic performance.  
Figure 4. Single-Ended, Capacitively-Coupled AD9051  
140⍀  
+5V  
5V  
140⍀  
0.1F  
V
IN  
T1-1T  
10  
9
0.625V  
TO  
+0.625V  
AD9051  
AD9631  
50⍀  
5V  
The AD9051 outputs can also directly interface to 3 V logic  
systems. The digital outputs are standard CMOS stages (refer  
to AD9051 Output Stage) with isolated supply pins (Pins 20,  
22 VDD). By varying the voltage on the VDD pins, the digital  
output levels vary respectively. By connecting Pins 20 and 22 to  
the 3 V logic supply, the AD9051 will supply 3 V output  
levels. Care should be taken to filter and isolate the output  
supply of the AD9051 as noise could be coupled into the  
ADC, limiting performance.  
Figure 5. Differentially Driven AD9051 Using Trans-  
former Coupling  
The AD830 provides a unique method of providing dc level  
shift for the analog input. Using the AD830 allows a great deal  
of flexibility for adjusting offset and gain. Figure 6 shows the  
AD830 configured to drive the AD9051. The offset is provided  
by the internal biasing of the AD9051 differential input (Pin 9).  
For more information regarding the AD830, see the AD830  
data sheet.  
Analog Input  
The analog input of the AD9051 is a differential input buffer  
(refer to AD9051 Equivalent Analog Input). The differential  
inputs are internally biased at 2.5 V, obviating the need for  
external biasing. Excellent performance is achieved whether the  
analog inputs are driven single-endedly or differentially (for  
best dynamic performance, impedances at AIN and AINB  
should match).  
+5V  
+15V  
AD830  
5V  
1
V
IN  
2
3
4
7
10  
0.625V  
TO  
+0.625V  
AD9051  
9
0.1F  
Figure 3 shows typical connections for the analog inputs when  
using the AD9051 in a dc-coupled system with single-ended  
signals. All components are powered from a single 5 V supply.  
The AD820 is used to offset the ground referenced input signal  
to the level required by the AD9051.  
Figure 6. Level-Shifting with the AD830  
AC coupling of the analog inputs of the AD9051 is easily  
accomplished. Figure 4 shows capacitive coupling of a single-  
ended signal while Figure 5 shows transformer coupling  
differentially into the AD9051.  
C
REV.  
–9–  
AD9051  
Overdrive of the Analog Input  
Some applications may require greater accuracy, improved  
temperature performance, or adjustment of the gain of the  
AD9051, which cannot be obtained by using the internal refer-  
ence. For these applications, an external 2.5 V reference can be  
used to connect to Pin 4 of the AD9051. The VREFIN requires  
2 µA of drive current.  
Special care was taken in the design of the analog input section  
of the AD9051 to prevent damage and corruption of data when  
the input is overdriven. The nominal input range is 1.875 V to  
3.125 V (1.25 V p-p centered at 2.5 V). Out-of-range compara-  
tors detect when the analog input signal is out of this range and  
the input buffer is clamped. The digital outputs are locked at  
their maximum or minimum value (i.e., all “0” or all “1”). This  
precludes the digital outputs changing to an invalid value when  
the analog input is out of range.  
The input range can be adjusted by varying the reference  
voltage applied to the AD9051. No appreciable degradation  
in performance occurs when the reference is adjusted 5%.  
The full-scale range of the ADC tracks reference voltage  
changes linearly.  
The input is protected to one volt outside the power supply  
rails. For nominal power (5 V and ground), the analog input  
will not be damaged with signals from +5.5 V to –0.5 V.  
Timing  
The performance of the AD9051 is very insensitive to the duty  
cycle of the clock. Pulsewidth variations of as much as 15% for  
encode rates of 40 MSPS and 10% for encode rates of 60 MSPS  
will cause no degradation in performance. (See Figure 17, SNR vs.  
Duty Cycle.)  
The AD9051 provides latched data outputs, with five pipeline  
delays. Data outputs are available one propagation delay (tPD  
after the rising edge of the encode command (refer to Figure 1,  
Timing Diagram). The length of the output data lines and  
loads placed on them should be minimized to reduce tran-  
)
sients within the AD9051; these transients can detract from  
the converter’s dynamic performance.  
Power Dissipation  
The power dissipation specification in the parameter table is  
measured under the following conditions: encode is 60 MSPS,  
analog input is –FS.  
As shown in Figure 3, the actual power dissipation varies based  
on these conditions. For instance, reducing the clock rate will  
reduce power as expected for CMOS-type devices. The loading  
determines the power dissipated in the output stages.  
The analog input frequency and amplitude in conjunction with  
the clock rate determine the switching rate of the output data  
bits. Power dissipation increases as more data bits switch at  
faster rates. For instance, if the input is a dc signal that is out of  
range, no output bits will switch. This minimizes power in the  
output stages, but is not realistic from a usage standpoint.  
The dissipation in the output stages can be minimized by inter-  
facing the outputs to 3 V logic (refer to Using the AD9051, 3 V  
System). The lower output swings minimize power consumption  
as follows: (1/2 CLOAD × VDD2 × Update Rate).  
Voltage Reference  
A stable and accurate 2.5 V voltage reference is built into the  
AD9051 (Pin 3, VREFOUT). In normal operation the internal  
reference is used by strapping together Pins 3 and 4 of the  
AD9051. The internal reference has 500 µA of extra drive cur-  
rent that can be used for other circuits.  
C
–10–  
REV.  
AD9051  
OUTLINE DIMENSIONS  
10.50  
10.20  
9.90  
15  
28  
5.60  
5.30  
5.00  
8.20  
7.80  
7.40  
1
14  
0.25  
0.09  
1.85  
1.75  
1.65  
2.00 MAX  
0.05 MIN  
8°  
4°  
0°  
0.95  
0.75  
0.55  
0.38  
0.22  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.65 BSC  
COMPLIANT TO JEDEC STANDARDS MO-150-AH  
Figure 7.28-Lead Shrink Small Outline Package [SSOP]  
(RS-28)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
AD9051BRS  
28-Lead Shrink Small Outline Package (SSOP)  
28-Lead Shrink Small Outline Package (SSOP)  
28-Lead Shrink Small Outline Package (SSOP)  
28-Lead Shrink Small Outline Package (SSOP)  
28-Lead Shrink Small Outline Package (SSOP)  
28-Lead Shrink Small Outline Package (SSOP)  
28-Lead Shrink Small Outline Package (SSOP)  
28-Lead Shrink Small Outline Package (SSOP)  
RS-28  
RS-28  
RS-28  
RS-28  
RS-28  
RS-28  
RS-28  
RS-28  
AD9051BRS-2V  
AD9051BRSRL  
AD9051BRSZ  
AD9051BRSZRL  
AD9051BRSRL-2V  
AD9051BRSZ-2V  
AD9051BRSZRL-2V  
1 Z = RoHS Compliant Part.  
REVISION HISTORY  
11/10—Rev. B to Rev. C  
Changes to Specifications Section...................................................2  
Deleted Evaluation Board Section ................................................10  
Updated Outline Dimensions........................................................11  
Changes to Ordering Guide...........................................................11  
7/01—Rev. A to Rev. B  
Edits to ABSOLUTE MAXIMUM RATINGS...............................4  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00558-0-11/10(C)  
REV. C  
–11–  

相关型号:

AD9051BRSZRL-2V

10-Bit, 60 MSPS A/D Converter
ADI

AD9051PCB

10-Bit, 60 MSPS A/D Converter
ADI

AD9051_15

10-Bit, 60 MSPS A/D Converter
ADI

AD9051_17

A/D Converter
ADI

AD9054

8-Bit, 200 MSPS A/D Converter
ADI

AD9054/PCB

8-Bit, 200 MSPS A/D Converter
ADI

AD9054A

8-Bit, 200 MSPS A/D Converter
ADI

AD9054A/PCB

8-Bit, 200 MSPS A/D Converter
ADI

AD9054ABST-135

8-Bit, 200 MSPS A/D Converter
ADI

AD9054ABST-135

1-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, PQFP44, PLASTIC, LQFP-44
ROCHESTER

AD9054ABST-200

8-Bit, 200 MSPS A/D Converter
ADI

AD9054ABST-200

1-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, PQFP44, PLASTIC, LQFP-44
ROCHESTER