AD9054A/PCB [ADI]

8-Bit, 200 MSPS A/D Converter; 8 - BIT , 200 MSPS A / D转换器
AD9054A/PCB
型号: AD9054A/PCB
厂家: ADI    ADI
描述:

8-Bit, 200 MSPS A/D Converter
8 - BIT , 200 MSPS A / D转换器

转换器
文件: 总19页 (文件大小:332K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-Bit, 200 MSPS  
A/D Converter  
a
AD9054A  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
200 MSPS Guaranteed Conversion Rate  
135 MSPS Low Cost Version Available  
350 MHz Analog Bandwidth  
1 V p-p Analog Input Range  
Internal +2.5 V Reference and T/H  
Low Power: 500 mW  
VREF IN  
VREF OUT  
AD9054A  
؉2.5V REFERENCE  
AIN  
8
8
T/H  
QUANTIZER  
DA –DA  
ENCODE  
LOGIC  
DEMULTIPLEXER  
7
0
AIN  
+5 V Single Supply Operation  
TTL Output Interface  
ENCODE  
ENCODE  
DB –DB  
7
0
TIMING  
Single or Demultiplexed Output Ports  
V
GND  
DEMUX  
DS  
DS  
DD  
APPLICATIONS  
RGB Graphics Processing  
High Resolution Video  
Digital Data Storage Read Channels  
Digital Communications  
Digital Instrumentation  
Medical Imaging  
GENERAL DESCRIPTION  
The AD9054A’s encode input interfaces directly to TTL, CMOS  
or positive-ECL logic and will operate with single-ended or  
differential inputs. The user may select dual-channel or single-  
channel digital outputs. The dual (demultiplexed) mode inter-  
leaves ADC data through two 8-bit channels at one-half the  
clock rate. Operation in demultiplexed mode reduces the speed  
and cost of external digital interfaces while allowing the ADC to  
be clocked to the full 200 MSPS conversion rate. In the single-  
channel (nondemultiplexed) mode, all data is piped at the full  
clock rate to the Channel A outputs.  
The AD9054A is an 8-bit monolithic analog-to-digital converter  
optimized for high speed, low power, small size and ease of use.  
With a 200 MSPS encode rate capability and full-power analog  
bandwidth of 350 MHz, the component is ideal for applications  
requiring the highest possible dynamic performance.  
To minimize system cost and power dissipation, the AD9054A  
includes an internal +2.5 V reference and track-and-hold circuit.  
The user provides only a +5 V power supply and an encode clock.  
No external reference or driver components are required for  
many applications.  
Fabricated with an advanced BiCMOS process, the AD9054A is  
provided in a space-saving 44-lead LQFP surface mount plastic  
package (ST-44) and specified over the full industrial (–40°C to  
+85°C) temperature range.  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
AD9054A–SPECIFICATIONS  
(VDD = +5 V, external reference, fS = max unless otherwise noted)  
ELECTRICAL CHARACTERISTICS  
Test  
AD9054ABST-200  
AD9054ABST-135  
Parameter  
Temp  
Level  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
RESOLUTION  
8
8
Bits  
DC ACCURACY  
Differential Nonlinearity  
+25°C  
Full  
+25°C  
Full  
Full  
+25°C  
Full  
I
VI  
I
VI  
VI  
I
0.9  
1.0  
0.6  
+1.5/–1.0  
+2.0/–1.0  
1.5  
0.9  
1.0  
0.6  
0.9  
+1.5/–1.0 LSB  
+2.0/–1.0 LSB  
Integral Nonlinearity  
1.5  
2.0  
LSB  
LSB  
0.9  
Guaranteed  
2
2.0  
No Missing Codes  
Gain Error1  
Guaranteed  
7
2
160  
7
% FS  
Gain Tempco1  
V
160  
ppm/°C  
ANALOG INPUT  
Input Voltage Range  
(With Respect to AIN)  
Compliance Range AIN or AIN  
Input Offset Voltage  
Full  
Full  
+25°C  
Full  
+25°C  
Full  
+25°C  
+25°C  
Full  
V
V
I
VI  
I
VI  
V
I
VI  
V
512  
512  
mV p-p  
V
mV  
mV  
kΩ  
1.8  
3.2  
16  
19  
1.8  
3.2  
16  
19  
4
8
62  
4
8
62  
Input Resistance  
36  
23  
36  
23  
kΩ  
pF  
µA  
µA  
Input Capacitance  
Input Bias Current  
4
4
25  
50  
75  
25  
50  
75  
Analog Bandwidth, Full Power2  
+25°C  
350  
350  
MHz  
REFERENCE OUTPUT  
Output Voltage  
Temperature Coefficient  
Full  
Full  
VI  
V
2.4  
2.5  
110  
2.6  
2.4  
2.5  
110  
2.6  
V
ppm/°C  
SWITCHING PERFORMANCE  
Maximum Conversion Rate (fS)  
Minimum Conversion Rate (fS)  
Full  
Full  
VI  
IV  
IV  
IV  
V
200  
135  
MSPS  
MSPS  
ns  
ns  
ns  
ps rms  
ns  
ns  
ns  
ns  
25  
22  
22  
25  
22  
22  
Encode Pulsewidth High (tEH  
)
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
Full  
2.0  
2.0  
3.0  
3.0  
Encode Pulsewidth Low (tEL  
Aperture Delay (tA)  
)
0.5  
2.3  
0.5  
2.3  
Aperture Uncertainty (Jitter)  
V
Data Sync Setup Time (tSDS  
Data Sync Hold Time (tHDS  
)
)
IV  
IV  
IV  
VI  
VI  
0
0
0.5  
2.0  
2.7  
0.5  
2.0  
2.7  
Data Sync Pulsewidth (tPWDS  
)
Output Valid Time (tV)3  
5.1  
5.9  
5.7  
7.5  
3
Output Propagation Delay (tPD  
)
Full  
7.9  
8.5  
ns  
DIGITAL INPUTS  
4
HIGH Level Current (IIH  
)
Full  
Full  
+25°C  
VI  
VI  
V
500  
500  
3
625  
625  
500  
500  
3
625  
625  
µA  
µA  
pF  
LOW Level Current (IIL)4  
Input Capacitance  
DIFFERENTIAL INPUTS  
Differential Signal Amplitude (VID  
HIGH Input Voltage (VIHD  
LOW Input Voltage (VILD  
)
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
400  
1.5  
0
400  
1.5  
0
mV  
V
V
)
VDD  
VDD – 0.4  
VDD  
VDD – 0.4  
)
Common-Mode Input (VICM  
)
1.5  
1.5  
V
DEMUX INPUT  
HIGH Input Voltage (VIH  
LOW Input Voltage (VIL)  
)
Full  
Full  
IV  
IV  
2.0  
0
VDD  
0.8  
2.0  
0
VDD  
0.8  
V
V
DIGITAL OUTPUTS  
HIGH Output Voltage (VOH  
)
Full  
Full  
VI  
VI  
2.4  
2.4  
V
V
LOW Output Voltage (VOL  
Output Coding  
)
0.4  
0.4  
Binary  
Binary  
–2–  
REV. B  
AD9054A  
Test  
AD9054ABST-200  
AD9054ABST-135  
Parameter  
Temp  
Level  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
POWER SUPPLY  
V
DD Supply Current (IDD  
)
Full  
Full  
+25°C  
VI  
VI  
I
128  
640  
0.005  
145  
725  
0.015  
120  
600  
0.005  
140  
700  
0.015  
mA  
mW  
V/V  
Power Dissipation5, 6  
Power Supply Sensitivity7  
DYNAMIC PERFORMANCE8  
Transient Response  
Overvoltage Recovery Time  
Signal-to-Noise Ratio (SNR)  
(Without Harmonics)  
+25°C  
+25°C  
V
V
1.5  
1.5  
1.5  
1.5  
ns  
ns  
fIN = 19.7 MHz  
+25°C  
Full  
+25°C  
Full  
+25°C  
Full  
IV  
V
I
V
I
42  
42  
42  
45  
45  
45  
45  
45  
45  
42  
42  
45  
45  
45  
45  
dB  
dB  
dB  
dB  
dB  
dB  
f
IN = 49.7 MHz  
fIN = 70.1 MHz  
V
Signal-to-Noise Ratio (SINAD)  
(With Harmonics)  
fIN = 19.7 MHz  
+25°C  
Full  
+25°C  
Full  
+25°C  
Full  
IV  
V
I
V
I
40  
40  
39  
43  
43  
43  
43  
42  
42  
40  
40  
43  
43  
43  
43  
dB  
dB  
dB  
dB  
dB  
dB  
fIN = 49.7 MHz  
fIN = 70.1 MHz  
V
Effective Number of Bits  
fIN = 19.7 MHz  
+25°C  
+25°C  
+25°C  
IV  
I
I
6.35  
6.35  
6.18  
6.85  
6.85  
6.85  
6.35  
6.35  
6.85  
6.85  
Bits  
Bits  
Bits  
f
IN = 49.7 MHz  
fIN = 70.1 MHz  
2nd Harmonic Distortion  
fIN = 19.7 MHz  
fIN = 49.7 MHz  
fIN = 70.1 MHz  
+25°C  
+25°C  
+25°C  
IV  
I
I
58  
54  
49  
63  
59  
55  
58  
54  
63  
59  
dBc  
dBc  
dBc  
3rd Harmonic Distortion  
fIN = 19.7 MHz  
fIN = 49.7 MHz  
+25°C  
+25°C  
+25°C  
IV  
I
I
48  
48  
43  
56  
54  
50  
48  
48  
56  
54  
dBc  
dBc  
dBc  
f
IN = 70.1 MHz  
Two-Tone Intermod Distortion  
(IMD)  
fIN = 19.7 MHz  
fIN = 49.7 MHz  
fIN = 70.1 MHz  
+25°C  
+25°C  
+25°C  
V
V
V
60  
55  
50  
60  
55  
dBc  
dBc  
dBc  
NOTES  
1Gain error and gain temperature coefficient are based on the ADC only (with a fixed +2.5 V external reference).  
23 dB bandwidth with full-power input signal.  
3tV and tPD are measured from the threshold crossing of the ENCODE input to valid TTL levels of the digital outputs. The output ac load during test is 5 pF (Refer to  
equivalent circuits Figures 5 and 6).  
4IIH and IIL are valid for differential input voltages of less than 1.5 V. At higher differential voltages, the input current will increase to a maximum of 1.5 mA.  
5Power dissipation is measured under the following conditions: analog input is –1 dBFS at 19.7 MHz.  
6Typical thermal impedance for the ST-44 (LQFP) 44-lead package (in still air): θJC = 20°C/W, θCA = 35°C/W, θJA = 55°C/W.  
7A change in input offset voltage with respect to a change in VDD  
.
8SNR/harmonics based on an analog input voltage of –1.0 dBFS referenced to a 1.024 V full-scale input range.  
Specifications subject to change without notice.  
EXPLANATION OF TEST LEVELS  
Test Level  
I. 100% production tested.  
IV. Parameter is guaranteed by design and characterization testing.  
V. Parameter is a typical value only.  
VI. 100% production tested at +25°C; guaranteed by design  
II. 100% production tested at +25°C and sample tested at  
and characterization testing for industrial temperature range.  
specified temperatures.  
III. Sample tested only.  
REV. B  
–3–  
AD9054A  
ABSOLUTE MAXIMUM RATINGS*  
Table I. Output Coding  
VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +6 V  
Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . VDD to 0.0 V  
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . VDD to 0.0 V  
VREF IN, VREF OUT . . . . . . . . . . . . . . . . . . . VDD to 0.0 V  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating Temperature . . . . . . . . . . . . . . . . –55°C to +125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . +175°C  
Maximum Case Temperature . . . . . . . . . . . . . . . . . . +150°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions outside of those indicated in the operation  
sections of this specification is not implied. Exposure to absolute maximum ratings  
for extended periods may affect device reliability.  
Step  
AIN–AIN  
Code  
Binary  
255  
254  
253  
129  
128  
127  
126  
0.512 V  
0.508 V  
0.504 V  
255  
254  
253  
129  
128  
127  
126  
1111 1111  
1111 1110  
1111 1101  
0.006 V  
0.002 V  
–0.002 V  
–0.006 V  
1000 0001  
1000 0000  
0111 1111  
0111 1110  
2
1
2
1
–0.504 V  
–0.508 V  
–0.512 V  
0000 0010  
0000 0001  
0000 0000  
ORDERING GUIDE  
0
0
Temperature  
Range  
Package  
Option*  
Model  
AD9054ABST-200  
AD9054ABST-135  
AD9054A/PCB  
–40°C to +85°C  
–40°C to +85°C  
+25°C  
ST-44  
ST-44  
Evaluation Board  
*ST = Plastic Thin Quad Flatpack (LQFP).  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD9054A features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. B  
AD9054A  
PIN FUNCTION DESCRIPTIONS  
PIN CONFIGURATION  
Pin Number  
Name  
Function  
1
ENCODE  
Encode Clock for ADC (ADC  
Samples on Rising Edge of  
ENCODE).  
DB  
3
VREF IN  
GND  
2
ENCODE  
Encode Clock Complement  
(ADC Samples on Falling Edge  
of ENCODE).  
DB  
2
1
VDD  
GND  
AIN  
DB  
DB (LSB)  
0
3, 5, 15, 18, 28,  
30, 31, 36, 41  
VDD  
GND  
Power Supply (+5 V).  
VDD  
GND  
GND  
VDD  
AD9054A  
TOP VIEW  
(PINS DOWN)  
AIN  
GND  
VDD  
DEMUX  
DS  
4, 6, 16, 17, 27,  
29, 32, 35, 37, 40  
14–7  
Ground.  
DA (LSB)  
0
DA0–DA7  
DB0–DB7  
Digital Outputs of ADC Channel  
A. DA7 is the MSB, DA0 the LSB.  
DA  
1
PIN 1  
IDENTIFIER  
DS  
DA  
2
19–26  
33  
Digital Outputs of ADC Channel  
B. DB7 is the MSB, DB0 the LSB.  
VREF OUT Internal Reference Output  
(+2.5 V typical); Bypass with  
0.1 µF to Ground.  
34  
38  
VREF IN  
Reference Input for ADC (+2.5 V  
typical, 4%).  
AIN  
Analog Input—Complement.  
Connect to input signal midscale  
reference.  
39  
42  
AIN  
Analog Input—True.  
DEMUX  
Format Select. LOW = Dual.  
Channel Mode, HIGH = Single.  
Channel Mode (Channel A Only).  
43  
44  
DS  
Data Sync Complement.  
DS  
Data Sync—Aligns output chan-  
nels in Dual-Channel Mode.  
SAMPLE N  
SAMPLE N+3  
SAMPLE N+4  
SAMPLE N1  
AIN  
SAMPLE N+1  
SAMPLE N+2  
tA  
1/f  
tEH  
tEL  
S
ENCODE  
ENCODE  
tPD  
tV  
DATA N1  
DATA N  
DATA N5  
DATA N4  
DATA N3  
DATA N2  
D D  
7
0
Figure 1. Timing—Single Channel Mode  
REV. B  
–5–  
AD9054A  
SAMPLE N  
SAMPLE N+3  
SAMPLE N+4  
SAMPLE N+5  
SAMPLE N1  
AIN  
SAMPLE N2  
SAMPLE N+1  
SAMPLE N+2  
SAMPLE N+6  
tA  
tEH  
tEL  
1/f  
S
ENCODE  
ENCODE  
tHDS  
tHDS  
tSDS  
tSDS  
DS  
DS  
tPD  
tV  
tPWDS  
PORT A  
D D  
DATA N7  
OR N8  
INVALID IF OUT OF SYNC  
DATA N4 IF IN SYNC  
DATA N7  
OR N6  
DATA N  
DATA N2  
7
0
PORT B  
D D  
DATA N8  
OR N7  
DATA N6  
OR N7  
INVALID IF OUT OF SYNC  
DATA N5 IF IN SYNC  
DATA N+1  
DATA N3  
DATA N1  
7
0
Figure 2a. Timing—Dual Channel Mode (One-Shot Data Sync)  
SAMPLE N  
SAMPLE N+5  
SAMPLE N+3  
SAMPLE N+4  
SAMPLE N1  
AIN  
SAMPLE N2  
SAMPLE N+1  
SAMPLE N+2  
SAMPLE N+6  
tA  
tEH  
tEL  
1/f  
S
ENCODE  
ENCODE  
tHDS  
tSDS  
tSDS  
tHDS  
DS  
DS  
tPWDS  
tPD  
tV  
PORT A  
DATA N7  
OR N8  
INVALID IF OUT OF SYNC  
DATA N4 IF IN SYNC  
DATA N7  
OR N6  
DATA N  
DATA N2  
D D  
7
0
PORT B  
D D  
DATA N8  
OR N7  
DATA N6  
OR N7  
INVALID IF OUT OF SYNC  
DATA N5 IF IN SYNC  
DATA N+1  
DATA N3  
DATA N1  
7
0
Figure 2b. Timing—Dual Channel Mode (Continuous Data Sync)  
–6–  
REV. B  
AD9054A  
EQUIVALENT CIRCUITS  
V
DD  
V
DD  
17.5k  
300⍀  
300⍀  
DEMUX  
AIN  
AIN  
7.5k⍀  
Figure 3. Equivalent Analog Input Circuit  
Figure 6. Equivalent DEMUX Input Circuit  
V
V
DD  
DD  
VREF IN  
DIGITAL  
OUTPUTS  
Figure 4. Equivalent Reference Input Circuit  
Figure 7. Equivalent Digital Output Circuit  
V
DD  
V
DD  
17.5k  
300⍀  
300⍀  
ENCODE  
OR DS  
ENCODE  
OR DS  
VREF  
OUT  
7.5k⍀  
Figure 5. Equivalent ENCODE and Data Select Input Circuit  
Figure 8. Equivalent Reference Output Circuit  
REV. B  
–7–  
AD9054A  
55  
45.4  
45.2  
45.0  
44.8  
44.6  
44.4  
44.2  
44.0  
50  
45  
40  
35  
SNR  
20MHz  
70MHz  
50MHz  
SINAD  
NYQUIST  
FREQUENCY  
(100MHz)  
30  
0
20  
40  
60  
f
80  
100  
120  
140  
0
45  
25  
؇C  
70  
90  
MHz  
T
IN  
C
Figure 9. SNR vs. fIN: fS = 200 MSPS  
Figure 12. SNR vs. Temperature, fS = 135 MSPS  
46.0  
45.8  
45.6  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
20MHz  
50MHz  
70MHz  
45.4  
45.2  
45.0  
SNR  
44.8  
44.6  
44.4  
44.2  
44.0  
SINAD  
60  
40  
20  
0
20  
؇C  
40  
60  
80  
100  
25 50  
75 100 125 150 175 200 225 250 270 300  
MSPS  
T
f
C
S
Figure 10. SNR vs. fS: fIN = 19.7 MHz  
Figure 13. SNR vs. Temperature, fS = 200 MSPS  
50  
50  
f
f
= 135MSPS  
= 10.3MHz  
S
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
SNR  
IN  
45  
40  
35  
30  
SINAD  
SNR  
SINAD  
25  
20  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
50  
75 100 125 150 175 200 225 250 270 300  
MSPS  
25  
ENCODE PULSEWIDTH ns  
f
S
Figure 11. SNR vs. fS: fIN = 70.1 MHz  
Figure 14. SNR vs. Clock Pulsewidth, (tPWH): fS = 135 MSPS  
–8–  
REV. B  
AD9054A  
70  
68  
66  
64  
62  
60  
58  
50  
48  
46  
44  
42  
40  
38  
f
f
= 200MSPS  
= 10.3MHz  
S
2ND HARMONIC  
3RD HARMONIC  
SNR  
IN  
SINAD  
56  
54  
52  
36  
34  
32  
30  
50  
48  
46  
25 50  
75 100 125 150 175 200 225 250 270 300  
MSPS  
0.0 0.5 1.0 1.5 2.0 2.5  
3.0 3.5 4.0 4.5  
5.0  
f
ENCODE PULSEWIDTH ns  
S
Figure 15. SNR vs. Clock Pulsewidth, (tPWH): fS = 200 MSPS  
Figure 18. Harmonic Distortion vs. fS: fIN = 19.7 MHz  
46  
45  
60  
2ND HARMONIC  
50  
44  
20MHz  
40  
43  
3RD HARMONIC  
70MHz  
30  
20  
42  
41  
50MHz  
40  
39  
38  
10  
0
25  
50 75 100 125 150 175 200 225 250 270  
300  
60  
40  
20  
0
20  
؇C  
40  
60  
80  
100  
fS MSPS  
T
C
Figure 16. SINAD vs. Temperature: fS = 135 MSPS  
Figure 19. Harmonic Distortion vs. fS: fIN = 70.1 MHz  
40  
45  
50  
46  
45  
44  
20MHz  
43  
50MHz  
55  
42  
70MHz  
70MHz  
41  
40  
39  
38  
60  
50MHz  
65  
20MHz  
70  
60  
40  
20  
0
20  
؇C  
40  
60  
80  
100  
60  
40  
20  
0
20  
؇C  
40  
60  
80  
100  
T
T
C
C
Figure 20. 2nd Harmonic vs. Temperature: fS = 135 MSPS  
Figure 17. SINAD vs. Temperature: fS = 200 MSPS  
REV. B  
–9–  
AD9054A  
40  
0
1  
2  
3  
4  
5  
6  
45  
50  
55  
60  
65  
70MHz  
50MHz  
20MHz  
NYQUIST FREQUENCY  
100MHz  
70  
60  
40  
20  
0
20  
؇C  
40  
60  
80  
100  
0
50 100 150 200 250 300 350 400 450 500  
f
MHz  
T
IN  
C
Figure 21. 2nd Harmonic vs. Temperature: fS = 200 MSPS  
Figure 24. Frequency Response: fS = 200 MSPS  
40  
45  
50  
0
FUNDAMENTAL = 0.5dBFS  
10  
20  
30  
40  
50  
60  
70  
80  
90  
SNR = 45.8dB  
SINAD = 45.2dB  
2ND HARMONIC = 69.8dB  
3RD HARMONIC = 61.6dB  
70MHz  
50MHz  
55  
20MHz  
60  
65  
70  
60  
40  
20  
0
20  
؇C  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
T
MHz  
C
Figure 22. 3rd Harmonic vs. Temperature: fS = 135 MSPS  
Figure 25. Spectrum: fS = 200 MSPS, fIN = 19.7 MHz  
40  
0
FUNDAMENTAL = 0.5dBFS  
10  
20  
30  
40  
50  
60  
70  
80  
90  
SNR = 44.6dB  
45  
SINAD = 37.6dB  
2ND HARMONIC = 63.1dB  
3RD HARMONIC = 39.1dB  
70MHz  
50  
50MHz  
55  
20MHz  
60  
65  
70  
60  
40  
20  
0
20  
؇C  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
T
MHz  
C
Figure 23. 3rd Harmonic vs. Temperature: fS = 200 MSPS  
Figure 26. Spectrum: fS = 200 MSPS, fIN = 70.1 MHz  
–10–  
REV. B  
AD9054A  
7
6
5
4
3
2
1
0
10  
20  
30  
40  
50  
60  
70  
80  
F1 = 55.0MHz  
F2 = 56.0MHz  
F1 = F2 = 7.0dBFS  
tPD  
tV  
90  
0
100  
60  
40  
20  
0
20  
؇C  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
MHz  
60  
70  
80  
90 100  
T
C
Figure 30. Output Delay vs. Temperature  
Figure 27. Two-Tone Intermodulation Distortion  
2.55  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
2.45  
0.0  
20 18 16 14 12 10 8  
6  
4 2  
0
2
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0  
IREF OUT mA  
I
mA  
OH  
Figure 31. Reference Voltage vs. Reference Load  
Figure 28. Output Voltage HIGH vs. Output Current  
2.502  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
2.501  
2.500  
2.499  
2.498  
0.1  
0.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
0.0  
1.0  
2.0  
3.0  
4.0  
mA  
5.0  
6.0  
7.0  
8.0  
V
Volts  
DD  
I
OL  
Figure 32. Reference Voltage vs. Power Supply Voltage  
Figure 29. Output Voltage LOW vs. Output Current  
REV. B  
–11–  
AD9054A  
2.502  
These applications require the converter to process inputs with  
frequency components well in excess of the sampling rate (often  
with subnanosecond rise times), after which the A/D must settle  
and sample the input in well under one pixel time. The architec-  
ture of the AD9054A is vastly superior to older flash architec-  
tures, that not only exhibit excessive input capacitance (which is  
very hard to drive), but can make major errors when fed a very  
rapidly slewing signal. The AD9054A’s extremely wide bandwidth  
Track/Hold circuit processes these signals without difficulty.  
2.501  
2.500  
2.499  
Using the AD9054A  
Good high speed design practices must be followed when using  
the AD9054A. To obtain maximum benefit, decoupling capaci-  
tors should be physically as close to the chip as possible. We  
recommend placing a 0.1 µF capacitor at each power-ground  
pin pair (9 total) for high frequency decoupling, and including  
one 10 µF capacitor for local low frequency decoupling. The  
VREF IN pin should also be decoupled by a 0.1 µF capacitor.  
2.498  
40  
20  
0
20  
T
40  
؇C  
60  
80  
100  
AMB  
Figure 33. Reference Voltage vs. Temperature  
APPLICATION NOTES  
THEORY OF OPERATION  
The part should be located on a solid ground plane and output  
trace lengths should be short (<1 inch) to minimize transmis-  
sion line effects. This avoids the need for termination resistors  
on the output bus and reduces the load capacitance that needs  
to be driven, which in turn minimizes on-chip noise due to  
heavy current flow in the outputs. We have obtained optimum  
performance on our evaluation board by tying all VDD pins to a  
quiet analog power supply system, and tying all GND pins to a  
quiet analog system ground.  
The AD9054A combines Analog Devices’ patented MagAmp  
bit-per-stage architecture with flash converter technology to  
create a high performance, low power ADC. For ease of use  
the part includes an onboard reference and input logic that  
accepts TTL, CMOS or PECL levels.  
The analog input signal is buffered by a high-speed differential  
amplifier and applied to a track-and-hold (T/H) circuit. This  
T/H captures the value of the input at the sampling instant and  
maintains it for the duration of the conversion. The sampling  
and conversion process is initiated by a rising edge on the  
ENCODE input. Once the signal is captured by the T/H, the  
four Most Significant Bits (MSBs) are sequentially encoded by  
the MagAmp string. The residue signal is then encoded by a  
flash comparator string to generate the four Least Significant  
Bits (LSBs). The comparator outputs are decoded and com-  
bined into the 8-bit result.  
Minimum Encode Rate  
The minimum sampling rate for the AD9054A is 25 MHz.  
To achieve very high sampling rates, the track/hold circuit em-  
ploys a very small hold capacitor. When operated below the  
minimum guaranteed sampling rate, the T/H droop becomes  
excessive. This is first observed as an increase in offset voltage,  
followed by degraded linearity at even lower frequencies.  
Lower effective sampling rates may be easily supported by oper-  
ating the converter in dual port output mode and using only  
one output channel. A majority of the power dissipated by the  
AD9054A is static (not related to conversion rate) so the penalty  
for clocking at twice the desired rate is not high.  
If the user has selected Single Channel Mode (DEMUX =  
HIGH), the 8-bit data word is directed to the Channel A out-  
put bank. Data are strobed to the output on the rising edge of  
the ENCODE input with four pipeline delays. If the user has  
selected Dual Channel Mode (DEMUX = LOW) the data are  
alternately directed between the A and B output banks and have  
five pipeline delays. At power-up, the N sample data can ap-  
pear at either the A or B port. To align the data in a known  
state the user must strobe DATA SYNC (DS, DS) per the  
conditions described in the Timing section.  
Reference  
The AD9054A internal reference, VREF, provides a simple, cost  
effective reference for many applications. It exhibits reasonable  
accuracy and excellent stability over power supply and tempera-  
ture variations. The VREF OUT pin can simply be strapped to  
the VREF IN pin. The internal reference can be used to drive  
additional loads (up to several mA), including multiple A/D con-  
verters as might be required in a triple video converter application.  
Graphics Applications  
The high bandwidth and low power of the AD9054A make it  
very attractive for applications that require the digitization of  
presampled waveforms, wherein the input signal rapidly slews  
from one level to another and is relatively stable for a period of  
time. Examples of these include digitizing the output of com-  
puter graphic display systems and very high speed solid state  
imagers.  
When an external reference is desired for accuracy or other  
requirements, the AD9054A should be driven directly by the  
external reference source connected to pin VREF IN (VREF  
OUT can be left floating). The external reference can be set to  
2.5 V 0.25 V. If VREF IN is raised by 10% (set to 2.75 V) the  
analog full-scale range will increase by 10% to 1.024 × 1.1 =  
1.1264 V. The new input range will then be AIN 0.5632 V.  
–12–  
REV. B  
AD9054A  
Digital Inputs  
When operating in Single-Channel Mode, the outputs at Port B  
are held static in a random state.  
SNR performance is directly related to the sampling clock sta-  
bility in A/D converters, particularly for high input frequencies  
and wide bandwidths. A low jitter clock (<10 ps @ 100 MHz)  
is essential for optimum performance when digitizing signals  
that are not presampled.  
Figure 35 shows the AD9054A used in single-channel output  
mode. The analog input ( 0.5 V) is ac coupled and the ENCODE  
input is driven by a TTL level signal. The chip’s internal refer-  
ence is used.  
ENCODE and Data Select (DS) can be driven differentially or  
single-ended. For single-ended operation, the complement  
inputs (ENCODE, DS) are internally biased to VDD/3 (~1.5 V)  
by a high impedance on-chip resistor divider (Figure 5), but  
they may be externally driven to establish an alternate threshold  
if desired. A 0.1 µF decoupling capacitor to ground is sufficient  
to maintain a threshold appropriate for TTL or CMOS logic.  
VREF OUT  
0.1F  
VREF IN  
A PORT  
AIN  
1k⍀  
AD9054A  
VIN  
AIN  
0.1F  
When driven differentially, ENCODE and DS will accommo-  
date differential signals centered between 1.5 V and 4.5 V with  
a total differential swing 800 mV (VID 400 mV).  
+5V  
DEMUX  
DS  
ENC ENC  
DS  
Note the 6-diode clock input protection circuitry in Figure 5.  
This limits the differential input voltage to ~ 2.1 V. When the  
diodes turn on, current is limited by the 300 series resistor.  
Exceeding 2.1 V across the differential inputs will have no im-  
pact on the performance of the converter, but be aware of the  
clock signal distortion that may be produced by the nonlinear  
impedance at the converter.  
0.1F  
NC  
CLOCK  
NC = NO CONNECT  
Figure 35. Single Port Mode—AC-Coupled Input—Single-  
Ended Encode  
Dual Port Mode  
In Dual Port Mode (DEMUX = LOW), the conversion results  
are alternated between the two output ports (Figure 2). This  
limits the data output rate at either port to 1/2 the conversion  
rate (ENCODE), and supports conversion at up to 200 MSPS  
with TTL/CMOS compatible interfaces. Dual Channel Mode is  
required for guaranteed operation above 100 MSPS, but may be  
enabled at any specified conversion rate.  
V
IH D  
IC M  
CLOCK  
ENC  
V
V
ID  
CLOCK  
ENC  
V
IL D  
a. Driving Differential Inputs Differentially  
The multiplexing is controlled internally via a clock divider,  
which introduces a degree of ambiguity in the port assignments.  
Figure 2 illustrates that, prior to synchronization, either Port A  
or Port B may produce the even or odd samples. This is re-  
solved by exercising the Data Sync (DS) control, a differential  
input (identical to the ENCODE input), which facilitates opera-  
tion at high speed.  
V
IH D  
CLOCK  
ENC  
V
ID  
V
IC M  
ENC  
0.1F  
V
IL D  
b. Driving Differential Inputs Single-Endedly  
At least once after power-up, and prior to using the conversion  
data, the part needs to be synchronized by a falling edge (or a  
positive-going pulse) on DS (observing setup and hold times  
with respect to ENCODE). If the converter’s internal timing is  
in conflict with the DS signal when it is exercised, then two data  
samples (one on each port) are corrupted as the converter is  
resynchronized. The converter then produces data with a  
known phase relationship from that point forward.  
Figure 34. Input Signal Level Definitions  
Single Port Mode  
When operated in a Single Port mode (DEMUX = HIGH), the  
timing of the AD9054A is similar to any high speed A/D Con-  
verter (Figure 1).  
A sample is taken on every rising edge of ENCODE, and the  
resulting data is produced on the output pins following the  
FOURTH rising edge of ENCODE after the sample was taken  
(four pipeline delays). The output data are valid tPD after the  
rising edge of ENCODE, and remain valid until at least tV after  
the next rising edge of ENCODE.  
Note that if the converter is already properly synchronized, the  
DS pulse has no effect on the output data. This allows the con-  
verter to be continuously resynchronized by a pulse at 1/2 the  
ENCODE rate. This signal is often available within a system, as  
it represents the master clock rate for the demultiplexed output  
data. Of course, a single DS signal may be used to synchronize  
multiple A/D converters in a multichannel system.  
The maximum clock rate is specified as 100 MSPS. This is  
recommended because the guaranteed output data valid time  
equals the Clock Period (1/fS) minus the Output Propagation  
Delay (tPD) plus the Output Valid Time (tV), which comes to  
4.8 ns at 100 MHz. This is about as fast as standard logic is able  
to capture the data with reasonable design margins. The AD9054A  
will operate faster in single-channel mode if you are able to  
capture the data.  
REV. B  
–13–  
AD9054A  
Applications that call for the AD9054A to be synchronized at  
power-up or only periodically during calibration/reset (i.e., valid  
data is not required prior to synchronization), need only be  
concerned with the timing of the falling edge of DS. The falling  
edge of DS must satisfy the setup time defined by Figure 2 and  
the specification table. In this case the DS hold time specifica-  
tion on the rising edge can be ignored.  
In Figure 36, the converter is operating in Dual Port Mode,  
with data coming alternately out of Port A and Port B. The  
figure illustrates how the output data may be aligned with an  
output latch to produce a 16-bit output at 1/2 the conversion  
clock rate. The Data Sync input must be properly exercised to  
time the A Port with the synchronizing latch.  
Applications that will continuously update the synchronization  
command need to treat the DS signal as a pulse and satisfy  
timing requirements on both rising and falling edges. It is easiest  
to consider the DS signal in this case to be a pulse train at one  
half the encode rate, the positive pulse nominally bracketing the  
ENCODE falling edge on alternate cycles as shown in the tim-  
ing diagram (Figure 2b). Both the falling and rising edges of DS  
must satisfy minimum setup (tSDS) and hold (tHDS) times with  
respect to the falling edges of ENCODE. This timing require-  
ment produces a tight timing window at higher encode rates.  
Synchronization by a single reset edge results in a simpler timing  
solution in many applications. For example, synchronization  
may be provided at the beginning of each graphics line or frame.  
VREF OUT  
0.1F  
VREF IN  
A PORT  
AIN  
'573  
AD9054A  
1k⍀  
AIN  
VIN  
0.1F  
B PORT  
DEMUX  
DS  
ENC ENC  
DS  
0.1F  
DS  
NC  
The data are presented at the output of the AD9054A in a ping-  
pong (alternating) fashion to optimize the performance of the  
converter. It may be aligned for presentation as sixteen bits in  
parallel by adding a register stage to the output.  
CLOCK  
'74  
DIVIDE  
BY 2  
NC = NO CONNECT  
In Dual Channel Mode, the converted data is produced five  
clock cycles after the rising edge of ENCODE on which the  
sample is taken (five pipeline delays).  
Figure 36. Dual Port Mode—Aligned Output Data  
–14–  
REV. B  
AD9054A  
EVALUATION BOARD  
Voltage Reference  
The AD9054A evaluation board offers an easy way to test the  
AD9054A. It provides dc biasing for the analog input, generates  
the latch clocks for both full speed and demuxed modes, and in-  
cludes a reconstruction DAC. The board has several different  
modes of operation, and is shipped in the following configuration:  
The AD9054A has an internal 2.5 V voltage reference. An  
external reference may be employed instead. The evaluation  
board is configured for the internal reference. To use an exter-  
nal reference, connect it to the (VREF) pin on the power con-  
nector and move jumper S102.  
DC-Coupled Analog Input  
Demuxed Outputs  
Single Port Mode  
Single Port Mode sets the AD9054A to produce data on every  
clock cycle on output port A only. To test in this mode, jumper  
S104 should be set to single channel and S106 and S107 must  
be set to F (for Full). The maximum speed in single port mode  
is 100 MSPS.  
Differential Clocks  
Internal Voltage Reference.  
VREF EXT  
DC BIAS  
S102  
Dual Port Mode  
AIN  
S103  
VREF OUT  
VREF IN  
AIN  
Dual Port or half speed output mode sets the ADC to produce  
data alternately on Port A and Port B. In this mode, the reset  
function should be implemented. To test in this mode, set  
jumper S104 to Dual Channel, and set S106 and S107 to D (for  
Dual Port). The maximum speed in this mode is 200 MSPS.  
B PORT  
A PORT  
'574  
'574  
50  
AD9054A  
AIN  
RESET  
BUTTON  
RESET  
5V  
RESET drives the AD9054A’s Data Sync (DS) pins. When  
operating in Single Port Mode, RESET is not used. In Dual-  
Channel Mode it is needed for two reasons: to synchronize the  
timing of Port A data and Port B data with a known clock edge,  
as described in the data sheet, and to synchronize the evaluation  
board’s latch clocks with the data coming out of the AD9054A.  
Reset can be driven in two ways: by pushing the reset button on  
the board, or externally, with a TTL pulse through connector J5  
or J6.  
D
DEMUX  
D FF  
S104  
C
CLK A  
CLK B  
DS  
ENC ENC  
DS  
S105  
DAC  
ENC  
50⍀  
50⍀  
ENC  
CLK A  
DAC Out  
CLOCKING  
ENC  
CLK B  
ENC  
The DAC output is a representation of the data on output Port  
A only. Output Port B is not reconstructed.  
Troubleshooting  
If the board does not seem to be working correctly, try the fol-  
lowing:  
Figure 37. PCB Block Diagram  
Analog Input  
The evaluation board accepts a 1 V input signal centered at  
ground. The board’s input circuitry then biases this signal to  
+2.5 V in one of two ways:  
Check that all jumpers are in the correct position for the  
desired mode of operation.  
Push the reset button. This will align the AD9054A’s data  
output with the half speed latch clocks.  
1. DC-coupled through an AD9631 op amp; this is the mode in  
which it is shipped. Potentiometer R7 provides adjustment  
of the bias voltage.  
Switch the jumper S105 from A-R to R-B or vice-versa, then  
push the reset button. In demuxed mode, this will have the  
effect of inverting the half speed latch clocks.  
2. AC-coupled through C1.  
These two modes are selected by jumpers S101 and S103. For  
dc coupling, the S101 jumper is connected between the two left  
pins and the S103 jumper is connected between the two lower  
pins. For ac coupling, the S101 jumper is connected between  
the two right pins and the S103 jumper is connected between  
the two upper pins.  
At high encode rates, the evaluation board’s clock generation  
circuitry is sensitive to the +5 V digital power supply. At  
high encode rates, the +5 V digital power should be kept  
below +5.2 V. This is an evaluation board sensitivity and  
not an AD9054A sensitivity.  
The AD9054A Evaluation Board is provided as a design ex-  
ample for customers of Analog Devices, Inc. ADI makes no  
warranties, express, statutory, or implied, regarding merchant-  
ability or fitness for a particular purpose.  
ENCODE  
The AD9054A ENCODE input can be driven two ways:  
1. Differential TTL, CMOS, or PECL; it is shipped in this  
mode.  
2. Single-ended TTL or CMOS. To use in this mode, remove  
R11, the 50 chip resistor located next to the ENCODE  
input, and insert a 0.1 µF ceramic capacitor into the C5 slot.  
C5 is located between the ENC connector and the ENCODE  
input to the DUT and is marked on the back side of the  
board. In this mode, ENCODE is biased with internal resis-  
tors to 1.5 V, but it can be externally driven to any dc voltage.  
REV. B  
–15–  
AD9054A  
( L S B )  
D B 0  
S L E E P  
R E F L O  
D B 1  
D B 2  
D B 3  
D B 4  
D B 5  
D B 6  
D B 7  
D B 8  
D B 9  
R E F I O  
F S A D J  
C O M P 1  
C O M P 2  
A V D D  
D V D D  
D B 4  
D B 5  
D B 6  
D B 7  
D A 3  
D A 4  
D A 5  
D A 6  
D A 7  
G N D  
V D D  
G N D  
V D D  
V D D  
G N D  
G N D  
+ 5 V A  
G N D  
+ 5 V A  
+ 5 V A  
G N D  
G N D  
V D D  
G N D  
V D D  
G N D  
+ 5 V A  
G N D  
+ 5 V A  
Figure 38. Evaluation Board Schematic  
–16–  
REV. B  
AD9054A  
Figure 39. Assembly—Top View  
Figure 41. Conductors—Top View  
Figure 42. Conductors—Bottom View  
Figure 40. Assembly—Bottom View  
REV. B  
–17–  
AD9054A  
BILL OF MATERIALS  
GS00104 REV. B  
ITEM QTY  
PART NUMBER  
REFERENCE  
DESCRIPTION  
MFG/DISTRIBUTOR  
11  
30  
GRM40Z5U104M050BL  
C1, C2, C4, C6–8,  
C10–C22, C24–C29,  
C31–C35  
0.1 µF CER CHIP CAP 0805  
TTI  
12  
13  
14  
15  
16  
17  
18  
19  
10  
1
P10FBK-ND  
R5  
10 SURFACE MT RES 1206  
100 SURFACE MT RES 1206  
10 µF TANTALUM CHIP CAP  
140 SURFACE MT RES 1206  
1 kSURFACE MT RES 1206  
2 kSURFACE MT RES 1206  
1k TRIM POT TOP ADJ, 25 TURN  
37P D CONN RT ANG PCMT FEM  
49.9 SURFACE MT RES 1206  
DIGI-KEY  
DIGI-KEY  
TTI  
21  
4
P100FBK-ND  
T491C106M016AS  
P140FBK-ND  
P1KFBK-ND  
P2KFBK-ND  
3296W-102-ND  
K44-C37S-QJ  
P49.9FBK-ND  
R3, R9, R21–R39  
C3, C9, C23, C30  
2
R2, R4  
DIGI-KEY  
DIGI-KEY  
DIGI-KEY  
DIGI-KEY  
CENTURY ELEC  
DIGI-KEY  
1
R12  
3
R6, R8, R14  
1
R7  
J6  
1
5
R1, R10, R11,  
R15, R16  
11  
1
CSC06A-01-511G  
51F54113  
RP1  
510 6P BUSED RES NETWORK  
8291Z 3-PIN TERMINAL BLOCK  
8291Z 2-PIN TERMINAL BLOCK  
BNC COAX CONN PCMT 5 LEAD  
DIP-16 DUAL D FLIP-FLOP  
DIP-16 QUAD ECL TO TTL TRANS  
SO-14 FAST TTL DUAL D FLIP-FLOP  
HEADER STRIP 20P GOLD MALE  
40P HEADER  
TTI  
12  
1
TB1  
NEWARK  
13  
1
51F54112  
TB1  
NEWARK  
14  
4
AMP-227699-2  
MC10H131P  
MC10H125P  
74F74SC-ND  
TSW-120-08-G-S  
90F3987  
J1–J4  
TIME ELEC  
15  
1
U6  
HAMILTON/HALLMARK  
HAMILTON/HALLMARK  
DIGI-KEY  
16  
1
U7  
17  
1
U2  
18  
1
J5  
SAMTEC  
ALT:  
19  
1/2  
1
J5  
NEWARK  
AD96685BR  
S90F9280  
U3  
HIGH SPEED COMP SOIC-16  
SHORTING JUMPER  
ANALOG DEVICES, INC.  
NEWARK  
20  
7
S101–S107  
S101–S107, GND  
21  
8
89F4700  
3-PIN HEADER (DIVIDE 1 OF THE  
8 FOR 3 GND HOLES)  
NEWARK  
22  
23  
24  
25  
26  
2
1
1
1
1
MC74F574DW  
AD9631AR  
U4, U5  
U1  
SO-20 OCTAL D TYPE FLIP-FLOP  
SOIC-8 OP AMP  
HAMILTON/HALLMARK  
ANALOG DEVICES, INC.  
ANALOG DEVICES, INC.  
ANALOG DEVICES, INC.  
DIGI-KEY  
AD9760AR  
U8  
10-BIT CMOS DAC SOIC-28  
8-BIT ADC IN 44-LEAD LQFP  
AD9054ABST  
P8002SCT-ND  
UA1  
B1  
SURFACE MOUNT MOMENTARY  
PUSHBUTTON  
27  
4
90F1533  
BUMPON PROTECTIVE BUMPER  
NEWARK  
PARTS NOT ON BILL OF MATERIALS, AND NOT TO BE INSTALLED: C5, C36, C37, R17–R20.  
–18–  
REV. B  
AD9054A  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
44-Lead Plastic Thin Quad Flatpack (LQFP)  
(ST-44)  
0.063 (1.60)  
MAX  
0.472 (12.00) SQ  
0.030 (0.75)  
0.018 (0.45)  
33  
23  
34  
22  
SEATING  
PLANE  
0.394  
(10.0)  
SQ  
TOP VIEW  
(PINS DOWN)  
44  
12  
1
11  
0.006 (0.15)  
0.002 (0.05)  
0.018 (0.45)  
0.012 (0.30)  
0.031 (0.80)  
BSC  
0.057 (1.45)  
0.053 (1.35)  
REV. B  
–19–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY